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Kinetic boundary conditions in the lattice Boltzmann method
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Derivation of the lattice Boltzmann method from the continuous kinetic thB¥ryHe and L. S. Luo, Phys.
Rev. E55, R6333(1997; X. Shan and X. He, Phys. Rev. Le80, 65 (1998] is extended in order to obtain
boundary conditions for the method. For the model of a diffusively reflecting moving solid wall, the boundary
condition for the discrete set of velocities is derived, and the error of the discretization is estimated. Numerical
results are presented which demonstrate convergence to the hydrodynamic limit. In particular, the Knudsen
layer in the Kramers'’ problem is reproduced correctly for small Knudsen numbers.
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[. INTRODUCTION venient to introducéds-dimensional population vectofs
In the isothermal case considered below, local hydrody-
In recent years, the lattice Boltzmann meti@8M) has  namic variables are given as
emerged as an alternative tool for the computational fluid
dynamicq1]. Originally, the LBM was developed as a modi- b
fication of the lattice gas modéR]. Later derivationg3,4] p=2, fi(r,p), 1)
revealed that the method is a special discretization of the =1
continuous Boltzmann equation. The derivation of the LBM b
[4] from the Boltzmann equation is essentially based on u=> cfi(r.t)
Grad’'s moment metholb], together with the Gauss-Hermite P = Ghirn.b.
guadrature in the velocity space.
Another important issue was to retain positivity of dis- The basic equation to be solved is
crete velocities populations in the bulk. Recently, a progress
has been achieved in incorporating tHetheorem into the fi(r+c,t+1)—fi(r,t)=—Baf(r,0) JA[f(r,t)], (2
method[6-8], and thus retaining positivity of the popula-
tions in the bulk. On the contrary, despite of several attempt¥here g is a fixed parameter in the intervg0,1] and is
[9-16] a fully consistent theory of the boundary condition related to the viscosity. A scalar function of the population
for the method is still lacking. It appears that the concernsector « is the nontrivial root of the nonlinear equation
about positivity of the population, and the connection with
the continuous case, are somewhat ignored while introducing H(f)=H(f+ «A[f]). €)
the boundary condition. The way the no-slip condition for . . )
the moving wall is incorporated in the meth¢tio—17 is The _functlon_a ensures the discrete-tinté theorem. In the
especially prone to danger of loss of positivity of the popu-Previous derivation$3,4] of the LBM from the Boltzmann
lations at the boundary. A clear understanding of the boundequation, a quadratic form for the equilibrium distribution
ary condition becomes demanding for the case of movindunction {4 was obtained by evaluating the Taylor series
boundary, complicated geometries, chemically reactive, oexpansion of the absolute Maxwellian equilibrium on the
porous walls. nodes of a properly selected quadrature. This was done to
The theory of boundary conditions for the continuousensure that the Navier-Stokes equation is reproduced up to
Boltzmann equation is sufficiently well developed to incor-the orderO(M?), whereM is the Mach number. However,
porate the information about the structure and the chemicahe disadvantage of expanding equilibrium distribution func-
processes on the wall7]. The realization that the LBMis a tjon is that the condition of monotonicity of the entropy pro-
special discretization of the Boltzmann equation allows us tqjuction is not guaranteed. In order to avoid this problem, in
derive the boundary conditions for the LBM from continuousthe entropic formulatiod6—8], the BoltzmannH function,
kinetic theory. In this work we demonstrate how this can berather than the equilibrium distribution, is evaluated at the
done in a systematic way. nodes of the given quadrature, to get the discrete version of
The outline of the paper is as follows: In Sec. Il we give the H function as
a brief description of the LBM. In Sec. Il we briefly de-
scribe how boundary condition is formulated for the continu- b fi
ous kinetic theory. In Sec. IV we derive the boundary condi- H=2, fi'“(—>, (4)
tion for the LBM and in Sec. V we demonstrate some

numerical simulation to validate the result. wherew; denotes the weight associated with the correspond-

ing quadrature node . In the Appendix the derivation of the

H function is presented. Afterwards, the collision term is
In the LBM setup, one considers populatidn®f discrete  constructed from the knowledge of thefunction [Eq. (4)].

