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Measures of intermittency in driven supersonic flows
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Scaling exponents for structure functions of the velocity, density, and entropy are computed for driven
supersonic flows for rms Mach numbers of order unity, with numerical simulations using the piecewise
parabolic method algorithm on grids of up to 5123 points. The driving is made up of either one or three
orthogonal shear waves. In all cases studied, the compressible component of the velocity in the statistically
steady regime is weaker than its solenoidal counterpart by roughly a factor of 6. Exponents for the longitudinal
component of the velocity are comparable to what is found in the incompressible case and appear insensitive
to the presence of numerous shocks. Scaling exponents of the transverse components of the velocity are
comparable to those for the longitudinal component. Density and entropy structure functions display strong
departures from linear scaling. Finally, the scaling of structure functions of the energy transfer is also given and
compared with the Kolmogorov refined similarity hypothesis.
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I. INTRODUCTION

Turbulent flows are pervasive, being observed in ma
geophysical and astrophysical situations, in particular w
one has access to a wide range of scales as in the plan
boundary layers, or from radio scintillations in the interst
lar medium, as well as in the solar environment both at
level of the photosphere and of the corona, or in the so
wind. One of the characteristic features of such flows is th
intermittency, i.e., the scarcity both in time and in space
strong structures as diagnosed, for example,
histograms—of velocity derivatives or of the density field
with non-Gaussian wings. These strong wings may be lin
with the presence of a hierarchy of intense small-scale st
tures such as shocks and vortex filaments, as well as void
observed in@1# for decaying supersonic flows.

A quantitative measurement of such an intermittent
havior is obtained from the determination of anomalous s
ing exponents of structure functions of the physical fiel
Specifying the definitions to the velocity, one writes the v
locity difference over a distancer assuming homogeneity, a

du~r !5u~x¿r !2u~x!;

its longitudinal~respectively transverse! components are

duL~r !5@du~r !• r̂ # r̂

@respectivelyduT(r )5du(r )2duL(r )#, where r̂ is the unit
vector along the separationr . The longitudinal~respectively
transverse! structure functions of orderp read, assuming also
isotropy so that both transverse components in three dim
sions can be assimilated to one field of common rms am
tudevT :

Sp;L~r !5^duL
p~r !&;r zp

L
~1!

and
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Sp;T~r !5^duT
p~r !&;r zp

T
, ~2!

where it is assumed that there exists a range within wh
self-similarity applies and such structure functions follo
power laws. As the order p of these functions increases, t
become dominated by the most intense structures i.e.,
indeed convey a signature of intermittency.

Whereas an extension to all orders of the Kolmogor
law ~or K41! @2# for the energy spectrum in the incompres
ible case predicts a linear variation for the scaling expone
of Sp;L with a slope of 1/3~see, e.g.,@3# for a recent ac-
count!, both experimental and numerical data indicate a cl
departure from this law. Numerous phenomenological m
els attempt to reproduce these exponents; amongst those
She-Leveque model@4# ~or SL model!, which can be viewed
as parameter-free~see, however,@5,6#!, stands out because o
its excellent agreement with data; the log-normal mod
with the choice of its open parameterm50.21, agrees as wel
with the data.

On the other hand, several recent experimental and
merical investigations@7# disagree among themselves as
what such exponents might be for the transverse compon
of the velocity, with up to now no clear distinction of whic
component, longitudinal or transverse, if any, is more int
mittent, i.e., with stronger departures from the K41 line
law zp5p/3. Whether such discrepancies between the m
suredzp

L and zp
T exponents are in fact attributable to po

statistics linked with insufficiently large data sets, or wheth
they are intrinsic—reflecting a lack of universality amon
flows—is not entirely clear yet. However, there is now e
dence pointing to a Reynolds number dependence@8# with
the two sets of exponents becoming equal at high Reyn
number, thus recovering full isotropy, at least for an isotro
forcing ~see@9# for a review centered on the study of th
passive scalar!.

The present work aims at testing the domain of univers
ity of such laws by investigating the case of superso
©2002 The American Physical Society01-1
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flows. Several observational data sets indicate that the e
nents of velocity structure functions vary in a nonlinear fa
ion with their order, as for the solar wind@10# and the inter-
stellar medium ~see @11# for a review!. Such astro-
geophysical flows are both compressible and turbulent,
in both cases magnetic fields play a dynamic role as w
However, as a first investigation, one can restrict the anal
to the case of neutral fluids in order to concentrate on
nature of the modifications that may be brought forth
compressibility alone@12#.

After describing the methodology in the next section,
give the results concerning the intermittent properties of
velocity in Sec. III and of the energy transfer in Sec. IV; t
last section is the Conclusion.

