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Energy transfer in Rayleigh-Taylor instability
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The spatial structure and energy budget for Rayleigh-Taylor instability are examined using results from a
512%x 512X 2040 point direct numerical simulation. The outer-scale Reynolds number of the flow follows a
rought® power law and reaches a final value of about 5500. Taylor microscales and Reynolds numbers are
plotted to characterize anisotropy in the flow and document progress towards the mixing transition. A mixing
parameter is defined which characterizes the relative rates of entrainment and mixing in the flow. The spectrum
of each term in the kinetic energy equation is plotted, at regular time intervals, as a function of the inhomo-
geneous direction and the two-dimensional wave number for the homogeneous directions. The energy spectrum
manifests the beginning of an inertial range by the latter stages of the simulation. The production and dissi-
pation spectra become increasingly opposite and separate in wave space as the flow evolves. The transfer
spectrum depends strongly on the inhomogeneous direction, with the net transfer being from large to small
scales. Energy transfer at the bubble/spike fronts is strictly positive. Extensive cancellation occurs between the
pressure and advection terms. The dilatation term produces negligible energy transfer, but its overall effect is
to move energy from high to low density regions.
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I. INTRODUCTION sured[17,18,10—138 However, if long wavelength perturba-
tions (compared to domain sizeare present, the scaling

Rayleigh-Taylor instability(RTI) occurs at the interface analysis is more complicated and growth may not be qua-
between two fluids of different densities whenever thedratic[19].
heavier fluid is decelerated by the lighter flyit-4]; i.e., if The range of scales participating in RTI dynamics con-
density and pressure gradients are in opposite directionsinually grows as the flow evolves. Kelvin-Helmholtz insta-
then vorticity, deposited at the interface through baroclinichilities, occurring along the sides of the interpenetrating fin-
torque, will cause the fluids to interpenetrate and mix.gers, along with vortex stretching and bending motions,
Richtmyer-Meshkov instability(RMI) corresponds to the serve to broaden the energy spectrum. Eventually the flow
case of impulsive acceleration of an interfadg6], e.g., may become fully turbulent, while still remaining highly an-
shock passage, and is sometimes considered a special casésoftropic. A complete description of the flow field requires
RTI (with time-dependent acceleratioriRT| presents a seri- resolution down to the Kolmogorov scal20,21. Due to
ous design challenge for inertial confinement fusit@F) limitations of diagnostics, laser experiments performed thus
capsules, where high density shells are decelerated by lofar have not yielded much information on the internal struc-
density fuel. Depending on the acceleration history and théure of the mixing region. Larger-scale experimer2—24
ratio of shell radius to thickness, RTI may lead to break up ofhave provided some information on mixing zone structure,
the shell prior to ignition and/or significant mixing of the but lack the resolution necessary for a close investigation of
fuel with the plastic ablatof7]. RTI also plays a prominent the energy budget.
role in supernovae, where ejecta are decelerated by circum- Over the past three decades, direct numerical simulation
stellar matter[8,9]. Furthermore, mixing from RTI alters (DNS) has emerged as an accepted surrogate for experiment
thermonuclear burn in supernovae in such a manner as tohen detailed information, not readily measured in the labo-
affect the rates of formation of heavy elements; hence, theatory, is needed. DNS is restricted to low Reynolds number
relative abundance of elements in the universe, and the coftows, due to the limited range of wave numbers that can be
responding potential for life, are directly related to astro-supported on a computational mesh. Nevertheless, it has
physical RTI mixing. proven capable of following the three phases of turbulent

Most RTI research thus far has focused on predicting thenixing identified by Eckar{25], i.e., entrainment, stirring,
rate of growth of the turbulent mixing zof&0-15. Mixing and molecular mixing. It also provides a complete, three-
zone amplitudes are routinely measured in high-energy laselimensional, time-dependent description of the flow field.
experiments conducted at very high Reynolds nunjté. DNS data of RTI flow can be used to test and/or tune models
In its early stages, RTI growth is characterized by “spikes” for the overall growth of the mixing region, and for devel-
of heavy fluid penetrating into light material and “bubbles” oping subgrid-scaléSGS models for large eddy simulation.
of light fluid rising into heavy material. In the strongly non- The latter is intimately connected with energy transfer to and
linear stages, the bubbles and spikes merge to form largérom unresolved scales. The primary goal of this paper is to
structures. If the only imposed length scale is from a constargain insight into the energy transfer processes in order to
acceleration, then the mixing layer will grow quadratically in guide future SGS model development.
time; e.g., a growth constanta” can be defined and mea- The outline of this paper is as follows. In Sec. I, the
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governing equations and solution technique of the DNS are 24
described. In Sec. lll, flow visualizations are presented, - M
along with statistical measures of flow structure, such as
growth rates and Reynolds numbers. In Sec. IV, a variable-
density formulation is proposed for energy transfer analyses . 22
previously performed for isotropi@6—31], anisotropid 32], -