velocitiesc;, wherei=1, ... b, at discrete time. It is con-  The collision termA is constructed in such a way that it

Il. OVERVIEW OF THE METHOD
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satisfies a set of admissibility conditions needed to have &his equation can also be understood as a weaker statement
properH theorem and conservation lawsee Ref[8] for  of the detailed balance conditigd7]. This form of the de-
details. tailed balance is very attractive for our present purpose be-
The LBM model with the Bhatnagar-Gross-Kro@&GK) cause of its integral nature, so that a discretization can be
collision form[4,18], can be considered as a limiting case ofdone in a natural way.
the entropic formulation. To obtain the lattice BGK equation, In this paper, we only consider the diffusive boundary
the functiona in the Eq.(2) is set equal to 2, and for the conditions because the steps associated with the discretiza-
collision termA BGK form is chosen. The equilibrium func- tion are easier to appreciate due to the mathematical simplic-
tion used in the BGK form is obtained as the minimizer ofity in this case. In this model of the wall it is assumed that
the H function[Eq. (4)] subjected to the hydrodynamic con- the outgoing stream has completely lost its memory about
straing[Eq. (1)], evaluated up to the ord&t? [6]. Derivation  the incoming stream. Thus, the scattering probabiBtys
of the boundary conditions done in the subsequent sectiomdependent of the impinging directions, and is equal to
applies to both the forms of the LBM.

|§_n|960(_§’p ,0,T )
I1l. BOUNDARY CONDITION FOR THE BOLTZMANN B(§,—>§): . 5 - B(f)

EQUATION L,'Koli' -n[g*q &' ,py,0T,)dE

Following Ref.[17], we briefly outline how boundary ©)
condition is formulated in the continuous kinetic theory. WeThys, the explicit expression for the reflected distribution
shall restrict our discussion to the case where the mass flugnction is
through the wall is zero. For the present purpose, a wRll

is completely specified at any point € JR) by the knowl- ) ) )
edge of the inward unit normai, the wall temperaturd,, , J§’~n<0|§ -nlg(&',H)dé

and the wall velocityU,,. Hereafter, we shall denote the g(&t)=

distribution function inla frame of referenge moving with the f |€-n|g°Y &', pyy, 0T, dE
wall velocity asg(£), with £&=c—U,,. The distribution func- £ .n<0

tion reflected from the nonadsorbing wall can be written ex-
plicitly, if the scattering probability is known. In explicit
form

Xgeo(—f,pW,O,TW) (§n>0) (10)

We need to transform this equation into the stationary
coordinate system. As the equilibrium distribution depends

n )= "N ' HB(E = HAE (£n>0), only on the difference between the particle velocity and the
|&-nlg(&t) L,_le lg(& H)B(& —&dE (& ) local velocity, we have

where the non-negative functid@(& — &) denotes the scat- J’g'-n<o|§, -nlf(c’,t)dc’
tering probability from the directiod’ to the directioné. If f(ct)=

the wall is nonporous and nonadsorbing, the total probability f 1€ -n[feYC’ puy, Uy, Tu) dE
for an impinging particle to be reemitted is unity £ .n<0

xfc,pw, Uy, Tyw) (c—U,)-n>0. (11)

f B(§—§dé=1. (6) . . . . .
£n>0 In the following section, we will show how the discreti-

zation of the Eq(11) can be performed.

Equations(5) and (6) ensure that the reflected distribution

functions are positive and the normal flux through the wall is |v DISCRETIZATION OF THE BOUNDARY CONDITION
zero. A further restriction on the form of functids is dic-

tated by the condition of detailed balande], In the derivation of the lattice Boltzmann equation for the
bulk various integrals, which are evaluated at the nodes of a
|€-n|g®A & ,py,0Ty)B(E — &) Gauss-Hermite quadratuf8], are of the form
:|§'n|ge0(_§!p !O!T )B(_§_>_§,) (7)
e I= L o OXR— &) B($)dé, (12)

