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Wigner rotations in laser cavities
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The Wigner rotation is important in many branches of physics, chemistry, and engineering sciences. It is a
group theoretical effect resulting from two Lorentz boosts. The net effect is one boost followed or preceded by
a rotation. While the term “Wigner rotation” is derived from Wigner’s little group whose transformations leave
the four-momentum of a given particle invariant, it is shown that the Wigner rotation is different from the
rotations in the little group. This difference is clearly spelled out, and it is shown to be possible to construct the
corresponding Wigner rotation from the little-group rotation. It is shown also thaAB& D matrix for light
beams in a laser cavity shares the same mathematics as the little-group rotation, from which the Wigner
rotation can be constructed.
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[. INTRODUCTION tions. We show that there is always a Wigner rotation for a
given little-group rotation.

The term “Wigner rotation” is mentioned frequently in Furthermore, in this paper we report that light beams in a
many branches of physics. The earliest manifestation of thiaser cavity perform little-group rotations, and thus the cor-
Wigner rotation is the Thomas precession that we observe iresponding Wigner rotation. It is known that the geometrical
atomic spectra. Thomas formulated this problem 13 yearsptics of laser cavities is a form of lens optics. It is also
before the appearance of Wigner's 1939 pafief]. The known that para-axial lens optics can be formulated in terms
Thomas effect in nuclear spectroscopy is mentioned in Jackef the Lorentz group. Thus, we can also formulate the cavity
son’s book on electrodynami¢8]. Recently, as the relativ- Optics in terms of the Lorentz group. We thus expect to find
istic effects come to play more prominent roles, the Wignereffects of the Lorentz group in cavity optics also, and we
rotation has become one of the key issues in the field theor§Port one result in this paper. ,
of extended objectgt], electron beamg5], relativistic quark As for the mathematical method, the Lorentz group is a
models[6,7], nuclear scattering], and neutrino physids], sophisticated group based orx4 matrices. However, this

as well as many other areas of physics, chemistry, and engfif®UP shares the same algebraic properties as those of 2
neering sciencekl0] X 2 unimodular matrices (determinant) with complex el-

If we perform two Lorentz boosts in different directions, ements or six real parameters. This group is called $0(2,

the result is not a boost but a boost preceded or followed b nd is the underlying language fob2 ABCD marices in

. ) o ' ptics. If we choose the matrices with real parameters, it
a rotation. This rotation is commonly known as the W'gnerforms a subgroup S@) with three independent parameters
rotation. However, if we trace the origin of this term, Wigner group b P :

; . This subgroup shares the same algebraic property as the
introduced the rotation subgroup of the Lorentz group Whos?hree-dimensional Lorentz group applicable to two spacelike

transformations leave the four-momentum of a given particle,,y gne timelike coordinates. This group is commonly called
invariant in its rest frame. The rotation can, however, chang@(z, 1.
the direction of its spin. Indeed, Wigner introduced the con-  The pasic advantage of @ is its mathematical simplic-
cept of a “little group” to deal with this type of problem. it while it is rich in mathematical content. It does not re-
Wigner’s little group is the maximum subgroup of the Lor- quire professional knowledge of group theory to follow the
entz group whose transformations leave the four-momentunpgic based on & 2 matrices with three independent param-
of the particle invariant. The particle does not have to be agters. This is the reason why it became the standard language
rest. in classical and quantum optics. This group is directly appli-
The question then is whether the Wigner rotation, as uneable to squeezed states of light in the Wigner-function rep-
derstood in the literature, is the same as the rotation assoaiesentation of squeezed stafé4]. This group has the same
ated with the little group. We address this question and showtlgebraic properties as $11) which is the standard lan-
that there is a nontrivial difference between these two rotaguage in the Fock-space representation of squeezed states
[11]. Since Sf2) has a correspondence with(Z)1), the
Wigner rotation or the Thomas precession is a meaningful

*Electronic address: baskal@newton.physics.metu.edu.tr operation in squeezed states of lighg].
"Permanent address. Another recent trend is that the Lorentz group is becom-
*Electronic address: yskim@physics.umd.edu ing prominent in classical optics, including polarization op-
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tics [13], interferometer$14], and multilayer optic$15,16.
As for lens optics, the formalism starts with<2 matrices
representing a lens and a translation. Repeated applications
of these matrices leads to a<2 matrix representing $p).
Thus, the fundamental scientific language in lens optics is
clearly the group S2) [17,18), which shares the same alge-
braic properties as those of the Lorentz grou@,0. We can
therefore explain what happens in lens optics in terms of
items in special relativity such as Wigner rotation or
Iwasawa decomposition. Since laser optics is derivable from
lens optics, we can do the same for laser cavities.

