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Kinetic boundary conditions in the lattice Boltzmann method
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Derivation of the lattice Boltzmann method from the continuous kinetic theory@X. He and L. S. Luo, Phys.
Rev. E55, R6333~1997!; X. Shan and X. He, Phys. Rev. Lett.80, 65 ~1998!# is extended in order to obtain
boundary conditions for the method. For the model of a diffusively reflecting moving solid wall, the boundary
condition for the discrete set of velocities is derived, and the error of the discretization is estimated. Numerical
results are presented which demonstrate convergence to the hydrodynamic limit. In particular, the Knudsen
layer in the Kramers’ problem is reproduced correctly for small Knudsen numbers.
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I. INTRODUCTION

In recent years, the lattice Boltzmann method~LBM ! has
emerged as an alternative tool for the computational fl
dynamics@1#. Originally, the LBM was developed as a mod
fication of the lattice gas model@2#. Later derivations@3,4#
revealed that the method is a special discretization of
continuous Boltzmann equation. The derivation of the LB
@4# from the Boltzmann equation is essentially based
Grad’s moment method@5#, together with the Gauss-Hermit
quadrature in the velocity space.

Another important issue was to retain positivity of di
crete velocities populations in the bulk. Recently, a progr
has been achieved in incorporating theH theorem into the
method@6–8#, and thus retaining positivity of the popula
tions in the bulk. On the contrary, despite of several attem
@9–16# a fully consistent theory of the boundary conditio
for the method is still lacking. It appears that the conce
about positivity of the population, and the connection w
the continuous case, are somewhat ignored while introdu
the boundary condition. The way the no-slip condition f
the moving wall is incorporated in the method@10–12# is
especially prone to danger of loss of positivity of the pop
lations at the boundary. A clear understanding of the bou
ary condition becomes demanding for the case of mov
boundary, complicated geometries, chemically reactive,
porous walls.

The theory of boundary conditions for the continuo
Boltzmann equation is sufficiently well developed to inco
porate the information about the structure and the chem
processes on the wall@17#. The realization that the LBM is a
special discretization of the Boltzmann equation allows us
derive the boundary conditions for the LBM from continuo
kinetic theory. In this work we demonstrate how this can
done in a systematic way.

The outline of the paper is as follows: In Sec. II we gi
a brief description of the LBM. In Sec. III we briefly de
scribe how boundary condition is formulated for the contin
ous kinetic theory. In Sec. IV we derive the boundary con
tion for the LBM and in Sec. V we demonstrate som
numerical simulation to validate the result.

II. OVERVIEW OF THE METHOD

In the LBM setup, one considers populationsf i of discrete
velocitiesci , wherei 51, . . . ,b, at discrete timet. It is con-
1063-651X/2002/66~2!/026311~6!/$20.00 66 0263
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venient to introduceb-dimensional population vectorsf.
In the isothermal case considered below, local hydro

namic variables are given as

r5(
i 51

b

f i~r ,t !, ~1!

ru5(
i 51

b

ci f i~r ,t !.

The basic equation to be solved is

f i~r1ci ,t11!2 f i~r ,t !52ba@ f~r ,t !#Di@ f~r ,t !#, ~2!

where b is a fixed parameter in the interval@0,1# and is
related to the viscosity. A scalar function of the populati
vectora is the nontrivial root of the nonlinear equation

H~ f!5H~ f1aD@ f# !. ~3!

The functiona ensures the discrete-timeH theorem. In the
previous derivations@3,4# of the LBM from the Boltzmann
equation, a quadratic form for the equilibrium distributio
function f eq, was obtained by evaluating the Taylor seri
expansion of the absolute Maxwellian equilibrium on t
nodes of a properly selected quadrature. This was don
ensure that the Navier-Stokes equation is reproduced u
the orderO(M2), whereM is the Mach number. However
the disadvantage of expanding equilibrium distribution fun
tion is that the condition of monotonicity of the entropy pr
duction is not guaranteed. In order to avoid this problem
the entropic formulation@6–8#, the BoltzmannH function,
rather than the equilibrium distribution, is evaluated at t
nodes of the given quadrature, to get the discrete versio
the H function as

H5(
i 51

b

f i lnS f i

wi
D , ~4!

wherewi denotes the weight associated with the correspo
ing quadrature nodeci . In the Appendix the derivation of the
H function is presented. Afterwards, the collision term
constructed from the knowledge of theH function @Eq. ~4!#.
The collision termD is constructed in such a way that
©2002 The American Physical Society11-1
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satisfies a set of admissibility conditions needed to hav
proper H theorem and conservation laws~see Ref.@8# for
details!.