A consequence of this property is that, if the impinging dis-
tributions are wall Maxwellian, then the reflected distribu- whereD is the spatial dimension. This form of the integral is

tions are also wall Maxwellian. Thus, well approximated by the Gauss-Hermite quadrature. How-
ever, the situation is different on the boundary because inte-
|€-n|g®(—&py,,0T,) grals appearing in Eq11) are over half-space. The choice of

the quadrature in the bulk was based on the properties of

. . D . .
_ " n|g®A £ po, 0T )B(E — £)d& . 8 integrals in theR™. If we would evaluate the integrals in Eq.
L' <0|§ I9™&pu OTWB(E —8de" (8 (11) using a quadrature defined in the half-space, this may
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introduce an undesirable mismatch of the nodes of thésothermal case the wall temperature is a redundant quantity
guadrature used on the boundary and that in the bulk. Thugnd is dropped from the argument of equilibrium distribu-
we here apply the quadrature used in the bulk even for théon. To get a boundary condition for the lattice BGK equa-
boundary nodes. Next, we shall estimate the extra error intion, the true discrete equilibrium appearing in the Egj)
troduced by this procedure in comparison to the discretizacan be replaced by the equilibrium used in the BGK model
tion error present in the bulk. [18]. This substitution is justified because up to or@¢M?)

The discrete distribution function used in the LBM is the the true equilibrium can be replaced by the BGK equilib-
projection of the continuous distribution function in a finite- rium. However, positivity of the reflected distributions may
dimensional orthonormal Hermite ba$#. The equilibrium  be lost in this truncation in the same way it happens in the
also need to be projected in this basis to have correct corbulk for lattice BGK model. A similar expression for the
servation laws. This solution has a major drawback that th&oundary conditions was earlier postulated by Gatingnol in
positivity of the distribution function is lost in the truncation. the context of discrete velocity models of the kinetic theory
This problem is circumvented, if we evaluate the Boltzmann 21].

H function, rather than its minimizer under the constrains of In order to estimate the extra error introduced on the
conservation of the hydrodynamic variables, for the discretéoundary in comparison to the bulk, we write the ratio of
case. Indeed, the local equilibrium can also be written as two integrals appearing in the E(Ll) as

9 ¢, puw,Uw, Tw) =expla+ & c+ yc?), (13
where «, ¢, andy are the Lagrange multipliers needed for L,'n<o|§"n|f(c’,t)dc’
the minimization of the BoltzmanH function under the con- | =
straints of conservation of the hydrodynamic variables. f |€ - n|feYc’, py. Uy, Ty)dE
These Lagrange multipliers are calculated from the require- ¢ -n<o

ment that the moments of the equilibrium distributid are

known hydrodynamic quantities. Now, once we have evalu- J |£€ -n|f"qc’,t)dc’

ated the projection of the Boltzmarth function on a finite- —14 §-n<0 (16)

dimensional Hermite basis, we calculate the equilibrium , ot .

from the knowledge of the discreté function. It turns out J'g’-n<0|§ -nlf*Ae’ pw, Uy, Ty d&

that the equilibrium corresponding to the discriitéunction

also has the same functional form as Et@). Only differ-

ence is that the Lagrange multipliers has to be calculateheref"®%=f—f¢4 As discussed above, the evaluation of the

from the discrete conservation laws. One example of explicithtegral appearing in the denominator is straightforward in

form of such equilibrium distribution function is given in the sense that the order of accuracy of this evaluation is same

Ref.[7]. as that of moments evaluation in the bulk. In order to evalu-
First projecting the distribution functions in the Hermite ate the integral appearing in the numerator, we perform Her-

basis and then eva|uating the integra|s appearing |r(Eq mite expanSion of the nonequilibrium part of the distribution