In Sec. Il, we show that the Thomas precession is a spe-
cial case of the Wigner rotation. We also discuss in detail the
rotation contained in Wigner’s little group for massive par- FIG. 1. Closed Lorentz boosts. InitiaIIy, a massive particle is at
ticles. It is shown that this little-group rotation is not the rest with its four-momentuni, . The first boosB, brings P, to
Wigner rotation as known in the literature, but these twoPs- The second bood; transformsP, to P.. The third boosB;
rotation angles are related. In Sec. lll, we use a group thedNgsP. back toP, . The particle is again at rest. The net effect is
retical technique to achieve a simplied derivation of the?@ rotation around the axis perpendicular to the plane containing
ABCD beam transfer matrix for laser cavities. This matrix N€S€ three transformations. We may assume for convenience that
takes the same form as that of Wigner’s little-group transfor-pb Is along thez axs, andP: in the zx plane. The rotation is then
mation matrix. In Sec. IV, we discuss how we can derive themade around thg axis.
parameters of the Wigner rotation from the geometry of th
laser cavity.

eThen we boost this four-momentum along thdirection to
make

Il. WIGNER ROTATIONS AND LITTLE GROUPS P,=m(coshz,sinh7,0,0). (5)

In the literature, the Wigner rotation comes from two suc- . )
cessive noncollinear Lorentz boosts. If we boost alongzthe The corresponding Lorentz-boost matrix of the(Zpgroup
axis first and then make another boost along a direction thd®
makes an arbitrary angle with tlzeaxis in thezx plane, the
result is another Lorentz boost preceded by a rotation. This e”” 0
rotation is known as the Wigner rotation in the literature. B.= 0 e 72|

In the metric €,z,x,y), the rotation matrix which per-
forms a rotation around the y axis by an anglas

(6)

The kinematics is illustrated in Fig. 1.
In deriving the above result, it is sufficient to use3

1 0 0 0 matrices applicable to the three-dimensional space of
0 cos¢ —sing O (t,z,x). The group of these:83 matrices is called @,1). If
R(¢)= 0 sing cosé 0] (1)  we use Sf2), the 3x3 matrix algebra of @,1) can be
reduced to the algebra oP2 matrices. This is a significant
0 0 0 1 mathematical simplification. Furthermore, this correspon-
dence allows us to interpret the physics of Lorentz transfor-
and its inverse iR(— ¢). The boost matrix along thedi-  mations in terms of what we observe in optics laboratories,
rection takes the form and vice versa. With this point in mind, we shall exclusively
use 2x2 matrices of Sf2) in the rest of this paper.
coshyp sinhyp 0 O If we rotateP,, around they axis by an angle, then the
. resulting four-momentum is
sinhn coshnp 0 O
B(0,7)= : 2 _ . .
0 0 10 P.=m(coshz,(sinhn)cosh,(sinhy)sind,0).  (7)
0 0 0 1
The rotation matrix that performs this operation is equivalent
If this boost is made along thé direction, the matrix is to
B(¢.7)=R(¢) B(0,7) R(—¢), 3 cog0/2) —sin(6/2)

0)= sin(6/2) cog6/2) | ®

and its inverse i8(¢,— 7).
Let us start with a particle at rest with its four-momentum  |nstead of this rotation, we propose to obtain this four-
vector by boosting the four-momentum of E&). It is te-
P,=(m,0,0,0. (4) dious but straightforward to calculate this boost matrix, and
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this calculation was carried out by Haat al. in 1987[19].
Let us call this boost matriB,. In the 2x2 formalism,B,
takes the form
By=| ° 9
2= b a+ ) ( )
with
a.. =COSh\/2) £ sin(6/2)sinh(\/2),
b=cog 6/2)sinh(\/2), z
A=2 tanh’l{(tanhn)sin( 012)}. (10) FIG. 2. Little group and Wigner rotation associated with the

four-momentun®y, . This momentum can be rotatedRg by R(6).