II. METHODOLOGY

A. The equations

The approach we take is numerical, using the piecew
parabolic method~or PPM! first introduced in@13#; it imple-
ments an algorithm that guarantees little dissipation in
large scales, with shocks together with sharp gradients fo
variables concentrated on a few grid points at small sca
The PPM algorithm has been tested against the Nav
Stokes equations for decaying flows both in two dimensi
@14# and recently in three dimensions@15# ~see also@16,17#!
up to resolutions of 10242 and 5123 grid points, respectively
The agreement obtains at all scales, with, however, a le
dissipation for the PPM flow on a given grid resulting in
more developed energy spectrum.

The equations for the densityr, the velocityu, the pres-
sureP, and the internal energye are now given for reference
with F a mechanical forcing term corresponding to an acc
eration, andL a cooling function:

]r

]t
1¹•~ru!50, ~3!

]u

]t
1u•¹u52

¹P

r
1F, ~4!

]e

]t
1u•¹e52~g21!e¹•u2L, ~5!

P5~g21!re. ~6!

Note that this formulation of an acceleration in the velo
ity equation~as opposed to a force in the momentum eq
tion! avoids small-scale driving because of small-scale d
sity variations.

In order to obtain an equilibrium system, i.e., to mainta
a constant~on average! Mach number, we compensate fo
the heating occurring both in shocks and because of the
ergy input ^u•F& in the driven runs by a temperature
dependent cooling functionL reminiscent of Stefan’s law
applicable to optically thick media; this cooling function th
reads:

L5sT4
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with s50.098 344 8 for both runs 1 and 3.
Three computations are analyzed, all with periodic bou

ary conditions. Run 3 corresponds to a flow driven by th
shear waves in three orthogonal directions, and at the lar
wave number allowed by the computation, viz.Fi

5Ap sin(2pxj /L0)êk with the triplet (i , j ,k) a cyclic permuta-
tion of the coordinates (X,Y,Z), and whereL052p is the
length of the computational box. In run 1, only one comp
nent of the previous force is kept, i.e., the driving is a on
dimensional shear wave; computations for run 1 were a
mentioned briefly in@16#. We takeAp51 for run 1 andAp
54 for run 3. Both runs are computed on a grid of 513

points. For run 1,g51.4 andg55/3 for run 3.
At t50, the flow has uniform density withr051 and

uniform pressure; it is embedded in a random velocity fi
with a prescribed spectrumE(k);k4 exp(2k2) as in @14–
18#. It is then left to settle on a low resolution grid of 1283

points for more than 100 turnover timestNL ~with tNL
5tac wheretac is the acoustic time!; the grid is then up-
graded to 2563, and the flow is again left to settle for 14tNL ;
this procedure is iterated up to the final resolution of 513

points on which the computation is first run for 2tNL before
the statistical analysis is started. For run 3, 14 temporal st
are then retained, separated by 0.2tNL , leading to a data se
of ;1.93109 points. A temporal subsampling with a refine
ment factor of 20 has been stored as well in order to st
the short-time variations of the intermittency exponents o
a total time span of 2tNL . A similar analysis is implemented
for run 1.

We show in Fig. 1 the resulting temporal evolution for ru
3 of the total kinetic energyEk ~top! and the total internal
energyEi ~bottom!, where the time is in units of the acoust
time. A statistically steady state with exchanges between
two forms of energy takes place at the 10% level, with
phase lag betweenEk andEi . The total energy~not shown!
varies with time as well because of the forcing and the co
ing.

B. The degree of compressibility of the flow

The resulting flow consists of a superposition of plan
shocks, slip surfaces, and vortex filaments with a lifetime
a few eddy turnover times, similar to the case of the tempo
evolution of the decay problem@1#. Such flows are charac
terized by fully developed Fourier spectra with approxima
25/3 slopes for both the solenoidal componentuV and the
compressible componentuC of the velocity, and with on av-
erage a ratio of compressive to solenoidal modal energy

x5EC /EV ~7!

close to 3%, where one refers here to the Helmholtz dec
position of the velocity into a divergence-free~or solenoidal,
i.e., vortex-likeuV) component, and a curl-free~or compres-
sive, i.e., shock-likeuC) component of respective energyEV
and EC , with Ek5EC1EV . For both runs, the rms Mach
number is close to unity on average, and density fluctuati
dr/r are of the order of 25%; the rms velocity isu0;1.2
and the integral scale is of the order ofl 0;0.5L0 @18#.
1-2
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MEASURE OF INTERMITTENCY IN DRIVEN . . . PHYSICAL REVIEW E66, 026301 ~2002!
In all computations of decaying two-dimensional turb
lence, the resulting value of the parameterx defined above
after a few eddy turnover times is always of the order
10% or less~see, e.g.,@19#!. Computations in three dimen
sions on a grid of 2563 points gives similar results. We sho
in Fig. 2 the temporal evolution for three such computatio
with initially, respectively,x50.10 ~solid line! andx50.90

FIG. 1. Temporal evolution for run 3 of the kinetic energy~top!
and internal energy~bottom!. All quantities are nondimensional.