by quadrature, we have function around the zero velocity equilibrium. The result is
on)[f(c ot N a0
~ §i,§<0 |(§I )| ( I ) ~ fneo(cvt):feg(cipW101TW)2 a_IH(l)(C) (17)
f(e,0= fe4c , Uw.pw), <o i!
> & -n[fvc Uy.pw)
& -n<0 The first two expansion coefficients of the nonequilibrium
(G=Uy)-n>0, (14  part of the population area(®=0a"=0). In case of the
isothermal hydrodynamics, only nonzero Hermite coefficient
where needs to be kept iai(jz). This is a symmetric tensor and is
independent of the particle velocity After using the sym-
_ f(c ) metry of the second-order Hermite polynomials,
f(G ) =wip——"—— (15)
f*4ci,0,0)
denotes the rescaled distribution function evaluated at nodes 1 agzﬁ)f & -n|fc’ py, 0T H (¢ )dc!
of the quadrature. This rescaled distribution function is the =1+ >
distribution function used in the LBM3,4]. The discrete f |€ -n|feqc’,py Uy, Ty dc’
equilibrium distribution functiorf®¥ is the projection of the ¢ n<0 (18

equilibrium distribution on the finite-dimensional Hermite
basis and calculated by the procedure discussed above. Be-
fore estimating error associated with this formula, a few re-This expression can be evaluated using the Gauss-Hermite
marks about the preceding equation is in order. First, in theuadrature. The result is
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0.018 T T T T

! ’ _—
§’§<o agfﬁ)W”gi ﬂm&zﬁ)(ci) 0.016f * é."n?'uﬁﬁiL |
|
=1+ - . (19 o.01al
> & n[fc . Un)
gi’ .n<0 0.0121 £
. . . . > 0.01f
This expression gives an estimate of the order of the accu .o
racy of the Eq(14). In evaluation of the momentsip to the 0.008f
second-order momenof the distribution function, no extra
error is introduced as compared to the bulk. This happenec 00061
because first odd order Hermite coefficient appearing in the  0.004}
expansion is zero. Due to the expansion around global equi
librium, used in the derivation, the boundary condition is 0.002}
valid only up to the orde©(M?). 0 . . . . .
0 0.005 001 0015 002 0025 003

Now, for purely diffusive scattering, we have a closed
form expression for the reflected populations with the same
order of accuracy as the bulk node. However, we have said F|G. 1. Relative slip observed at the wall in the simulation of
nothing about the grazing directions. Unlike continuous Ki-the Kramers’ problem for shear rate=0.001, box lengt_ =32,
netic theory, here we need to specify the conditions in the_=axL=0.032. All the quantities are given in the dimensionless
grazing directions. Only information we have about the graz{attice unit.
ing populations is their positivity. A simple way to fix the
grazing population is to let them evolve according to theformulated for the discrete case, the question arises that, can
lattice Boltzmann equation like nodes in the bulk region.this procedure be applied for a more sophisticated scattering
This condition is implemented in the simulations presenteckernels used in the continuous kinetic thedgsge, for ex-

Kn

in the following section. amples Ref[17]). The answer is in affirmative for any con-
dition written in the integral form, while in general it cannot
V. NUMERICAL TESTS be done for a pointwise condition like purely specular reflec-

tion. For example, a very general form of scattering probabil-

The boundary condition derived in the preceding Sectiony, \yritten in the integral form and can be easily modified
[Eqg. (14)], retains one important feature of original Boltz- tor nonzero mass flux, is given in the RéfL7] [see Eg.

mann equation, the Knudsen number dependent slip at th@ »g of the Chap. 3 This form of the scattering probability
wall. To show this, we have performed a numerical simulag pe discretized using the present method.

tion of the Kramers’ probleni17]. This is one of the few It is instructive to compare the “bounce-back” condition

problems where solution of the continuous Boltzmann equagse in the literature with the present boundary condition. It
tion is known analytically. This problem is a limiting case of

the plane Couette flow, where one of the plate is moved to 4
infinity, while keeping a fixed shear rate. We compare the
analytical solution for the slip velocity at the wall calculated 0.9
for the linearized BGK collision model with the numerical
solution in the Fig. 1. We have performed the numerical
computation for the D2Q9 lattice with the entropic formula-
tion of the LBM[7,8] with the expression of thel function
given by Eq.(A5). The agreement between the two results o6
for Knudsen number going to zero is very good. This is
indeed an important result as it shows that with the proper> 0.5
implementation of the boundary condition, the solution of
the LBM converge to the hydrodynamic liminudsen
number going to zejoin the same way as the Boltzmann (3
equation.

