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Subgrid scale and backscatter model for magnetohydrodynamic turbulence
based on closure theory: Theoretical formulation
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The spectral eddy and backscatter viscosity and the spectral eddy and backscatter resistivity for incompress-
ible, three-dimensional, isotropic, nonhelical magnetohydrodyn&kii¢tD) turbulence are constructed using
the eddy-damped quasinormal Markovian statistical closure model developed by Pouquet, Frischorand Le
[J. Fluid Mech.77, 321 (1976] in terms of primitive variables. The approach used is an extension of the
methodology developed by Leslie and Qualfidi Fluid Mech.91, 65 (1979] for fluid turbulence to MHD
turbulence. The eddy and backscatter viscosities and the eddy and backscatter resistivities are calculated
numerically for assumed kinetic and magnetic energy spe€fiek) and Eg(k), with a production subrange
and ak %3 inertial subrange for the two cases=1 andr =3, wherer ,=E, (k)/Eg(Kk) is the Alfven ratio.
It is shown that the effects of the unresolved subgrid scales on the resolved-scale velocity and magnetic field
consist of an eddy damping and backscatter. The eddy viscosity and resistivity, and the backscatter viscosity
and resistivity(the correlation function of the stochastic velocity and magnetic backscattej fsecehown to
have a dependence dik., wherek, is the cutoff wave number, which is very similar to the dependence
calculated in the puré.e., nonmagnetjcNavier-Stokes turbulence case. The eddy viscosity and resistivity, and
the backscatter viscosity and resistivity numerically calculated here can be used to develop improved subgrid-
scale parametrizations for spectral large-eddy simulations of homogenous MHD turbulence.
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I. INTRODUCTION Il. FILTERING AND THE MHD EQUATIONS

. . . . In this section, filtering in spectral space will be briefly
Large-eddy simulatiodlES) [1-3] is essentially the only reviewed, together with the equations for incompressible,

practical method for computing the three-dimensional, timeyy, oe_dimensional, nonhelical MHD turbulence. The filtered

dependent large sc_ales of magn_etohydrodyna(MHD) MHD equations will also be presented.
flows[4,5] at large fluid and magnetic Reynolds numbers. As
the subgrid scales are assumed to be universal, it is appro-
priate to model them using statistical methods. A subgrid
scale and backscatter model that can satisfactorily reproduce In LES, a filterG(x,x") [1,9] is introduced to partition the
the statistical effects of the small-scale dynamics on thdields f(x,t) into resolved-scale fields and subgrid-scale
resolved-scale dynamics is crucial for a successful LES. Alfields
though LES has been widely used in fluid turbulence simu-
lations, it has not been widely applied in MHD turbulence f_(x7t)=f G(x,x")f(x',t)d3x’, (1)
because subgrid-scale modeling for MHD turbulefige 8
is currently not well developed. .

The eddy damping and the backscatter tef®%0] in the f(x,t)" =f(x,t)—f(x,1), 2)
resolved-scale velocity and magnetic field equations will be
computed numerically here using the eddy-damped, quasiespectively. Here it is assumed that the filter is time inde-
normal Markovian(EDQNM) closure model andissumed pendent and a scalar. This decomposition is performed for
formsof the kinetic and magnetic energy spectra which havéhe velocity, magnetic field, and pressure in the MHD equa-
both a production subrange andka®® power-law inertial ~ tiOns. S _
subrange; the production and inertial subranges are generated Most numerical simulations of MHD flows are performed
by distinct mechanisms affecting the dynamics of the kinetidor homogeneous turbulence, in which case the filtering op-
and magnetic energy. For the illustrative calculations pre€ration can be written in spectral space as
sented here, the two Alfveratio cases,=1 andr =3 will _
be considered. The results of the present investigation are f(k,t)=G(k)f(k,t). ()
expected to be useful for the development of subgrid-scale
models for spectral LES of large fluid and magnetic Rey-For homogeneous, isotropic turbulen&k) = G(k), which
nolds number MHD turbulence encountered in space andill be used henceforth. The two filters most often used in
astrophysical plasmd43,14. subgrid-scale modeling and LES of fluid turbulence are the