and wall-bounded33] flows. The analysis is carried out in » .
Sec. V, where the spectrum of each term in the kinetic energy -
equation is computed from the DNS data. Finally, conclu- 20
sions are given in Sec. VI.

II. DIRECT NUMERICAL SIMULATION

A. Governing equations 18

The conservation laws governing the flow of two incom-
pressible fluids in a gravitational field with no surface ten- - - '
sion are - 1.6

apY, N apuyY, P FIG. 1. (Color Initial density perturbations or=0 plane.

aY, -
_(PD%) (1=1,2), 1)

at SIS j Hence, for incompressible mixing, a convenient equation for
pis
ﬁpui &pUin ﬁp &Tij
—t——=——+—+pg;, 2
at X 2 PO @ é’_p_'_u'@:pi D dp _ (6)
at = oxp Tooxp\ p ax
where
B. Solution technique
- =2M( S — 35__ auk) The equations were solved in nondimensional form, with
g o3 ox )’ length measured in units of box width time measured in

units of \L/g, and density measured in units pf. The
diffusivity was set toD = u/p,, with the viscosity beingu
E(ﬂJr auj =512"%3 (in the units just described The numerical
axX;  IX) scheme for solving the governing equations is described in
detail in[19]. In summary, the code computasandy de-
Here p is the mixture densityY, is the mass fraction of rivatives spectrally via fast Fourier transform. Théeriva-
specied, u; is the mass-averaged mixture velocityis the  tives are computed with an eighth-order compact scheme
pressurep is the Fickian diffusivity,u is the dynamic vis- [35]. Periodic boundary conditions are appliedxrandy,
cosity, andg;=(0,0,—g) is the acceleration. The mass frac- with no-slip walls imposed irz. The z grid spacing is set to
tions satisfy £ times the grid spacing in andy, in order to account for
the difference in resolving power between the spectral and
compact methods. Time advancement is accomplished via a
Yi(x,t)+Ya(x,t)=1 (3 pressure-projection algorithm with third-order, Adams-
Bashforth-Moulton integration.
and, definingp; and p, to be the constant densities of the  The simulation was performed on a computational mesh
light and heavy fluids, respectively, the specific volume satwijth 512x512x 2040 grid points inx, y, and z directions,
isfies respectively. The bottoni) of the domain was initialized
with p=p,=1 and the to %) portion with p=p,=3. The
1 YD) Ya(x0) density interface between the fluids was specified in the same
- v~ 2 (4) manner as if19], i.e., as an error function ia (five grid
p(Xt) P1 p2 points thick with isotropic perturbations ix andy. The
) ) perturbed interface was initially located at taes0 plane.
Equations(1), (3), and(4) can be used to derive the follow- Diffusion velocities were initialized as ifil9] in order to

2

ing divergence relation for miscible fluid84]: satisfy the divergence relatids).
The spectral/compact algorithm was chosen to ensure that
. 5 (D o numerical dissipation did not enter into the calculation. No
—__ _(_ _p) (5) filtering or artificial diffusion of any kind was applied in the
IX; IXj\ p X simulation, i.e., the viscous and diffusive terms in E@.
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FIG. 2. (Color) Snapshots of density field from DNS of Rayleigh-Taylor instability. Images, proceeding from upper left to lower right,
were taken at=1, 2, 3, 4, 5, and 6. The heavy fluid is regd=3), the light fluid is blue p=1), and the mixed fluid is greemE2).

