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Measures of intermittency in driven supersonic flows
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Scaling exponents for structure functions of the velocity, density, and entropy are computed for driven
supersonic flows for rms Mach numbers of order unity, with numerical simulations using the piecewise
parabolic method algorithm on grids of up to 81foints. The driving is made up of either one or three
orthogonal shear waves. In all cases studied, the compressible component of the velocity in the statistically
steady regime is weaker than its solenoidal counterpart by roughly a factor of 6. Exponents for the longitudinal
component of the velocity are comparable to what is found in the incompressible case and appear insensitive
to the presence of numerous shocks. Scaling exponents of the transverse components of the velocity are
comparable to those for the longitudinal component. Density and entropy structure functions display strong
departures from linear scaling. Finally, the scaling of structure functions of the energy transfer is also given and
compared with the Kolmogorov refined similarity hypothesis.
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.
I. INTRODUCTION Sp;T(r)=<6u$(r)>~r5p, 2)
Turbulent flows are pervasive, being observed in many
geophysical and astrophysical situations, in particular whemvhere it is assumed that there exists a range within which
one has access to a wide range of scales as in the planetaglf-similarity applies and such structure functions follow
boundary layers, or from radio scintillations in the interstel-power laws. As the order p of these functions increases, they
lar medium, as well as in the solar environment both at thebecome dominated by the most intense structures i.e., they
level of the photosphere and of the corona, or in the solaindeed convey a signature of intermittency.
wind. One of the characteristic features of such flows is their Whereas an extension to all orders of the Kolmogorov
intermittency, i.e., the scarcity both in time and in space oflaw (or K41) [2] for the energy spectrum in the incompress-
strong structures as diagnosed, for example, byble case predicts a linear variation for the scaling exponents
histograms—of velocity derivatives or of the density field—of S, with a slope of 1/3(see, e.g.[3] for a recent ac-
with non-Gaussian wings. These strong wings may be linkedouni, both experimental and numerical data indicate a clear
with the presence of a hierarchy of intense small-scale struaddeparture from this law. Numerous phenomenological mod-
tures such as shocks and vortex filaments, as well as voids a$s attempt to reproduce these exponents; amongst those, the
observed i 1] for decaying supersonic flows. She-Leveque modé#] (or SL mode], which can be viewed
A gquantitative measurement of such an intermittent be-as parameter-fresee, howevef5,6]), stands out because of
havior is obtained from the determination of anomalous scalits excellent agreement with data; the log-normal model,
ing exponents of structure functions of the physical fieldswith the choice of its open parameter=0.21, agrees as well
Specifying the definitions to the velocity, one writes the ve-with the data.
locity difference over a distanaeassuming homogeneity, as  On the other hand, several recent experimental and nu-
merical investigation$7] disagree among themselves as to

ou(r)=u(x+r)—u(x); what such exponents might be for the transverse components
) o ] of the velocity, with up to now no clear distinction of which
its longitudinal (respectively transvers@omponents are component, longitudinal or transverse, if any, is more inter-
A mittent, i.e., with stronger departures from the K41 linear
oup(ry=[Laéu(r)-r]r law {,=p/3. Whether such discrepancies between the mea-

. . _ suredgb and g; exponents are in fact attributable to poor
[respectivelydur(r) = éu(r) — du.(r)], wherer is the unit  statistics linked with insufficiently large data sets, or whether
vector along the separation The longitudinal(respectively  they are intrinsic—reflecting a lack of universality among
transversgstructure functions of ordgrread, assuming also  flows—is not entirely clear yet. However, there is now evi-
isotropy so that both transverse components in three dimentence pointing to a Reynolds number dependd@eavith
sions can be assimilated to one field of common rms ampllthe two sets of exponents becoming equa| at h|gh Reyn0|ds

tudevr: number, thus recovering full isotropy, at least for an isotropic
. forcing (see[9] for a review centered on the study of the
Sp (1) =(SuP(r))~rép (1)  passive scalar
The present work aims at testing the domain of universal-
and ity of such laws by investigating the case of supersonic
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flows. Several observational data sets indicate that the expavith o=0.098 344 8 for both runs 1 and 3.
nents of velocity structure functions vary in a nonlinear fash- Three computations are analyzed, all with periodic bound-
ion with their order, as for the solar wirjd0] and the inter- ary conditions. Run 3 corresponds to a flow driven by three
stellar medium (see [11] for a review. Such astro- shear waves in three orthogonal directions, and at the largest
geophysical flows are both compressible and turbulent, andilave number allowed by the computation, ViZ;
in both cases magnetic fields play a dynamic role as WeII.:Ap sin(2mx; ILg)e, with the triplet ,j,k) a cyclic permuta-
However, as a first investigation, one can restrict the analysigon of the coordinatesX,Y,Zz), and wherel,=2 is the
to the case of neutral fluids in order to concentrate on thgangth of the computational box. In run 1, only one compo-
nature of the modifications that may be brought forth bynent of the previous force is kept, i.e., the driving is a one-
compressibility along12]. _ _ dimensional shear wave; computations for run 1 were also
After describing the methodology in the next section, wementioned briefly if16]. We takeA,=1 for run 1 andA
give the results concerning the intermittent properties of the- 4 for run 3. Both runs are computed on a grid of %12
velocity in Sec. Il and of the energy transfer in Sec. IV; the points. For run 1,y=1.4 andy=5/3 for run 3.
last section is the Conclusion. At t=0, the flow has uniform density witp,=1 and
uniform pressure; it is embedded in a random velocity field
Il. METHODOLOGY with a prescribed spectru(k)~k* exp(—k?) as in[14—
18]. It is then left to settle on a low resolution grid of £28