FIG. 2. Temporal evolution ofx5EC/EV @see Eq.~7!# for three-
dimensional decay computations with initiallyx50.1 ~solid line!
andx50.9 ~dash lines! at different resolutions.
02630
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~dash lines!, and all other parameters identical~see@21#!. In
the latter case dominated by compressional modes initia
this ratio evolves rapidly to a moderate value because of
fast formation and dissipation of shocks; the two dash
curves correspond to two different resolutions for the sa
computation~namely grids of 643 and 1283 points!. After
several eddy turnover times, these ratios for the three r
become comparable, and the flows are dominated by the
tical component of the velocity although there are still n
merous shocks present in the fluid even at late times.

In the case of driven flows, such computations have
huge cost because of both the rather slow rate for reachi
statistically steady state, and also for the need of fair sa
pling over a sufficiently representative realization of the flu
tuations over time. Under such circumstances, no system
high-resolution three-dimensional parametric study has b
performed. However, in the many cases that have been
the parameterx remains of the order of 10%, with one ex
ception: it was shown in@22# that when the forcing is purely
compressional~either an expansion wave in the momentu
equation or heating terms in the energy equation, such
would result from the blast wave emanating from a sup
nova or from cosmic rays or ionization winds from O stars
the interstellar medium!, and in the absence of both rotatio
and of magnetic fields, then the vorticity never gets ve
large and the parameterx in the steady state settles to a val
close to unity.

The compressibility of the flow is traditionally measure
by the Mach number. We show in Fig. 3 a histogram of the
Mach number for run 3. The mean is 0.97 with excursions
to Mmax53.5 and with 50% of the flow having a local Mac
number of unity or above. Several other histograms are gi
in Fig. 3, namely the divergence of the velocity, the vortic
~absolute value!, for which a clear exponential scaling ob
tains, and the density. Note that the histogram of diverge
is asymmetric, with substantially stronger values for raref
tion waves, and that vorticity develops even stronger valu
We also note that the density develops, for low valu
power-law wings, with an exponent close to 4~not shown!.

One-dimensional cuts of the divergence and of the vor
ity are given in Fig. 4~respectively, top and bottom, se
labels! at the same time and for the same run as for Fig
These fields display strong fluctuations, with substantia
higher values for the vorticity; this is linked to the shea
wave driving of the flow, withuC /uS;0.18 in the steady
state. The second-order longitudinal~crosses! and transverse
~circles! structure functions of the velocity are given as w
in Fig. 4; the solid line represents the Kolmogorov scalin
finally, the energy spectra for the solenoidal~dash line!, com-
pressible~dotted line!, and total square velocity~solid line!
are also shown. All three spectra are compensated by a
e2/3k25/3 law, wheree is the time averaged energy transf
rate per unit mass. The second-order structure functi
shown in Fig. 4 present a nearly linear behavior of more th
a decade in scale. These structure functions were derive
taking displacements purely along the axes (XYZ
method described below!, which are aligned with the large
scale driving force. This method of sampling is most sen
tive to the large scale anisotropy due to the driving for
1-3
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FIG. 3. Histograms for run 3 att59.2 of the divergence of the velocity, the vorticity magnitude, the density, and the Mach numbe~see
labels!. Logarithmic counts are performed on the vertical axis for the first two histograms. Note the clear exponential wings f
derivative fields constructed on the velocity.
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The variation in the slope of̂udUTu2& seen in Fig. 4 can be
associated with this anisotropy. When the structure functi
are derived from data collected along displacements at m
different angles relative to the large scale driving the scali
are much improved. This ‘‘LT’’ method, where LT stands f
collecting the longitudinal and transverse components of
locity relative to arbitrarily oriented spatial displacements
described below. For example, the transverse second-o
structure functions of the velocity, collected via the L
method, when compensated by the She-Leveque scaling@4#
dXz(2) @see Fig. 8~b!# are constant to within 2.5% of thei
average value over a factor of 16 in displacement. Even w
the structure functions shown in Fig. 4, which are deriv
from the XYZ method—most sensitive to imposed drivin
force anisotropies, the maximum variation of these comp
sated second-order structure functions is 7% over the s
range of displacement.

By contrast, the compensated Fourier spectra—and
ticularly the solenoidal component—have two bumps wh
are much larger in amplitude. The one at large scale co
sponds to the adjusting between the energy-containing ra
and the inertial range. The one at small scale, rather pro
02630
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nent with an overshooting—as compared to the Kolmogo
law—by more than a factor of 2, smears the scaling; it c
responds to a Gibbs-like effect due to the abrupt ending
the variation of the structure function in configuration spa
at the onset of the dissipative range; it can also be mod
by the so-called bottleneck effect for incompressible flow
whereby the energy cascading to small scales encoun
abruptly the dissipation range with significantly less ener
The compensated energy spectrak5/3E(k)/e2/3 plotted in Fig.
4 are essentially a measure of the Kolmogorov constant,CK ,
for this Mach one driven flow. We find thatCK is within 45%
of 1.5 for KL0 in the range from 7 to 549, whereL0 is the
size of the box so thatkminL052p andkmaxL05512p. Ex-
perimental evaluations ofCK for incompressible flow give a
value close to 1.5 as well. The similarity inCK between
incompressible flows and this compressible one may be
to the dominance of the solenoidal modes, which is a re
of the pure solenoidal driving.