A. Filtering
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sharp cutoff filter and the Gaussian filtghe top-hat filter is vi(k,t)=G(K)v;(k,1), (12)
similar to the Gaussian filterWith the cutoff wave number
k., the sharp cutoff filter is E(k,t)=G(k)Bi(k,t), (13)
G(k)= 1ot k<ke (4) respectively. The filtered velocity equation is
0 if k=k,
P A
which provides a sharp separation between resolved and un- | 7 K210k t) =M (K G(K)[v:(p.t t
resolved scaletsee Refs[9], [15], [16]). This filter will be a o1k =Mij( 12 G vi(p.hua.t)
used in the present calculations.
P ~By(p.HBY(A)] (14
B. The MHD equations and the filtered magnetic field equation is
The standard MHD equations with zero mean fields and
zero external forces are the velocity equation J o A
; ngz) Bi(k,)=Mf} () 2 G(K)B;(p,hv(a,1).
. vV?|v=B-VB—Vv-Vv—Vp (5) (15)
and the magnetic field equation [ll. EDDY DAMPING AND BACKSCATTER
IN MHD TURBULENCE
Jd
(E_ §V2) B=V X (vXB), (6) A. The resolved-scale energy spectrum evolution equations

Accurate subgrid-scale modeling in MHD can be
with the velocityv and the magnetic fiel@ satisfying the achieved using the second moment energy transfer equation

solenoidality constraints [17-20. Only the case of nonhelical, and statistically sta-
tionary MHD turbulence is considered here. Following Le-
V.v=V.B=0. () slie and Quarini9], the resolved-scale kinetic energy and

. . ... .. magnetic ener rum ar
The constant kinematic viscosity and magnetic diffusivity agnetic energy spectrum are

are denoted by and ¢, respectively. _ k2
For homogeneous turbulence, the Fourier-transformed E,(kt)= ?f G(K)X(vi(k,Hvi(—k,t))dQy, (16)
MHD equations in wave number space are

2

— k
J . Eg(kit)=7 | G(WXBi(k.H)Bi(—k,1)dy, (17)
1 F R Juitk ) =My (k) 2 [vj(p.bui(at) ’ 2 f k

_ respectively, where the integration is over the isotropic solid
In the EDQNM approximation, the resolved-scale kinetic
energy and magnetic energy spectrum evolution equations

are

and

A
Jd
5+§k2)8i<k,t>=mﬁk<k>2 Bi(p.Ouk(at), (9

J _
a2 [Ekn= [ [ easggnme T
A
where>” represents the summation oyerand q with the
triadic restrictionk=p+q. The three-point interaction ten- +TUBB)dp dg, (18
sors are defined as

i+2§k2)EB<k,t>= f LG(kwkpq(t)(TgBHEB)dp dg

i
Mijk (k) = = 5 [KPij (k) +kj Pi(K) ], (10 at
(19
M (K) =i €iimK| €mii, (11)  respectively, wher§19,20]
wheree;j is the unit antisymmetric tensor and the solenoidal k
projection tensor i®;; (k) = &; — kik; /k2. T,°(k,p,q,t)= ﬁbkpq[szu(p.t) —p°E,(k,D]E,(q,1),
(20)

C. The filtered MHD equations

The filtered velocity and magnetic fields in wave number

kp
vB __ "
Space are Tv (kvpaqat)_ q CkpqEv(kvt)EB(qvt)a (21)
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5B k3 respectively, and the magnetic resistivity and backscatter re-
T, (k,p,q,t)= —cypEr(P, 1) Eg(q,t), (22 sistivity are given by
Pq
i ko= gz | [ 00 7% D Nupep®E. (a0
Te (kip.A.D= 5 CupgBu(PUEs(AL) W=7 | ]2 g Teod D kedP =0,
k +Cpk°Eg(q,t)]dp dg, (32)
+ﬁhkpq[szB(p,t)—DZEB(k,t)]EU(q,t),
1
23 Ep(klke )= ———— JJG(k)ak (t)
(23 c (k) | I pa
k3 3 2
TEB(k,p,a,t)=— —c¢ k,t)Eg(q,t 24 k
Bk pa =~ - Cpda(kDEs(A D). (29 xﬁ[gckpqa(p.nEB(q,t)