and (6) were solely responsible for energy dissipation. Con-sequent aliasing errordeyond Re=5500 is a curling up of
sequently, the simulation eventually became unstdfde  the energy spectrum at the highest wave numbers. The data
Re>5500 once significant energy reached the Nyquist wavepresented herein were selected at times prior to those where
number. A prominent symptom of under-resoluti@md con-  significant aliasing errors occurred.
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FIG. 3. (Color) Kinetic energy(x) on side
boundary planes of DNS domain. Images were
taken att=3, (upper lef}, 4 (upper right, 5
020 (lower left), and 6(lower righy.
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Ill. FLOW STRUCTURE The kinetic energyx=pu;u;/2, on the back, bottom, and
side planes of the flow domain is shown in Fig. 3 fer3, 4,
5, and 6. It grows rapidly and appears to be fairly evenly
The initial perturbations are depicted in Fig. 1, which pro-distributed across the mixing layer. The gravitational poten-
vides a top-down view of density on the=0 plane att tial provides the source for kinetic energy production. Figure
=0. The flow was seeded with fine scale perturbations te} displays the kinetic energy on tlze=0 plane at the same
minimize the influence of the periodic boundary conditions.times. Like the density field, the kinetic energy is homoge-
Figure 2 displays a time sequence of the density field. Th@eous and isotropic ir andy. Also, large values ok appear
images, taken at unit time intervals, illustrate the evolution ofto become concentrated in localized regions of the flow.
the fluid interfacgdefined as the =2 isosurfacg The early The source of vorticitfand consequently energy genera-
evolution is weakly nonlinear and is characterized by thetion) is the baroclinic torque term in the vorticity equation,
formation of bubbles of light fluid rising upwards and spikeswhich is nonzero only in the mixing region. The magnitude
of heavy fluid penetrating downward. Later on, the bubblesf vorticity, |V X u||, and the magnitude of baroclinic torque,
and spikes begin to merge and the flow becomes stronglyv p X Vp|/p, att=6, are plotted in Fig. 5. A few spikelike
nonlinear. and bubblelike structures are discernible in the fields; how-

A. Visualization
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FIG. 4. (Color) Kinetic energy(x) onz=0 plane att= 3, (upper lef}, 4 (upper righj, 5 (lower left), and 6(lower righi.

ever, the fields are quite chaotic. Early on, when the bubbles The outer-scale Reynolds number is plotted, versus time,
and spikes are growing more or less independently, anth Fig. 7. The Reynolds number is based on the vertical
hence are readily identified, vorticifand consequently en- extent of the mixing regionh=h,—hg, and its rate of
ergy) is primarily generated along the sides of the structuresgrowth, h, i.e.,
However, by late time, the flow has become weakly turbulent

and vorticity generation occurs throughout the mixing zone. (py+ pz)hh
The complexity of the baroclinic torque field increases as Re= ———.
centrifugal forces pull pressure gradients out of alignment
with the gravity vector.

2 @)

The Reynolds number grows roughly lik&, which is ex-

pected ifh~t? andh~t. (Reasons whyr may depart from
The penetration lengths of the bubbles and spikgét) guadratic growth are discussed[itQ].) The terminal outer-
andhg(t), respectively, are defined as|[ih9], i.e., by aver- scale Reynolds number of 5500 is about a third of the Rey-
aging the heavy fluid mole fractidX=(p—p1)/(p2—p1)]  nolds numbef(1-2)x 10*] suggested by Dimotakig6] as
in x andy, and measuring the distance fraw 0 for which  the critical value for reaching the mixing transition and
(X)xy=0.99 and(X),,=0.01({), denoting horizontal aver- achieving fully developed turbulence. It should be noted,
age. The bubble and spike penetrations are plotted in Fig. 6however, that the Reynolds number for mixing transition has
The change in slope arourté=2 occurs as modal growth yet to be documented for RTI flow. If data above the mixing
overtakes diffusive growth. transition could be obtained for RTI flow, it would be inter-

B. Statistics

026312-5



ANDREW W. COOK AND YE ZHOU PHYSICAL REVIEW E66, 026312 (2002

FIG. 5. (Color Magnitude of vorticity(left) and magnitude of baroclinic torqueght) att=6.

esting to see if the “hot spots” in kinetic energy would per- isotropy in the ¢=0) plane, thec andy microscales are very

sist or if the energy would become more evenly distributed¢jose and can be averaged to define a single horizontal mi-
It is possible to define Taylor microscales and Reynolds;rgscale,

numbers for this flow in a manner that accommodates the

anisotropic forcing. A microscale in thiedirection can be Aty
defined ag§37,3§ My=—%5 9
<ui2>xy Figure 8 depicts the temporal growth of the vertical and