Finally, we note that in the statistically stationary regim
the Taylor wave number saturates at a value close to 16.8
the integral wave number is close to 1.9. The resulting eff
1-4
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FIG. 4. One-dimensional cut through the computational box of the divergence of the velocity~top! and the vorticity~bottom!; second-
order longitudinal~crosses! and transverse~circles! structure functions of the velocity; the solid line represents the K41 law; and finally
energy spectra for the solenoidal~dashed line!, compressible~dotted line!, and total square velocity~solid line!—all three spectra compen
sated by a K41e2/3k25/3 law, whiche is the energy transfer rate per unit mass. A value ofCK51.5 is indicated by the horizontal long-dashe
line. All figures are given for run 3a at the same time as for Figs. 1 and 3.
he
er

f
in

ng
b
o
gh
ro
-
de

r

spar-
ans-
hat
ac-
rger
ree
s in
ant
with
he

rge
nd

ed
for
ns.
ter-
of
tive Taylor-based Reynolds number~see, e.g.,@1#! is thus of
the order of 80, with moreover negligible dissipation in t
large scales, because of the numerical algorithm used h

C. The structures of the flow

Figure 5 shows~top left! the entropy and~top right! the
vorticity, together with~bottom left! the divergence of the
velocity and finally~bottom right! the energy transfer; all o
these grayscale images are given for run 3 at time 9.2
section of the volume which spans the wholeX andY extent
of the simulation, and Z in the interval@0.6,0.7#L0.

Note the significant spatial correlation—both at stro
values and for voids—between all variables which can
seen as representing different stages of evolution of the fl
All fields are mostly of a filamentary nature, at least at hi
values. These images are thresholded in amplitude at f
about 1 to about 8s: the entropy, the vorticity, the diver
gence of velocity, and the forward transfer are threshol
respectively at 0.83s above the mean, 2s above zero, 2.6s
below zero~thus showing only compression!, and 7.54 above
the mean~thus showing only very strong forward transfe!.
02630
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Less extreme variations, in each case, are rendered tran
ent. Furthermore, note that the hot spots in the energy tr
fer are mostly associated with strong vortex filaments. W
is perhaps more striking is that such filaments, from inter
tions such as intertwining, organize on larger scales as la
filaments, the latter being clearly delineated in the other th
variables displayed here. The strong sheet-like structure
the divergence of the velocity are also producing signific
energy transfer. The density also organizes in patches
regions delineating either the vorticity filaments or t
shocks.

At intermediate amplitudes, a wealth of structures eme
~not shown!: for example, besides filaments, both sheets a
spirals are found as well in the vorticity@16#.

III. INTERMITTENCY OF COMPRESSIBLE FLOWS

Numerous studies have shown that strongly localiz
structures in vorticity, divergence, and entropy as well as
the energy transfer develop through dynamical interactio
We now proceed in assessing in a quantitative way the in
mittency of supersonic flows through the determination
1-5



ha
ing

na
th

,

su
to
te
w
de
st
ic
os
ri
ur
th

in
c

e-

de-

it-
y
or
m-
ith a

of
tion

fro

ly
a

3
, for

D. PORTER, A. POUQUET, AND P. WOODWARD PHYSICAL REVIEW E66, 026301 ~2002!
scaling laws of structure functions of order higher than t
for the energy, and for various physical fields, beginn
with the velocity.

A. The longitudinal and transverse components of the velocity

Structure functions are constructed for the longitudi
and transverse components of the velocity field, and for
density and entropy as well, with, respectively,Sp;L(r )

;r zp
L

for the longitudinal component of the velocity

Sp;T(r );r zp
T

for its transverse component,Sp;r(r );r zp
r

for

the density, andSp;S(r );r zp
S

for the entropy. For the poly-
tropic ideal gas considered here, the density and pres
field varaibles may be scaled by a constant numerical fac
the same flow evolution will result, with only an appropria
scaling of time. Thus, in terms of the evolution of the flo
and of the structures, density contrasts—as opposed to
sity differences—is what matters. Typical density contra
are of order unity in the flows presented here, a statist
measure of density fluctuations which is not skewed by p
tive definiteness is desired. Hence, in characterizing va
tions in density it is most appropriate to construct struct
functions based on the differences in the logarithm of
density, viz.Sp;r(r )5^d l r