The LBM model with the Bhatnagar-Gross-Krook~BGK!
collision form @4,18#, can be considered as a limiting case
the entropic formulation. To obtain the lattice BGK equatio
the functiona in the Eq.~2! is set equal to 2, and for th
collision termD BGK form is chosen. The equilibrium func
tion used in the BGK form is obtained as the minimizer
the H function @Eq. ~4!# subjected to the hydrodynamic con
strains@Eq. ~1!#, evaluated up to the orderM2 @6#. Derivation
of the boundary conditions done in the subsequent sec
applies to both the forms of the LBM.

III. BOUNDARY CONDITION FOR THE BOLTZMANN
EQUATION

Following Ref. @17#, we briefly outline how boundary
condition is formulated in the continuous kinetic theory. W
shall restrict our discussion to the case where the mass
through the wall is zero. For the present purpose, a wall]R
is completely specified at any point (rP]R) by the knowl-
edge of the inward unit normaln, the wall temperatureTw ,
and the wall velocityUw . Hereafter, we shall denote th
distribution function in a frame of reference moving with th
wall velocity asg(j), with j5c2Uw . The distribution func-
tion reflected from the nonadsorbing wall can be written
plicitly, if the scattering probability is known. In explici
form

uj•nug~j,t !5E
j8•n,0

uj8•nug~j8,t !B~j8→j!dj8~j•n.0!,

~5!

where the non-negative functionB(j8→j) denotes the scat
tering probability from the directionj8 to the directionj. If
the wall is nonporous and nonadsorbing, the total probab
for an impinging particle to be reemitted is unity

E
j•n.0

B~j8→j!dj51. ~6!

Equations~5! and ~6! ensure that the reflected distributio
functions are positive and the normal flux through the wal
zero. A further restriction on the form of functionB is dic-
tated by the condition of detailed balance@17#,

uj8•nugeq~j8,rw ,0,Tw!B~j8→j!

5uj•nugeq~2j,rw ,0,Tw!B~2j→2j8!. ~7!

A consequence of this property is that, if the impinging d
tributions are wall Maxwellian, then the reflected distrib
tions are also wall Maxwellian. Thus,

uj•nugeq~2j,rw ,0,Tw!

5E
j8•n,0

uj8•nugeq~j8,rw ,0,Tw!B~j8→j!dj8. ~8!
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This equation can also be understood as a weaker state
of the detailed balance condition@17#. This form of the de-
tailed balance is very attractive for our present purpose
cause of its integral nature, so that a discretization can
done in a natural way.

In this paper, we only consider the diffusive bounda
conditions because the steps associated with the discre
tion are easier to appreciate due to the mathematical sim
ity in this case. In this model of the wall it is assumed th
the outgoing stream has completely lost its memory ab
the incoming stream. Thus, the scattering probabilityB is
independent of the impinging directions, and is equal to

B~j8→j!5
uj•nugeq~2j,rw ,0,Tw!

E
j8•n,0

uj8•nugeq~j8,rw ,0,Tw!dj8

[B~j!.

~9!

Thus, the explicit expression for the reflected distributi
function is

g~j,t !5

E
j8•n,0

uj8•nug~j8,t !dj8

E
j8•n,0

uj8•nugeq~j8,rw ,0,Tw!dj8

3geq~2j,rw ,0,Tw! ~j•n.0!. ~10!

We need to transform this equation into the station
coordinate system. As the equilibrium distribution depen
only on the difference between the particle velocity and
local velocity, we have

f ~c,t !5

E
j8•n,0

uj8•nu f ~c8,t !dc8

E
j8•n,0

uj8•nu f eq~c8,rw ,Uw ,Tw!dj8

3 f eq~c,rw ,Uw ,Tw! ~c2Uw!•n.0. ~11!