1/2

} (no sum oni), (8)  horizontal Taylor microscales in the£0) plane. The ver-
tical and horizontal scales both grow as the bubbles increase
in size, broadening the velocity correlation functions. The

with statistics computed in the€0) plane. With statistical  difference between the vertical and horizontal scales gives a

((au /axi)2>xy
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FIG. 6. Amplitude of bubblesh,) and spikesl) in the mixing FIG. 7. Outer-scale Reynolds number, based on extent and rate
region. The total width of the layer is=h,—hg. of growth of mixing region.
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FIG. 8. Vertical (labeledz) and horizontal(labeledxy) Taylor
microscales on the=0 plane.

direct measure of anisotropy in the flow. The rakig/\,,
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0.7 I L I i I I

FIG. 10. Mixing parameter, indicating the ratio of actual chemi-
cal product(for a hypothetical infinite-rate reactipto the product
that would be formed if the fluid inside the mixing region were
completely mixedno xy variation.

starts out near unity, increases during the diffusive growth

stage to a maximum value of about 3.7, and then appears tfhe anisotropy in microscaléig. 8) is also manifest in the
asymptote to a value around 1.4 in the far nonlinear regimerayjor Reynolds numbers. A Taylor Reynolds number of
Figure 9 depicts the temporal evolution of the horizontal,ghly 100 is required to cross the mixing transiti@e].

and vertical Taylor Reynolds numbers on tte=Q) plane.
These are defined as

T2y 112
%J:(mxy)\.[;uﬁxy] (no sum oni), (10

again, with spatial averages computed in tlze=Q) plane.

Judging from the proximity of the outer-scale Reynolds num-
ber to the critical value of 10 000—20 000, it appears that the
transition criterion would probably apply best to the horizon-
tal Taylor Reynolds number, rather than the vertical.

In order to quantify the degree of mixing within the layer,
a parameter, analogous to the You§8] “molecular mix-
ing fraction,” (®) is defined. Assuming a passive, equilib-
rium chemical reaction between fluids, the chemical product

As with the microscales, horizontal isotropy permits a hori-is
zontal Taylor Reynolds number to be defined as the average

of Re ,and Rg, i.e.,

Rqﬁ+Rq’
Rq,xy=%. (11)

100

Re;

FIG. 9. Vertical(z labe) and horizontalxy labe) Taylor Rey-
nolds numbers on the=0 plane.

XIX if X<X,
X =
P (1=X)/(1=Xg) if X>X¢

-12

10

FIG. 11. Evolution of two-dimensional energy spectrif) at
z=0.
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where X, is the (heavy-fluid mole fraction for a stoichio-
metric mixture, here taken aé=3. A mixing parameterz,
is defined as the ratio of mixed to entrained fluid, i.e.,

) | xa000g02

I

, 19
| X900z

whereH is the height of the flow domain. Thug=1 indi-
cates fluids are completely mixed within the mixing zone;
whereas,Z =0 corresponds to fully segregated fluitim-
miscible casg Note that with no perturbations{&(X),y),

for an increasingly sharp interface, the numerator and de-
nominator go to zero at the same rate; herge; 1 for a
Heaviside function. The mixing paramet&r is plotted in

Fig. 10 as a function of time. Initially, the layer is diffuse
with small amplitude perturbations; henég,starts out near
unity. As the perturbations grow, they entrain fluid at a rate 1
proportional to their wavelengthgonger wavelengths result

in bigger “gulps” of pure fluid. At early times, the rate of
entrainment exceeds the rate of mixing agddecreases.
This is a consequence of the fact that, early on, the surface
area across which the fluids can diffuse is relatively small.
However, later on the interface begins to wrinkle due to
baroclinic vorticity (mushroom capsand Kelvin-Helmholtz

instabilities_ in the_ shearing regions along tht_a mushroom 5 15 (Color) Energy spectrun{E) versusz (vertica) and
necks; the interfacial surface area then rapidly increases, th@glo(k) (horizonta) att=3 (top left, 4 (top right, 5 (lower left,

mixing rate overtakes the entrainment rate, and the curvgnq 6(lower right. Blue=0 and red=5x 10 .
reverses direction. The curve appears to asymptote to a value

somewhere around 0.8; however, mixing and entrainment

rates have not come into balance within the time span of the 9o JuUs p 1 au
simulation. Furthermore, this curve is likely to rise after the —l=plg— L2 — _vi_k
mixing transition occurs. at IX; axi 27 Xk