By simulating the Kramer’s problem, we have shown that 0.2
the present boundary condition can be used for stationan

0.8

0.7

wall. To validate the boundary condition for the moving wall, -1
we have performed simulation of the lid-driven cavity flow. 0 k=
The plot of stream function is given in Fig. 2 for Reynolds 0 0.5 1

number Re=1000. The location of the primary and second-
ary vortex and the magnitude of the stream functions agrees F|G. 2. Stream function for Re1000 in a simulation of lid
well with the previous simulationg20]. driven cavity flow. Parameters used are grid size>32Q0, and lid

Once we have shown that the diffusive boundary condivelocity V=0.075. All the quantities are given in the dimensionless
tion used for the continuous Boltzmann equation can be refattice unit.
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can be seen easily that the present boundary condition r&his expression written in terms of the logarithm of the dis-

duces to the bounce-back condition for the three velocitytribution function w=Inf) is

model used in the one-dimensional case. However, there is

Siomce?]rsrﬁ)snpso.ndence between the two condition in the higher H:f 1w exp( ) dE. (A2)
The present boundary condition retains the positivity a . .

the bourF:dary nodes. Thi:)s/ is a major advantage inpcompayriso € haye cho_sen to work W'th. the V"?‘”ab‘ﬁ because t.h_e_

to other proposed boundary conditions for the purpose of th@rojection Qf It on to thg Hermite baS|s.preserves positivity

numerical stability. The Knudsen number dependent wall slipOf _the distribution functiorf. The expansion of the function

is a manifestation of the kinetic nature of the lattice Boltz-# 'S

mann equation. This nature of the scheme can be a burden if M:A(O)H(O)(C)+A(1)H(i)(c)+A(2)H(i) (©). (A3)

one is interested in solving the macroscopic creeping flow “ ap’tap

problems with very small grid size. This will put some re- This expression can also be written as

striction on the simulation of creeping flow in very small 2

rids (lattice Knudsen number v/Lc,). However, the re- D, (i 24 (i

gtriction is not severe because of thsg fact that we still have 4= AP O(©+ADHO(© +BEIH (o)~ 2"

the freedom to choose velocity very small to attain zero Rey- (A4)

nolds number situation. In fact, the same condition is re- ) o ) )

quired for the validity of the LBM simulation of the hydro- ~ Th€ expansion coefficier is calculated by the require-

dynamics in the bulk. To conclude, we have proposednent that the moments of expY are hydrodynamic vari-

boundary conditions based on the kinetic theory consider@Ples. The expansion used here is a slightly different form of

ations. A systematic way of dealing with the conditions at thethe Grad’s moment expansidi9] and is known as the

boundary is developed for the lattice Boltzmann method. Théhaximum entropy approximatiof22—24. Now, the Boltz-

present work opens the way to the future development fof@nnH function is in an integral form suited for the evalu-
the cases of reactive, porous or adsorbing walls. ation in the Gauss-Hermite quadratisee Eq.(12)]. This
evaluation gives the discrete form of thefunction as
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where

APPENDIX: DERIVATION OF THE H FUNCTION 2

The BoltzmanrH function is f(c; ,t)=Wi(27TkBTo)D/2€‘XP( EI) f(c,t), (A6)

H= | finfdg (A1) whereTj is the reference temperature. In two dimension, the
B ' nodes of the quadrature and the corresponding weights are
{0,0 if i=0
i—1 i—1
c((cos( m( )),sin( m(l ))] if i=1,2,3,4
C= 2 2 (A7)

c\/f( ( cos( 77(2i4_ 9)) ,sir{ 77(2i4_ 9)) ] if i=5,6,7,8,

and

(4

— if i=0

9

1 .

w={ g ifi=1234 (A8)

1 .

— if i=5,6,7,8.
L 36

Here the magnitude of the discrete veloditis related to the reference temperature by the relatior/(3kgTy). With this,
the entropy expression derived here coincide with the expression derived if6Rdfy a different argument.
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