The geometrical coefficients are
+ hkpqEB(p,t)Ev(q,t)] dpdg (33

p
bkpqzi(xy+ 2, (25)
respectively.
p ) To identify the terms that contribute to the eddy damping
Ckpq:EZ(l_y ), (26)  and backscatter, the resolved-scale MHD equations are writ-
ten as
hipg= o (2+XY) @) 7
kpa "k ¥ ﬁ+[u+ut(|<|kc;t)]k2Ju—i(k,t)

(%, y, andz are the cosines of the interior angles opposite the
sides formed byk, p, and g, respectively, and the three- =f})(k,t)+Mijk(k)E G(k)
point correlation time scale is A

X[vj(p,t)vi(g,t) = Bj(p,t)Bi(q,t) ] (34

feod V)= O+ 7p(D) + 7g(1) @ and
ith eddy-dampi _
with eddy-damping rate %+[§+§t(k|kc;t)]k2 B (k)
7(1) = (v+ E)k?+0.19KH K3 E, (k,t) + Eg(k,t)]}?
”_?’kU Eondp| 29 =k +ME (03 G(KB;(pHuaD. (35

The correlations of the stochastic backscatter foréesnd
2, are A2E,(k,t)vp(Klke;t) and K2Eg(k,t)ép(k|ke;t),
respectively.

where Ko is the Kolmogorov constant.

B. Formal expressions for the eddy damping and backscatter

The eddy viscosity and backscatter viscosity are given by IV. NUMERICAL RESULTS
1 kp Computations are performed for stationary, assumed spec-
Vt(k|kc !t) = P f JAG(k) 0kpq(t)E[bkpun(q!t) tra [21_25
+CkpEs(q,t)]dp dg (30) D
P Eg(k) =Kol - TR ST (36)
1 P 1+ k_
Vb(k|kc;t)=F(k)f JAG(k)akpq(t) P
v ’t
E,(K)=raEg(k), (37
K3 ,
x—[ brpgEr(P,DE,(Q,t) wheres=1, k,=4, andr  is the Alfven ratio. The assumed
pPq value of the Kolmogorov constant Ko is 1.7, and the energy

0? dissipation rates is 7.24x 10%. The kinematic viscosity and
+Cp5 Eu(K,DEg(a,t) (dp dg  (31) magnetic resistivity are chosen as=§=0.004. The wave
number range ik e[ 1,512, with the discrete wave numbers
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FIG. 1. The eddy viscosity38) normalized according to Eq.

(40) for the pure Navier-Stokes case.

given by k= k2! ~Y* with k,=1.0 andl=1,...,37. The
cutoff wave number is taken to be=Kk,,,/8=64.
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FIG. 2. The backscatter viscosit@9) normalized according to
Eq. (41) for the pure Navier-Stokes case.

contribution of the magnetic term W2f [ ,G(K) Okpo(t)
X (kp/g)ckpqEe(;t)dp dg this contribution also increases

Figures 1 and 2 show the eddy viscosity and backscattah magnitude a€g(q,t) increases. The eddy viscosity and

viscosity for the pure Navier-Stokes cd5] given by

1 kp
nklke0= e | [ 600 b (a.00p dg

(38)
1
ket =———— [ [ 600 fp0
2k%E, (k,t) A
k3
X—bypeE,(P,DE,(q,t)dpdg (39
pq
respectively. The normalization is given by7]
— 1/2
E,(ke.t)
m(klke )= (klke ;1) k—} . (40
C
e 1/2
E,(ke.t)
vp(klke 1) = vy (Klke )| == —— (41)
C

eddy resistivity are comparable in magnitude and wave num-
ber dependence, withy (k|k.;t) somewhat larger than

& (K|ke:t), particularly over the rangk/k.~0.3—0.8. The
backscatter viscosity and backscatter resistivity are also com-
parable in magnitude, with, (k|k.;t) slightly larger than

& (Klke:t) over allk/k,.