(Si 1 s ﬁuk>
K =T 3 %%,

In order to extend the methodology of constant-density o ) )
energetics to the variable-density case, a new variable is in- For simplicity, Eq.(15) is rewritten as
troduced, i.e.,

d

-12
IV. ENERGY BUDGET +2p o

M E N+D
viEPl/ZUi, (14 i N+ D

such that, the kinetic energy may be written s vv;/2. where the buoyant forcing is
This variable has been used for similar purposes by various

authors[39-41. The left-hand side of the Navier-Stokes F.=p";,
equation can then be written as

(15

(16)

17

the nonlinear(quadratic, pressure, and dilatatiorontribu-

Ui IpUYy i L P tion is
" ax Pt 2P Ut
L;'UiU' &p 1 &Uk
doju; 1 ap N=— 1 -2 = 7K
NES: V- il B T B ' IX; a2 'axy’
p (?Xj 2p 2Ul ](9)(] | [ k
ol i dvip 1 duy and the viscous diffusion is
P T T 2V
1 J 1 (9Uk
. Di=2p "~ u| Sj— 58| |-
such that the transport equation fgrbecomes IX; 37 ax

026312-8
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FIG. 13. (Color Production(II: left), transfer(Z: middle), and FIG. 14. (Color Production(II: left), transfer(7: middle), and
dissipation(&: right) spectra versug (vertica) and logy(k) (hori-  dissipation(€: right) spectra versug (vertica) and log(k) (hori-
zonta) att=3 (top) and 4(bottom. Blue=—2x104 green=0,  zonta) att=5 (top) and 6(bottom. Blue= —2x10*, green=0,
and red=2x10"%. and red=2x10 %

Now letd;, F;, N;, andD; be horizontal Fourier transforms
of vy, F;, N;, and D;, respectively; e.g.,0i(k,zt)
=Fylvi(x,t)}, where k=(k, k) is the horizontal wave _ _
vector. If 5*(k,zt) denotes the complex conjugate of the nonlinear transfer is

vi(k,z,t), then multiplying the transform of E¢16), and its 1

conjugate, byo andd;, respectively, and adding the equa- T=Z 3@ (W‘Ni‘*‘ﬁiﬂ?)do, (24)
tions together yields 2

1 IS
=3 é(vi Fi+0;F")do, (23

PO and the viscous dissipation is
VTV L a ek el A ek axA A
T=Ui Fi+viFi +Ui Ni+UiNi +Ui Di+viDi .
(20) E== 3E(ﬁ?Di+6iDi*)da, (25)

Integrating Eq. (20) over Fourier annuli of radiusk  yjth do being a differential element of a wave space annu-

= \/kX2+ ky2 leads to the energy budget equation lus.

There are three contributions to the nonlinear energy

%E(k,z,t) =1I(k,z,t)+7(k,z,t)+E(k,z,t), (2D

transfer. The first is from the quadratic term, which is respon-
sible for passive-vector advection, while the second and third

contributions are from pressure and dilatation effects. In or-
where the kinetic energy is der to ascertain the relative importance of each process, the
total nonlinear transfer is subdivided into each individual

1 component, i.e.,
E=- é (070;)do, (22

2 T(K,z,H) =To(k,z,t) + Ty(K,Z,H) + Ty(k,z,t),  (26)
the production from gravity is where
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FIG. 15. (Colon Quadratic {,: left) and pressureZ: right)
contributions to transfer spectrum versuigvertical) and logg(k)
(horizonta) at t=3 (top) and 4 (bottom). Blue=—5x10 4,

green=0, and ree=5x10 %,

Tm:iﬁg(ﬁmm,i*ﬁiﬂfmi)do (m=q.,p,d) (27

1
and

19Uin

W=

p

=2
Np,l P 6Xi !