In the following section, we will show how the discret
zation of the Eq.~11! can be performed.

IV. DISCRETIZATION OF THE BOUNDARY CONDITION

In the derivation of the lattice Boltzmann equation for t
bulk various integrals, which are evaluated at the nodes
Gauss-Hermite quadrature@3#, are of the form

I 5E
jPRD

exp~2j2!f~j!dj, ~12!

whereD is the spatial dimension. This form of the integral
well approximated by the Gauss-Hermite quadrature. Ho
ever, the situation is different on the boundary because i
grals appearing in Eq.~11! are over half-space. The choice o
the quadrature in the bulk was based on the propertie
integrals in theRD. If we would evaluate the integrals in Eq
~11! using a quadrature defined in the half-space, this m
1-2
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introduce an undesirable mismatch of the nodes of
quadrature used on the boundary and that in the bulk. T
we here apply the quadrature used in the bulk even for
boundary nodes. Next, we shall estimate the extra error
troduced by this procedure in comparison to the discret
tion error present in the bulk.

The discrete distribution function used in the LBM is th
projection of the continuous distribution function in a finit
dimensional orthonormal Hermite basis@4#. The equilibrium
also need to be projected in this basis to have correct c
servation laws. This solution has a major drawback that
positivity of the distribution function is lost in the truncation
This problem is circumvented, if we evaluate the Boltzma
H function, rather than its minimizer under the constrains
conservation of the hydrodynamic variables, for the discr
case. Indeed, the local equilibrium can also be written as

f eq~c,rw ,Uw ,Tw!5exp~a1z•c1gc2!, ~13!

wherea, z, andg are the Lagrange multipliers needed f
the minimization of the BoltzmannH function under the con-
straints of conservation of the hydrodynamic variabl
These Lagrange multipliers are calculated from the requ
ment that the moments of the equilibrium distributionf eq are
known hydrodynamic quantities. Now, once we have eva
ated the projection of the BoltzmannH function on a finite-
dimensional Hermite basis, we calculate the equilibriu
from the knowledge of the discreteH function. It turns out
that the equilibrium corresponding to the discreteH function
also has the same functional form as Eq.~13!. Only differ-
ence is that the Lagrange multipliers has to be calcula
from the discrete conservation laws. One example of exp
form of such equilibrium distribution function is given i
Ref. @7#.

First projecting the distribution functions in the Hermi
basis and then evaluating the integrals appearing in Eq.~11!
by quadrature, we have

f̃ ~ci ,t !5

(
ji8•n,0

u~ji8•n!u f̃ ~ci8 ,t !

(
ji8•n,0

u~ji8•n!u f̃ eq~ci8 ,Uw ,rw!

f̃ eq~ci ,Uw ,rw!,

~ci2Uw!•n.0, ~14!

where

f̃ ~ci ,t !5wir
f ~ci ,t !

f eq~ci ,0,r!
~15!

denotes the rescaled distribution function evaluated at no
of the quadrature. This rescaled distribution function is
distribution function used in the LBM@3,4#. The discrete
equilibrium distribution functionf̃ eq is the projection of the
equilibrium distribution on the finite-dimensional Hermi
basis and calculated by the procedure discussed above
fore estimating error associated with this formula, a few
marks about the preceding equation is in order. First, in
02631
e
s,
e

n-
-

n-
e

n
f
te

.
-

-

d
it

es
e

e-
-
e

isothermal case the wall temperature is a redundant qua
and is dropped from the argument of equilibrium distrib
tion. To get a boundary condition for the lattice BGK equ
tion, the true discrete equilibrium appearing in the Eq.~14!
can be replaced by the equilibrium used in the BGK mo
@18#. This substitution is justified because up to orderO(M2)
the true equilibrium can be replaced by the BGK equil
rium. However, positivity of the reflected distributions ma
be lost in this truncation in the same way it happens in
bulk for lattice BGK model. A similar expression for th
boundary conditions was earlier postulated by Gatingno
the context of discrete velocity models of the kinetic theo
@21#.