p(r )& wherel r5 logr.
Absolute values of velocity differences are employed,

order to improve the signal-to-noise ratio. The intermitten
exponentszp

a ~with a5L,T,r,S) are computed in two dif-

FIG. 5. Grayscale images for run 3 at time 9.2 of~a! ~top left!:
the entropy;~b! ~top right!: the vorticity; ~c! ~bottom left!: the di-
vergence of the velocity; and finally~d! ~bottom right!: the energy
transfer. In each case the ramp in grayscale is linear and ramps
black to white, respectively, over the ranges@0.83,8.76# s over the
average for entropy,@2,4# s above zero for vorticity,@2.6,21.2# s
below zero for divergence of velocity~showing only compression!,
and @7.54,78.32# s above the mean for transfer, showing on
strong forward transfer. Note the similar filamentary structures in
fields.
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ferent fashions. On the one hand, displacement vectorsr are
taken along the grid axes, i.e., in theXYZ directions. But
since the forcing for run 3 is alongXYZ as well, a second
method~named LT! was implemented whereby the displac
ments are taken in all individual~say, horizontal! planes with
averaging over a set of up to 12 angles in each plane,
pending on the value of the modulus ofr . This method al-
lows for a more isotropic evaluation of the exponents~see
@20# for a discussion of isotropy in the context of interm
tency!, although full isotropy would only be recovered b
using the data in the third direction as well, a task left f
future work. As stated before, the data is built with 14 te
poral snapshots separated by 0.2 eddy turnover times, w
total of 1.53109 data points.

The extent of the inertial range over which the slopes
structure functions are computed is obtained by examina
of bothS3;L andS8;L . Their scaling for run 3~using absolute
values of velocity differences! are displayed in Figs. 6~a! and
7~a! for bothuL ~circle! anduT ~cross! and using both the LT
andXYZ methods~see labels on curve!. For the LT method,

m

ll

FIG. 6. ~a! Third-order velocity structure functions for run
averaged over 24 snapshots evenly spaced from time 2 to 4.6
uL ~circle! and uT ~cross! and using either theXYZ or the LT
method, as labeled. Log-log coordinates are used.~b! Local slopes
for the same structure functions withuL on the top anduT on the
bottom, with the LT method on the left and theXYZ method on the
right.
1-6
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MEASURE OF INTERMITTENCY IN DRIVEN . . . PHYSICAL REVIEW E66, 026301 ~2002!
the range within which scaling applies@11,64# is in units of
the grid spacingdx52p/512. We checked that both method
give the same exponents to within a few percent when
interval is reduced to@11dx,23dx#; larger errors~of the or-
der of 10%! arise in theXYZ method, and the discrepanc
between the two methods increases with increasing orde
the structure function, but is negligible at the order examin
here. Indeed, the data in Fig. 7~a! for p58 shows a lesse
range of linear scaling.

A study of the local~as opposed to global! slopes of these
curves confirms this diagnostic~see also@18#! as shown in
Fig. 6~b! for p53 and Fig. 7~b! for p58. In Fig. 6~b! we
give these local slopes withuL ~top two! and uT ~bottom
two!, using the LT method~left! or theXYZ method~right!.
In Fig. 7~b! slopes calculated from moments collected via
LT method are shown and contrasted with results from
so-called extended self-similar~or ESS! methodology@23#
~see discussion below!. In both Figs. 6~b! and 7~b!, the extent
of each line indicates the domain over which the local slo

FIG. 7. ~a! Eighth-order velocity structure functions for run
averaged over 24 snapshots evenly spaced from time 2 to 4.6
uL ~circle! and uT ~cross! and using either theXYZ or the LT
method, as labeled. Log-log coordinates are used.~b! Local slopes
for the same structure functions withuL on the top anduT on the
bottom, using the ESS methodology on the right and direct slo
on the left. All four sets are measured using the LT method. Ther
significantly less scatter in the slopes using the ESS methodol
especially foruL .
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is computed. These local scaling exponents are calculated
a least-squares linear fit in the log-log plane. The sign
cantly larger scatter in the data with theXYZ method@Fig.
6~b!# is primarily due to the larger range of displacemen
tested with theXYZ method, as compared to the LT metho
such displacements extending into the dissipation and en

for

s
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y,

FIG. 8. ~a! Scaling exponentszp5 f (p) for run 3 for the longi-
tudinal ~cross! and transverse~circles! components of the velocity
for the LT method; the solid line represents the K41 law and
dashed line the SL model.~b! Second through eighth order velocit
structure functions compensated for by scalings from the S
Leveque~SL! model @zp5p/91222(2/3)p/3# for the longitudinal
~top! and transverse~bottom! components of the velocity, both us
ing the LT method.
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containing ranges. However, some of this scatter is attrib
able to the fact that theXYZ method reinforces the specia
directions of the driving along the three axes, whereas the
method avoids this geometrical property of the forcing
angle averaging. Note that there is a slight decrease in sc
as we move towards larger scales. A further indication c
cerning the errors made in evaluating such scaling expon
is given by dividing the data into a number of different su
sets and looking at the variation in the exponents from
set to the other one; for example, in@18#, the temporal evo-
lution of such exponents computed on a two turnover ti
subsampling indicates that the range of variation is limite

The ‘‘4/5’’ law of Kolmogorov @24# for incompressible
flows ~see also its extension in@25#! stipulates that̂ duL