N _1 JUy

472,

V. SPECTRA

(28)

(29

(30

PHYSICAL REVIEW E66, 026312 (2002

FIG. 16. (Color) Quadratic (4: left) and pressureX: right)
contributions to transfer spectrum versugvertical) and logy(k)
(horizonta) at t=5 (top), and 6 (bottom). Blue=—5x104,
green=0, and red=5x10"%,

to form. In[42], Zhou argues that the inertial range for the
RTI flow will follow a —% power law. He reasons that the
spectrum will be modified from the classical Kolmogorov
—2) power law for isotropic turbulence as a result of the
external time scale introduced by gravity. Both power laws
are shown on the figure for comparison to the data. The
late-time spectra appear somewhat consistent with Zhou'’s
theory; however, the statistical fluctuations in the spectra
(there are not many points in the Fourier annuli at lower
wavenumbers are larger than the difference in slope be-
tweenk ™" andk 2. Furthermore, there is no clear begin-
ning to the dissipation range, which appears to extend well
into the lower wave numbers, thereby steepening the slope of
the spectrum. Due to the closeness of the power laws, much
higher Reynolds number data and improved statistics will be
needed in order to discriminate between the two.

The z dependence of the energy spectrum is graphically

The time evolution of the two-dimensional energy spec-portrayed in Fig. 12 at four different times. The plots are in a
trum, E(k,z=0t=0,2,4,6), is plotted in Fig. 11. The initial semi-Fourier domain with log(k) along the abscissa ard

diffusion velocities result in a nonzero spectruntat0. The

along the ordinate. The bulk of the energy is initially depos-

spectrum increases by several orders of magnitude as kinetiied at a moderate wave number, corresponding to the domi-
energy is deposited into the flow. The peak of the spectrunmant wavelength of the density perturbations. As time
migrates toward lower wave numbers as bubbles and spikgwogressesk(k,z,t) expands in botlk and z but maintains
merge to form larger structures. The spectrum also fills out aits maximum value close ta=0. The spectrum decreases
higher wave numbers as vortex stretching and bending maiear the edges of the mixing zone, becoming negligible out-
tions transfer energy to smaller scales. Near the end of thgide it.

simulation it appears that an inertial range is just beginning The production(Il), transfer(7), and dissipatiori€) spec-

026312-10
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tra are plotted in Figs. 13 and 14 on the sameersus
log;o(K) domain for the same times. Early on, the peaks of
the production and dissipation spectra are close to one an-
other, but later the production moves toward lower wave
numbers while the peak of the dissipation spectrum stays
roughly fixed. By the end of the simulation, there is sokne
separation between the two, i.e., as structures merge within = "=
the mixing layer, energy is deposited at larger scales. The
increasing separation of peaks between the production and
dissipation spectra is a direct result of the increasing Rey-
nolds number for this transitional flow. As time progresses,
both spectra advance mandk, becoming increasingly large
and opposite.

In contrast to the straightforward nature ldfand &, the
transfer spectrum behaves in a very complicated manner. It
exhibits an intricate web of positive and negative regions,
interspersed over a wide range Zrand k. At higher wave
numbers7 is mostly positive, indicating a net cascade of =
energy to smaller scales. It is also positive at the top and
bottom of the mixing zone, suggesting production of energy
at the bubble and spike fronts. Inside the mixing zone, back-
scatter appears approximately equal to forwardscatter. It fur-
ther appears that, at each instant in time, sanecations
may be undergoing forward energy cascade, while neighbor-
ing regions are simultaneously experiencing inverse cascade.

In order to unravel the irregular patchwork that constitutes
7, each individual componer(tZy, 7,, and7y) is plotted
separately. In Figs. 15 and 18, and 7, are plotted on the
same semi-Fourier domain and at the same times as before.
The dilatation spectrunt]y, is plotted(at all four time$ in
Fig. 17. The dilatation spectrum is roughly two orders of
magnitude smaller tha#, and7,, and hence, makes negli-
gible contribution to7. Interestingly, the quadraticZf) and

pressure ) components are near opposites of one anOthEI}’esolution direct numerical simulation. The outer-scale Rey-

their net contribution tdZ being the result of extensive can- nolds number was observed to followt power law and

cellation between the two. The quadratic term is mOStIyreached a final value of 5500, the highest Reynolds number

negative at lower wave numbers inside the mixing zone angttained in a DNS or RTI flow to date. The curvature of

nﬁiﬂy positive at Ihlgheerave dpurr:rt:ers and ne?r the edg(ﬁ?elocity correlation functions, as manifest in the Taylor mi-
ofthe mixing envelope. kegarding the pressure term, near Xroscales, exhibits strong anisotropy between the vertical and