In order to estimate the extra error introduced on
boundary in comparison to the bulk, we write the ratio
two integrals appearing in the Eq.~11! as

I 5

E
j8•n,0

uj8•nu f ~c8,t !dc8

E
j8•n,0

uj8•nu f eq~c8,rw ,Uw ,Tw!dj8

511

E
j8•n,0

uj8•nu f neq~c8,t !dc8

E
j8•n,0

uj8•nu f eq~c8,rw ,Uw ,Tw!dj8

, ~16!

wherefneq5f2feq. As discussed above, the evaluation of t
integral appearing in the denominator is straightforward
the sense that the order of accuracy of this evaluation is s
as that of moments evaluation in the bulk. In order to eva
ate the integral appearing in the numerator, we perform H
mite expansion of the nonequilibrium part of the distributi
function around the zero velocity equilibrium. The result

f neq~c,t !5 f eq~c,rw ,0,Tw!(
i 50

N
a( i )

i !
H ( i )~c!. ~17!

The first two expansion coefficients of the nonequilibriu
part of the population are (a(0)50,ai

(1)50). In case of the
isothermal hydrodynamics, only nonzero Hermite coefficie
needs to be kept isai j

(2) . This is a symmetric tensor and i
independent of the particle velocityc. After using the sym-
metry of the second-order Hermite polynomials,

I 511
1

2

aab
(2)E uji8•nu f eq~c8,rw ,0,Tw!H ab

(2)~c8!dc8

E
j8•n,0

uj8•nu f eq~c8,rw ,Uw ,Tw!dc8

.

~18!

This expression can be evaluated using the Gauss-Her
quadrature. The result is
1-3
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I 511

(
ji8•n,0

aab
(2)wi uji8•nuH ab

(2)~ci8!

(
ji8•n,0

uji8•nu f̃ eq~c8,rw ,Uw!

. ~19!

This expression gives an estimate of the order of the ac
racy of the Eq.~14!. In evaluation of the moments~up to the
second-order moment! of the distribution function, no extra
error is introduced as compared to the bulk. This happe
because first odd order Hermite coefficient appearing in
expansion is zero. Due to the expansion around global e
librium, used in the derivation, the boundary condition
valid only up to the orderO(M2).

Now, for purely diffusive scattering, we have a clos
form expression for the reflected populations with the sa
order of accuracy as the bulk node. However, we have
nothing about the grazing directions. Unlike continuous
netic theory, here we need to specify the conditions in
grazing directions. Only information we have about the gr
ing populations is their positivity. A simple way to fix th
grazing population is to let them evolve according to t
lattice Boltzmann equation like nodes in the bulk regio
This condition is implemented in the simulations presen
in the following section.

V. NUMERICAL TESTS

The boundary condition derived in the preceding Sect
@Eq. ~14!#, retains one important feature of original Bolt
mann equation, the Knudsen number dependent slip at
wall. To show this, we have performed a numerical simu
tion of the Kramers’ problem@17#. This is one of the few
problems where solution of the continuous Boltzmann eq
tion is known analytically. This problem is a limiting case
the plane Couette flow, where one of the plate is moved
infinity, while keeping a fixed shear rate. We compare
analytical solution for the slip velocity at the wall calculate
for the linearized BGK collision model with the numeric
solution in the Fig. 1. We have performed the numeri
computation for the D2Q9 lattice with the entropic formul
tion of the LBM @7,8# with the expression of theH function
given by Eq.~A5!. The agreement between the two resu
for Knudsen number going to zero is very good. This
indeed an important result as it shows that with the pro
implementation of the boundary condition, the solution
the LBM converge to the hydrodynamic limit~Knudsen
number going to zero! in the same way as the Boltzman
equation.

By simulating the Kramer’s problem, we have shown th
the present boundary condition can be used for station
wall. To validate the boundary condition for the moving wa
we have performed simulation of the lid-driven cavity flo
The plot of stream function is given in Fig. 2 for Reynold
number Re51000. The location of the primary and secon
ary vortex and the magnitude of the stream functions ag
well with the previous simulations@20#.