3&5

2 4
5 er where e52] t^r0u2& is the kinetic energy transfe

rate; it seems to apply as well for the driven supersonic flo
we consider in this paper, withz3

L;0.99, although the dem
onstration of this law relies on relationships stemming fro
the kinematics of incompressible flows@26#. Note that an
independent evaluation ofe from the energy input̂ u•F&
gives e;2.3 whereas the Kolmogorov-like phenomenolo
giveseK5u0

3/ l 0;3.5, in rough agreement.
Thus the ESS hypothesis@23# can also be applied to su

personic flows; specifically, in order to avoid too noisy a d
set, we use ratherS3;L8 5^uduuL

3& as the independent variab
instead of the distance modulusr. Figure 7~b! displays the
data using this methodology, and better scaling is obtain
particularly striking for the longitudinal components@Fig.
7~b!, top right#. The range in which a linear fit applies~in
these log-log coordinates! with an agreement between bo
methods is indeed extended, as proposed by the propon
of the ESS method. However, the best estimates of the s
ing exponents from the raw data and those given by ESS
essentially the same for this data set. We, therefore,
evaluate exponents with the raw data using scaling of st
ture functions against distance over ranges of displacem
where the two methods agree.

As noted in the different context of magnetohydrod
namic flows@12#, other abscissa might be used for the det
mination of scaling exponents of transverse fields, using
exact scaling law derived in@25# and involving a combina-
tion of the transverse and longitudinal components of
velocity. Similarly, a new relationship involving all compo
nents of both the velocity and the vorticity in third-ord
structure functions has been derived in@27# on the basis of
the conservation in the inviscid limit of the kinetic helicit
HV5^u•v& ~see@28# for the derivation of a relation involv-
ing correlation functions of the velocity using as well th
conservation of kinetic helicity!.

Figure 8~a! gives the variations with orderp of the scaling
exponents of structure functions for run 3 for the veloc
using the LT method which has less scatter, as discus
above; a cross~circle! stands for the longitudinal~transverse!
components of the velocity field; the solid line represents
K41 law @2#, and the dashed line follows the SL model@4#
~the log-normal model with its parameterm50.21 is undis-
tinguishable from the SL model at these orders!. The longi-
tudinal exponents for this supersonic flow agree, again u
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p58, with those for turbulent incompressible flows and w
the SL model. Finally, the longitudinal and transverse ex
nents differ in what may be an insignificant way, the tran
verse field being only slightly more intermittent in the sen
that its exponents undergo a slightly stronger departure f
the K41 linear law. Figure 8~b! shows the velocity structure
functions compensated by the scaling expected for the
model, wherezp5p/91222(2/3)p/3. It can be noted~see
Fig. 1 in @18#! that in fact the discrepancy between thezp

L and
zp

T exponents stems from the small scales which disp
more scatter. This result agrees with the finding@8# that the
discrepancy between the two sets of exponents diminis
with Reynolds numbers, and vanishes for flows at high R
nolds numbers. A detailed study of the variation of both v
locity scaling exponents with time@18# indicates that
zp;L /zp;T.1 for all values ofp and for all times over a span
of 2tNL . The SL model was developed for incompressib
fluid turbulence@4#. While the flow discussed here is com
pressible, we note that the solenoidal component of the fl
dominates energetically in this flow. Further, the same k
of filamentary vortex tube structures—pervasive in inco
pressible flows at high vorticity~see, e.g.,@29#! and which
are central to the SL model@4#—are numerous as well in ou
flow @see Fig. 5~b!#.

B. Intermittency of the density and entropy

Compressible flows generally have two independent th
modynamic fields. Density and entropy are examined h
because density is a fundamental conserved quantity of
flow, and entropy is a constant of the flow except for sou
terms such as dissipation and thesT4 cooling term used in
our driven flows. In the low to moderate Mach number flow
considered here, advective terms appear to dominate
these source terms. Hence, the entropy tends to behave l
passively advected scalar, for which there is a predicted s
ing of the structure functions which comes from studies
incompressible flow@9#.

One can compute the intermittency exponents of the
tropy and of the logarithm of the density in a manner simi
to that used with the velocity field. For the polytropic ide
gas considered here the entropy can be written asS5S0
1S1ln@(p/p0)/(r/r0)

g#, wherep0 andr0 are the average pres
sure and density andSi are constants related to both physic
units and gas constants~such as molecular weight!. For
given pressure and density fields, the scaling of the struc
functions of entropy is independent of the constantsSi , p0,
and r0. The data is given in Fig. 9, with triangles for th
entropy and squares for the logarithm of the density. T
entropy appears significantly more intermittent than the
locity, in a manner somewhat reminiscent of the passive s
lar. Contrary to the case of the velocity, the exponents
crease at highp. Note that the assertion stipulating that th
zp curve for a given variable is convex relies on the assum
tion of the existence of a bound for that field; such a bou
may not exist for the log of density nor the entropy, sinc
e.g., rarefaction waves can lead to an arbitrarily large den
contrastrmax/rmin , and spatial variations in the dissipatio
may lead to arbitrarily large entropy jumps.
1-8
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C. The effect of anisotropy: Driving with a one-dimensional
shear wave