Next, we boost the four-momentum of E@) to that of It can then be boosted back Ry, through the inverse oB,. This

Eq. (4). The particle is again at rest. The boost matrix js ~ OPeration corresponds to the right-hand side of €f). The net
result is not an identity matrix, but a transformation which leaves

By=R( g)Bl—lR(_ 0). (12) the four-momentun®,, invar?ant. The_ same effect can be achieved
by a Lorentz-boosted rotation matrix that appears in the left-hand

It is straightforward to calculate this>22 matrix from the ~ Side of Eq.(20). The momentunP, is first boosted tdP, by the
boost matrix of Eq(6) and the rotation matrix of Eq8). inverse ofB;. We can then rotate the system without changing the

The net result of these transformationsBsB,B;. This momentum. This rotation will change the direction of the spin. The
leaves the initial four-momentum of E¢4) invariant. Is it particle can then be brought to its initial momentémby the boost

. . . . - - matrix B;. The net result is a transformation that does not change

going to be an identity matrix? The answer is “No.” The . . ;
. L . . . the momentunP,, . The anglex in the transformation of Eq20) is
result of the matrix multiplications is a rotation matrix of the : , X
. . X . precisely the Wigner rotation angle.

form given in Eq.(8), but with the rotation angle, where
i Then Eq.(13) becomes
sin ] y?cog(6/2) + y] a-(13

tanw= , (12
cosd[ y2cog( 012) + y]+ coshy

R(6)B(0,— 7)R(—0)B(,M)B(0,7)=R(w), (16)

with y=(coshy—1). This expression can be derived from Which can be written as
sin(w/2) given in Ref.[19]. This matrix performs a rotation B B B _
around they axis and leaves the four-momentum of Ed) R(=0)B(#:M)=B(0.n)R(0—0)B(0,~7). (17

invariant. It can now be written as The inverse of this expression is

B3B2B1=R(w) (13 B(#,—MR(0)=B(O.)R(@)B(0—7) (18

or with
_n-1

B,B1=B; "R(w). (14) a=0—w or fO=a+o. (19

This kinematics is the basis for the Thomas precessio

[19.20. Wigner rotation angle for a given value &f but it has its

Let us examine next why this rotation is called the Wignerown physical significance: When applied By, both the
rotation. In his 1939 papd®f] on the Lorentz group Wigner right-hand side and the left-hand side of Eag) leave P,

did not introduce this rotation. There he introduced the con- . S o ) o
cept of little groups, which are the maximum subgroups Ofmvarlant. This kmer_natlcs is clearly illustrated in Fig. 2.
the Lorentz group whose transformations leave the four- Then, we can write
momentum of a given particle invariant. He observed that
the little group for a massive particle is the rotation subgroup
qf th? Lorentz group in th_e Lorentz frame in which the Paryhich enables us to calculate the rotation angle terms of
ticle is at rest. This rotation is not the same as the ngner7] and 6:
rotation discussed above. '

Wigner’s little group is not restricted to particles at rest. .

. . . sin @ coshy

Then, is there a little group which leaves the four-momentum tana= . (21
P, of Eq. (5) invariant? In order to answer this question, let cosé cost 5+ (costt 5—1)sir?( 6/2)
us go back to Eq(13). There we can writd; as

rI]-|ere, we have introduced the angleas a redefinition of the

B,R(a)B; *=B,'R(#), (20)