the opposite Is true, except at higher wave numbers Wherﬁorizontal directions, with a similar anisotropy observed in
positive and negative regions appear 1o be roughly equallyhe Taylor Reynolds numbers. This is due to the directed

distributed. The net positive transfer of energy to the highe'forcing term in the governing equations. The energy spec-
wave numbgrs(usual cascade p|ctL)re1n_d to the bUbt.)le/. trum, computed at the center of the mixing zone, appears to
spike fronts is thus a rgsult of qgadratlc interactions; W'thmanifest the beginning of an inertial range by the latter
pressure counterba.lanqng advection, fpr 'Fhe most part. stages of the simulation. Unfortunately, statistical fluctua-
As re_gar_dslthe dllata_tlc_)ﬂ;,, .allth.ough |ts.|nﬂuence on the tions in the spectrum make it difficult to establish whether
energetics is likely negligible, it is interesting to observe thatthe inertial range follows a2 Kolmogorov power law or
it is strongly polarized, i.e., positive f@<0 (spike region the —Z power law proposed Sy Zhoi42].
and ne_gative f0|z>Q (bqbble regiop The velocity diver- A ft)rmulation of the kinetic energy equation was pro-
gence s (elatepl to diffusion throu.gh HG). .Th? net effect of posed, which enables straightforward extension of method-
d!ffusmn Is to increase the d_ensny Of_ ﬂl.“d in the lower re- ologies commonly employed for constant-density, isotropic
glon and degrease the density of fluid n the UPPET regiony ,ihlence. The spectrum of each term in the energy equation
This resylts Ina net transfgr 9f energy in the d|rect'|on was computed as a function of height, horizontal wave num-
due to diffusion of heavy fluid into light fluid. At late times, ber, and time. The peak of the energy spectrum migrates to
vigorous stirring at the center of the mixing zone causes the, yer wave numbers as structures merge inside the mixing
positive and negative regions @ to overlap. layer. The production spectrum also moves to lower wave
numbers as gravity acts on the larger structures. The dissipa-
tion spectrum expands in bothand k while its peak stays
We have examined the flow structure and energy budgewughly fixed in wave number space. The limited Reynolds
for Rayleigh-Taylor instability using the results of a high- number of the DNS appears to inhibit movement of the peak

FIG. 17. (Color) Dilatation (Z3) component of transfer spectrum
versusz (vertical) and logy(k) (horizonta) att=3 (top left), 4 (top
right), 5 (lower left), and 6(lower right. Blue=—7x10®, green
=0, and red=7x 1076,
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dissipation to higher wave numbers. spectra depends sensitively on initial conditions; since the

The transfer spectrum depends strongly on the inhomogenterfacial perturbations set the scale at which energy is ini-
neous directiorz. While the net energy transfer is from large tially injected into the flow. This has serious consequences
to small scales, there is significant inverse cascade over far large eddy simulations, where the initial perturbations
wide range ofz. Energy transfer at the bubble/spike fronts ismay be much smaller than the grid scale. In such cases,
strictly positive. Examination of the individual contributions subgrid-scale models must be capable of treating not only
to the transfer reveals this to be due to the quadfativec- backscatter, but also growth of spectra below the grid scale
tion) term. Pressure acts to counterbalance advection, su@nd migration of the energy peak through the cutoff wave
that the net transfer is substantially smaller than the transferumber. The detailed analysis of the spectra, performed
from either single component. The dilatation term accountderein, serves as a step toward developing subgrid-scale
for energy transfer via diffusion of unequal-density fluids. It models capable of treating RTI flows in ICF and astrophysics
is very small but serves to move energy from high to lowapplications.
density regions.

The flow induced by Rayleigh-Taylor instability, as seen
here, has rather different character than that of homogeneous,
isotropic turbulence. The flow is highly anisotropic, even at This work was performed under the auspices of the U.S.
small scales, as evidenced by the Taylor microscales anbepartment of Energy by the University of California,
Reynolds numbers. Initial rates of entrainment and mixingLawrence Livermore National Laboratory, under Contract
are determined by the initial conditions. Production rates alNo. W-7405-Eng-48. Additionally, we wish to thank Profes-
ways exceed dissipation rates; hence, the kinetic energsor P. E. Dimotakis for many stimulating discussions on this
grows rapidly in time. Furthermore, the evolution of the topic and for providing keen insights into this flow.
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