In the case of run 1 with a one-dimensional shear w
driving in theX direction and varying in theZ direction, the
resulting flow displays clear signs of anisotropy, as can
observed in Fig. 10: whereas the two directions orthogona
the driving are in equipartition, there is an excess of ene
in the X component of the velocity by a factor of 100 atk
5kmin ; it decreases to a factor of about 3 atk53kmin , and
continues to decrease withk until all three components of th
velocity are in equipartition atk520kmin , thus recovering
some isotropy in the small scales at the level of second-o
correlations. The Kolmogorov law is better achieved for t
unidirectional spectrum with the highest energy level,
seen, e.g., in the power spectrum ofux . Similarly, this an-
isotropy is noticeable insofar as the scaling exponents of
velocity structure functions at all orders in theX direction
differ substantially from the other two directions, as can
seen from Fig. 11 giving thezp

L,T exponents as a function o
order p for all nine components of the matrix that can
constructed with the three components of the velocity a

FIG. 9. Scaling exponentszp5 f (p) for the logarithm of the
density~squares!, and for the entropy~triangles!.

FIG. 10. Energy spectra for run 1 in the direction of the drivi
~solid line!, and in theY ~dashed line! andZ ~dotted line! directions.
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taking the displacements in either of the three directions~see
labels!; no averaging over multiple directions is performe
here in contrast to run 3, a three-way driven flow. The av
age is done on six temporal snapshots spanning two e
turnover times, and with the scaling applied in the inert
interval @32dx, 64dx#. Each of the coordinate directions
special: the driving force is applied only toux and the driv-
ing force varies only inZ. It is notable that of the nine
anomalous exponents shown, the ones involvingdux ~i.e.,
the directly driven velocity component! have the largest val-
ues, and that, of these three,dux varying in theZ direction
~the direction the driving varies in! is the largest. The scatte
in zp for p.6 may be due to insufficient statistics, the s
snapshots of this 5123 data providing about 83108 points.
However, the scatter inz2 andz3 is undoubtedly due to the
anisotropy of the driving force, which is evidently felt a
scales an order of magnitude smaller than the scale of
driving.

IV. THE ENERGY TRANSFER

We now examine the scaling behavior of the moments
the energy transfer

^ue~r !up&;r tp.

The computation of the energy transfer averaged over a
of linear dimensionr is performed using a Gaussian filter, th
Fourier width of the filterKF being taken as representative
the given scale,r;KF

21 . Here,e is based on the contribution
to the evolution of the kinetic energy of the flow on resolv
scales due to the effect of the subfilter-scale stresses thro
the nonlinear term of the Navier-Stokes equations. The eq
tions of motion are Favre filtered. From the filtered contin
ity and momentum equations the equation of evolution
the kinetic energy of the resolve fields is derived. Spec
cally, we use a Gaussian Favre filter

FIG. 11. Scaling exponents of the longitudinal and transve
velocity for run 1 for all three directions~see labels!. Only theX
component of velocity is directly driven; the driving accelerati
varies as a sine wave in theZ direction.
1-9
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Q̃5rQ/ r̄, Q̄~x!5
1

NE e2[KF(x2x1)] 2/2Q~x1!d3x1 ,

~8!

N5E e2(KFx)2
d3x ~9!

for these compressible flows.
The momentum equation for the filtered velocity is

]r̄Ũ

]t
1] j~ r̄Ũ i Ũ j !5] i p1] jt i j , ~10!

and the subfilter-scale stress is

t i j 5rUiU j2 r̄Ũ i Ũ j . ~11!

The kinetic energy in the resolved~filtered! fields

K̃5
1

2
r̄Ũ2 ~12!

evolves according to

]K̃

]t
5•••1Ũ i] jt i j 5•••1] j~Ũ it i j !2~] j Ũ i !t i j . ~13!

While Ũ i] jt i j is not Galilean invariant, the term (] j Ũ i)t i j

is invariant under a velocity boost. The term] j (Ũ it i j ) is the
effect onK̃ of the kinetic energy flux (Ũ it i j ) due to the SGS
stresses: it only transports the kinetic energy of the reso
scale flow, and does not correspond to any forward or b
transfer of energy from resolved to unresolved fields. Hen
we identify

e~r !52~] j Ũ i !t i j ~14!

as the local SGS energy flux due to the nonlinear terms of
momentum equations. The analysis is performed on
snapshots att53 andt59.2, with nearly identical scalings
the values oft1 , t2, and t3 each differ by about 10% be
tween the two times. Given the nonambiguous scaling
served for this data in Fig. 12, we feel there is no need, gi
the high cost of this specific computation, to go over t
whole temporal data set.