This expression can also be derived from the 1986 paper by
B(6,—7)=R(6)B(0,— n)R(—0). (15 Han et al. where cosv is given[21].
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Now that we have given expressions for the angleand Traditional cycle
w, it is worthwhile to check our calculations by carrying out ! !
the tangent addition rule: n n n
and—t N tana+tanw 29
ang=tan(a+w)= 1 e 22 U U U

| ]
Cycle used in this paper

using the expressions for tanand tanw given in Egs.(12)
and(21), respectively. The result is consistent with the addi-

tion rule of Eq.(19). Indeed, each little-group rotation is g 3. cycles in cavity and mirror optics. One complete cycle

accompanied by a Wigner rotation. between the mirrors in a cavity is equivalent to the beam going
Let us now write the left-hand side of E(RO) as through two lenses. The issue is where we can start the cycle. It is
/2 o 2 shown in this paper that we can eliminate the auxiliary mirror
e’ 0 cog al2) sin(a/2)| e " 0 needed in the traditional cycle by starting the cycle at the midpoint
0 e "|\sinNal2) coqal2) 0 e”?) between the mirrors or the lenses.
(23

) _ ] _tional cycle starts from one of the mirrors, but we start here
Now, these three matrices can be combined into one matrif;om the midpoint between the mirrors. In order to achieve

cod al2) —eTsin(al2) this mathematically, we write E¢25) as
1 -—d/i2

e Tsinal2)  codal2) (24) (1 dIZ)( 1 o) (1 d/2)
o 1/)lo 1/l-2r 1)lo 1
lasers[22-24,.

1 di2 1 0\/1 d/2\[1 d/2
Let us go back to Eq23). In order to construct the maxi- X o 11l-or 1llo 1llo 1/ (26)
mum subgroup of the Lorentz group which leaves the four-

momentum of the given particle invariant, we bring the par-|, tyis way, we translate the system H§2 using a transla-

ticle to its rest frame, and then perform rotations while o matrix. and write theABCD matrix of Eq.(25) as
leaving the four-momentum of the rest particle invariant. We ’

then boost the particle to its original frame. During this pro- (1 —d/2) (l—d/R d— d2/2R) 2( 1 d/2
cess, the four-momentum remains invariant, but its spin ori-

entation will be changed. It is gratifying to note that this is a o 1 —2R  1-diR 0 1
conjugate transformation from the group theoretical point OfFurthermore, the matrix in the middle can be written as
view. Indeed, the little group of a massive particle with a

nonzero momentum is a conjugate rotation subgroup of thé1—d/R d—d?/2R
Lorentz group. We shall note in the following sections thatf _9oR 1-d/R
the conjugate transformations in th&x2 matrix representa-
tion can play an important role in our understanding of beam
transfer matrices. =

This mathematical form is quite common in the literature on

). (27)

Jd 0 \[1-d/R 1-d/2R
0 1//d/\-2d/R 1-d/R

1Jd 0
We are now ready to discuss what is happening in a laser 0 NCTA

cavity. Let us consider for simplicity a cavity consisting of

two identical concave mirrors separated by a distadce It is then possible to decompose tA& CD matrix into the

IIl. WIGNER'’S LITTLE GROUP IN LASER CAVITIES

X (29)

Then theABCD matrix for a round trip of one beam is “core” matrix C and the “escort” matrixE:
1 0\/1 d 1 0\/1 d EC’E %, (29
-2R 1/\0 1/\-2/R 1/\0 1)’ @9 .
with

iar to us from the laser literatuf®2—-24. However, the cru- —

whereR is the radius of the mirror. This form is quite famil- 1-d/R 1-d2R
—-2d/R 1-d/R

cial question is what happens when this process is repeated
many times. This question has also been addressed in the

literature. For this purpose, Haus replaces one of the concave 1 —d2\(Jd o0
mirrors with a flat mirror and repeats the process in order to “lo 1 0 1Nd) (30
complete the cyclg23].
In this section, we propose to eliminate the auxiliary flat|f the process is repeatdd times, the result is
mirror by using a group theoretical concept, but with a
simple matrix algebra. As is illustrated in Fig. 3, the tradi- ECNE™1L, (31
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With this expression, we can concentrate on the core matrix

C, and write this in the form

cos¢p  —efsing
T A ta (32
e ssing Ccos¢
with
EPT C. 33
cos¢= R €72 12 (33

Here bothd andR are positive, and the restriction on them is
that d be smaller than R. This is the stability condition
frequently mentioned in the literatufg3,24.