Once we have shown that the diffusive boundary con
tion used for the continuous Boltzmann equation can be
02631
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formulated for the discrete case, the question arises that,
this procedure be applied for a more sophisticated scatte
kernels used in the continuous kinetic theory~see, for ex-
amples Ref.@17#!. The answer is in affirmative for any con
dition written in the integral form, while in general it canno
be done for a pointwise condition like purely specular refle
tion. For example, a very general form of scattering proba
ity, written in the integral form and can be easily modifie
for nonzero mass flux, is given in the Ref.@17# @see Eq.
~6.26! of the Chap. 3#. This form of the scattering probability
can be discretized using the present method.

It is instructive to compare the ‘‘bounce-back’’ conditio
used in the literature with the present boundary condition

FIG. 1. Relative slip observed at the wall in the simulation
the Kramers’ problem for shear ratea50.001, box lengthL532,
v`5a3L50.032. All the quantities are given in the dimensionle
lattice unit.

FIG. 2. Stream function for Re51000 in a simulation of lid
driven cavity flow. Parameters used are grid size 3203320, and lid
velocity V50.075. All the quantities are given in the dimensionle
lattice unit.
1-4
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can be seen easily that the present boundary condition
duces to the bounce-back condition for the three velo
model used in the one-dimensional case. However, ther
no correspondence between the two condition in the hig
dimensions.

The present boundary condition retains the positivity
the boundary nodes. This is a major advantage in compar
to other proposed boundary conditions for the purpose of
numerical stability. The Knudsen number dependent wall
is a manifestation of the kinetic nature of the lattice Bol
mann equation. This nature of the scheme can be a burd
one is interested in solving the macroscopic creeping fl
problems with very small grid size. This will put some r
striction on the simulation of creeping flow in very sma
grids ~lattice Knudsen number5n/Lcs). However, the re-
striction is not severe because of the fact that we still h
the freedom to choose velocity very small to attain zero R
nolds number situation. In fact, the same condition is
quired for the validity of the LBM simulation of the hydro
dynamics in the bulk. To conclude, we have propos
boundary conditions based on the kinetic theory consid
ations. A systematic way of dealing with the conditions at
boundary is developed for the lattice Boltzmann method. T
present work opens the way to the future development
the cases of reactive, porous or adsorbing walls.
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APPENDIX: DERIVATION OF THE H FUNCTION

The BoltzmannH function is

H5E f ln f dj. ~A1!
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This expression written in terms of the logarithm of the d
tribution function (m5 ln f) is

H5E m exp~m!dj. ~A2!

We have chosen to work with the variablem because the
projection of it on to the Hermite basis preserves positiv
of the distribution functionf. The expansion of the function
m is

m5A(0)H (0)~c!1Aa
(1)H ( i )~c!1Aab

(2)H ab
( i ) ~c!. ~A3!

This expression can also be written as

m5A(0)H (0)~c!1Aa
(1)H ( i )~c!1Bab

(2)H ab
( i ) ~c!2

c2

2
.

~A4!

The expansion coefficientA is calculated by the require
ment that the moments of exp(m) are hydrodynamic vari-
ables. The expansion used here is a slightly different form
the Grad’s moment expansion@19# and is known as the
maximum entropy approximation@22–24#. Now, the Boltz-
mannH function is in an integral form suited for the evalu
ation in the Gauss-Hermite quadrature@see Eq.~12!#. This
evaluation gives the discrete form of theH function as

H5(
i 51

b

f̃ i lnS f̃ i

wi
D , ~A5!

where

f̃ ~ci ,t !5wi~2pkBT0!D/2expS ci
2

2 D f ~ci ,t !, ~A6!

whereT0 is the reference temperature. In two dimension,
nodes of the quadrature and the corresponding weights
ci55
$0,0% if i 50

cH S cosS p~ i 21!

2 D ,sinS p~ i 21!

2 D J if i 51,2,3,4

cA2H S cosS p~2i 29!

4 D ,sinS p~2i 29!

4 D J if i 55,6,7,8,

~A7!

and

wi55
4

9
if i 50

1

9
if i 51,2,3,4

1

36
if i 55,6,7,8.

~A8!

Here the magnitude of the discrete velocityc is related to the reference temperature by the relationc5A(3kBT0). With this,
the entropy expression derived here coincide with the expression derived in Ref.@6#, by a different argument.
1-5
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