For the fourfold range of scales considered in Fig.
~top!, within the inertial range, the scatter is small with
maximum deviation;1.5%; the scaling forp51/3, 1, and 3
is given in Fig. 12~bottom!. Note thatue r u; constant in that
range. We also performed a check of the refined simila
hypothesis of Kolmogorov~KRSH! which stipulates thatzp
5p/31tp/3 ; this relationship stems from evaluating the l
cal energy transfere l at scalel ase l;ul

3/ l ; tp is shown with
triangles, whereas the cross~circle! givesz3p2p for the lon-
gitudinal ~transverse! components of the velocity; finally, th
solid line is for K41, the dotted line for the She-Leveq
model, and the dashed line for the log-normal model w
m50.21 ~see also@30#!. Figure 7~b! shows the spread in ou
measure ofz8 to be roughly60.1 for the longitudinal veloc-
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ity and about60.2 for the transverse velocity. Hence, o
data, overall, is consistent with the Kolmogorov KRSH h
pothesis within the error bars of our measures ofzp , despite
the fact that this is a supersonic flow and exchanges with
pressure field constitute about 10% of the total energy tra
fer. The same conclusion concerning the validity of t
KRSH hypothesis is reached in@8# for incompressible fluids.

V. CONCLUSION

For the sustained supersonic flows examined in this pa
the intermittency exponents for the velocity field are simi
to those for the incompressible case although numer
shocks are present at all times@31#: these Mach one flows
with x5EC/EV;0.03—measuring the relative shock-to
vortex energy—have incompressible-like behavior as far
the scaling of structure functions is concerned.

In that light, it should be remembered that observatio
for both the solar wind and the interstellar medium give
dications that the behavior in such turbulent compress
media is interpretable in terms of classical turbulence, d
playing histograms with strong non-Gaussian wings, a
with—at least in one case—̂du3&;r @11#. This raises the

FIG. 12. Top: variation with the Fourier width of the filter of th
first three moments of the local energy transfer (p51, 2, and 3! at
time t59.2. Bottom: scaling exponents of the transfer together w
a test of the Kolmogorov refined similarity hypothesis; the lo
normal model withm50.21 ~label ln! and the She-Leveque~label
sl! models are also shown.
1-10
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question of the universality of the Kolmogorov phenomen
ogy, beyond its original domain of applicability. For e
ample, it is not clear whether the inclusion of a magne
field breaks such a universality because of the interaction
turbulent eddies with Alfve´n waves propagating along th
lines of a strong background magnetic field, and leading
substantially lesser energy transfer to small scales as em
ied in the Iroshnikov-Kraichnan~‘‘IK’’ ! phenomenology de
veloped in@32#. Whether it is the K41 or the IK phenom
enology that applies to such flows—i.e., whether in t
former case local interactions~between modes of comparab
wavelengths! dominate the nonlinear transfer, or in the latt
nonlocal Alfvénic anisotropic transfer is dominant—is st
an open question presently~see, e.g.,@33#!.

In order to ascertain more precisely the characteristic
the compressible component of supersonic flows besides
information already given here on the density and entro
one could examine as well the pressure and temperature
ing laws; the former will allow for another comparison wi
the incompressible case by looking, e.g., at histograms,
the latter is of particular interest to the astrophysical comm
nity since it relates more directly to observations. Anoth
piece of information will come from an evaluation of th
scaling exponents of the compressible part of the velo
uC , using the standard Helmholtz decomposition. Will it fo
low, at all orders, the incompressible component of the
locity, which energetically is prevalent? We already kno
that for p52, the spectrum of the compressible part of t
velocity follows a Kolmogorov law~with possible intermit-
tency corrections!, as opposed to the classicalk22 law as in
the shock spectrum of the Burgers equation. This can
interpreted in terms of the Lundgren model of a spiral vor
@34# ~see also@35#! entraining the medium surrounding it: th
curvature in the velocity field that develops, through t
Biot-Savart law, in the vicinity of a strong vortex tube, al
imprints on the divergence of the velocity; this may be s
ficient to bring about a25/3 scaling@36#. Do higher orders
id

e
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of the structure functions of the longitudinal velocity fie
follow the scaling of the solenoidal component for this r
with x;0.03? Furthermore, what will be the scaling laws f
compressible flows with a drastically different value in t
steady state ofx, as could be obtained with a mostly com
pressible forcing? Indeed, another physical problem wo
examining is the one dominated energetically by shocks
regime which may arise through a driving in the heat eq
tion, as that stemming from either cosmic rays or ionizat
winds or a blast wave emanating from a supernova in
interstellar medium~ISM!. Will such flows behave againà la
Kolmogorov, or rather as for the Burgers equation with
N-wave system? The production of vorticity may be essen
in this case; with either rotation~of strengthV0) or magnetic
fields ~of strengthB0) present in the ISM, vorticity will be
produced; but with bothV0 and B0 equal to zero, the out-
come may be different. In view of the huge observation
effort made presently in the community studying the IS
and giving already access to low-order structure functions
the velocity, these questions merit attention and are left
future work.
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