For comparison, Figs. 5 and 6 show the eddy viscosity
and resistivity, and the backscatter viscosity and resistivity,
respectively, for the nonhelical MHD case having=3,
with the normalizationg40)—(43). The eddy resistivity and
backscatter resistivity have a dependencekikq, which is
qualitatively very similar to that of the eddy viscosity and
backscatter viscosity. The choicg= 3 is motivated by solar
wind observation$13,14]. The behaviors of these eddy and
backscatter viscosities and resistivities are similar to that of
ther ,=1 case, except that both the eddy viscosity and back-
scatter viscosity have increased, while the eddy resistivity
and backscatter resistivity have decreased significantly. Both
& (Klke;t) and &, (K|k;t) exhibit values near zero for a
significant range ok/k..

Figures 3 and 4 show the eddy viscosity and resistivity, and
the backscatter viscosity and resistivity, respectively, for the

nonhelical MHD case havingy= 1, with the normalizations

(40), (41), and

E kc,t 1/2
ft(k|kc;t):§:(k|kc;t)[¥} ’ (42)

R Eg(ks. )]
En(Klke;t)=&p (Kkest) k| (43

V. CONCLUSIONS

The spectral eddy viscosity and resistivity, and backscat-
ter viscosity and resistivity were computed for three-
dimensional, incompressible, isotropic, nonhelical MHD tur-
bulence using the EDQNM closure in terms of primitive
fieldsv andB. Formal expressions for the eddy damping and
backscatter terms in the resolved-scale velocity and magnetic
field equations were presented using a straightforward appli-

The addition of the magnetic field modifies the eddy andcation of the formalism used for Navier-Stokes turbulence by
backscatter viscosities as follows. The eddy viscosity id eslie and Quarin[9] (see Ref[25] for another recent ap-
slightly increased in magnitude due to the additional contriplication). The kinetic and magnetic energy spectra both had

bution of the magnetic term ll?ffAG(k)ekpq(t)

a production subrange and an inertial subrange, and were

X (kp/g)ckpqEr(q,t)dp dq this contribution increases in constructed for the two caseg=1 andr,=73. A numerical
magnitude agg(q,t) increases. The backscatter viscosity isevaluation of these viscosities and resistivities showed that
also slightly increased in magnitude due to the additionathe addition of a magnetic fielethcreasesboth the eddy and

026309-4



SUBGRID SCALE AND BACKSCATTER MODEL F®.. ..

0.08
vi(RkD, & (Hko)

0.04

0.02

Backscatter

0.05

0.04

0.03
vi(HkD), &(KE)

(ra = 1)

Eddy viscosity and resistivity

L VR

e £ (A

0.05 0.1 0.2 0.5 1
Kk,

0.02

viscosity and resistivity (ra = 1)

— V:(k{kc)

e gk
0.01
ol
0.02 0.05 0.1 0.2 0.5 1
Kk
Eddy viscosity and resistivity (r, = 1/2)
0.2
0.15 —— Vt(klkc)
Vitkko), & (HkD)
0.1
e g
0.05 -
’
0 IR I N I Y oL -
0.02 0.05 0.1 0.2 0.5 1
Kk
Backscatter viscosity and resistivity (ry = 1/2)
0.6
0.5
0.4 — V;(kikc)

Vi(HkD), &(HED 0.3

0.02 0.05 0.1 0.2 0.5 1

026309-5

e gD

PHYSICAL REVIEW E 66, 026309 (2002

FIG. 3. The eddy viscosity
(30) and eddy resistivit{32) nor-
malized according to Eqs(40)
and (42), respectively, for the 5
=1 case.

FIG. 4. The backscatter vis-
cosity (31) and backscatter resis-
tivity (33) normalized according
to Egs.(41) and(43), respectively,
for ther,=1 case.

FIG. 5. The eddy viscosity
(30) and eddy resistivity32) nor-
malized according to Eqgs(40)
and (42), respectively, for the
=1 case.

FIG. 6. The backscatter vis-
cosity (31) and backscatter resis-
tivity (33) normalized according
to Egs.(41) and(43), respectively,
for ther,= 3 case.
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