Let us next write the core matri€ as

(e”’2 —sin (b) (
0 CoS¢

e nl2

0

0

o

0

Ccos¢
e”’z) . (39

sing

Here, a rotation matrix is sandwiched between a squeeze
matrix and its inverse. This expression is exactly of the form

of Eq. (23) for the little-group rotation.
If the light beam makes one cycle, the effec€i§ and its
0

expression is
ol I

Indeed, the beam makes a little-group rotation gf\®hen it
completes one cycle.

If the light beam make# round trips, we have to com-
puteC?N, and the result is

er]/Z

0

e nl2

0

0

e7]/2) '

(39

cog2¢)
sin(2¢)

—sin(2¢)

2__
¢ _( cog2¢)

2N_<e’7’2 0 )(cos(zw) —sin(2N¢))
c 0 e 7?]\sin(2N¢) cog2N¢)
e 72 0
X 0 e”’z) (36)
or
ZN_( cog2N¢)  —e”sin(2Ng)
e 7sin(2N¢)  cog2N¢) @7
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IV. WIGNER ROTATIONS IN LASER CAVITIES

In Sec. Il, we emphasized that the anglenot w, is the
rotation angle directly associated with Wigner’s little group.
We could therefore insist th&(«) is the Wigner rotation or
the original Wigner rotation, as Haet al. did in 1988[25].

On the other hand, sincR(w) is widely known as the
Wigner rotation in the literature, we choose to callthe
Wigner rotation angle.

Is it possible to construct this angle from one cycle of the
beam transfer in a laser cavity? The answer is “Yes.” The
kinematics of Fig. 2 is essentially the same as that of Fig. 1,
as we noted in Sec. II.

The laser cavity gives the two parameterend «. From
them, it is possible to calculate the angleFrom Eq.(21),
the expression fop becomes

6= 2 tan Y(sin(a/2)+/coshy), (39

and, according to Eq19), the Wigner rotation angle is

w=0—«. (39
Indeed, one Wigner rotation corresponds to the beam going
through one cycle in the laser cavity.

V. CONCLUDING REMARKS

The group Sf2) is an algebra of X2 matrices with unit
determinant. Its elements are real numbers, and there are
three independent parameters. It does not require a group
theoretical background to deal with these2 matrices.
However, these matrices generate many interesting math-
ematical results useful in understanding physics.

This group shares the same algebraic property as other
groups, such as SW,1), which is the basic scientific lan-
guage of squeezed states of light,26. This Sg2) group is
also the underlying language for classical optics, including
multilayer optics and lens optickl6,18. If expanded to
SL(2¢), this group can serve as the basic language for po-
larization optics and interferometef$3,14. We have seen
in this paper that this group again is the basic language of
laser cavities.

In addition, the group S@) shares the same algebraic
properties as the group of Lorentz transformations, called
0(2,1), applicable to a space consisting of two space dimen-
sions and one time dimension. This allows us to interpret
what is happening in optics in terms of the language of spe-

In this paper, we noted first that the matrices in lens/cial relativity, and vice versa. Indeed, this group is powerful

mirror optics can be formulated in terms of the three-

enough to combine relativity and optics into one broad-based

parameter S{2) group. Because of the correspondence bescientific discipline.

tween Sp2) and S@2,1), we expect Wigner rotations in this

The term “Wigner rotation” is commonly used in the lit-

branch of physics, and we have shown that light beams peerature. The reason is that Wigner observed that the little

form little-group rotations in the laser cavity.

group applicable to a relativistic particle is the three-

We considered here only the simplest cavity consisting otlimensional rotation group in the Lorentz frame where the
two identical mirrors. However, there are other interestingparticle is at rest. We noted in this paper that there is a
cavities[22] and their combinations. It would be an interest- difference between this rotation and the Wigner rotation
ing project to exploit fully the Lorentz-group content of these commonly mentioned in the literature. We have clarified this
optical systems. difference in this paper.
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