. . . ) _ points for more than 100 turnover times,  (with 7y
The approach we take is numerical, using the piecewise. Tac Where 7, is the acoustic time the grid is then up-

parabolic methodor PPM first introduced in13]; it imple- graded to 258 and the flow is again left to settle for 44, :
ments an algorithm that guarantees little dissipation in thenis procedure is iterated up to the final resolution of 512
Iarge scales, with shocks together w_ith sharp gradients for aBoints on which the computation is first run forg, before
variables concentrated on a few grid points at small scalespg statistical analysis is started. For run 3, 14 temporal states

The PPM algorithm has been tested against the Navielyre then retained, separated by, leading to a data set
Stokes equations for decaying flows both in two dimensiongs __ 1 gx 1 ? points. A temporal subsampling with a refine-

[14] and recently in thrﬁee dimer%siofms] (see alsd16,17)  ment factor of 20 has been stored as well in order to study
up to resolutions of 1024and 512 grid points, respectively. he short-time variations of the intermittency exponents over

The agreement obtains at all scales, with, however, a lessgryy 5| time span of 2y, . A similar analysis is implemented
dissipation for the PPM flow on a given grid resulting in a g, ryn 1.

more developed energy spectrum.

A. The equations

X ) ) We show in Fig. 1 the resulting temporal evolution for run
The equations for the densipy, the velocityu, the pres- 3 ot the total kinetic energy, (top) and the total internal
sureP, and the internal energyare now given for reference, gnerqvE. (hottom), where the time is in units of the acoustic
with F a mechanical forcing term corresponding to an accelime “A statistically steady state with exchanges between the
eration, and\ a cooling function: two forms of energy takes place at the 10% level, with a
phase lag betweel, andE;. The total energynot shown

J . 2 -
» +V-(pu)=0, 3 varies with time as well because of the forcing and the cool-
Jt ing.
d VP
o +u-Vu=— 7 +F, (4) B. The degree of compressibility of the flow
The resulting flow consists of a superposition of planar
e shocks, slip surfaces, and vortex filaments with a lifetime of
s tu-Ve=—(y—1)ev-u—A, (5 afew eddy turnover times, similar to the case of the temporal
evolution of the decay problefi]. Such flows are charac-
P=(y—1)pe. (6) terized by fully developed Fourier spectra with approximate

—5/3 slopes for both the solenoidal componegtand the

Note that this formulation of an acceleration in the veloc-compressible componeant of the velocity, and with on av-
ity equation(as opposed to a force in the momentum equa€rage a ratio of compressive to solenoidal modal energy
tion) avoids small-scale driving because of small-scale den-
sity variations. x=Ec/Ey @

In order to obtain an equilibrium system, i.e., to maintain
a constantion average Mach number, we compensate for close to 3%, where one refers here to the Helmholtz decom-
the heating occurring both in shocks and because of the efosition of the velocity into a divergence-fréer solenoidal,
ergy input (u-F) in the driven runs by a temperature- i.€., vortex-likeuy) component, and a curl-fre@r compres-
dependent cooling functiol reminiscent of Stefan's law Sive, i.e., shock-likeic) component of respective energy,

applicable to optically thick media; this cooling function thus and Ec, with E,=Ec+Ey. For both runs, the rms Mach
reads: number is close to unity on average, and density fluctuations

oplp are of the order of 25%; the rms velocity ig~1.2
A=oT* and the integral scale is of the orderlgf~0.5_, [18].
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FIG. 1. Temporal evolution for run 3 of the kinetic energgp)
and internal energybottom. All quantities are nondimensional.
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(dash lineg and all other parameters identidake[21]). In

the latter case dominated by compressional modes initially,
this ratio evolves rapidly to a moderate value because of the
fast formation and dissipation of shocks; the two dashed
curves correspond to two different resolutions for the same
computation(namely grids of 64 and 128 points. After
several eddy turnover times, these ratios for the three runs
become comparable, and the flows are dominated by the vor-
tical component of the velocity although there are still nu-
merous shocks present in the fluid even at late times.

In the case of driven flows, such computations have a
huge cost because of both the rather slow rate for reaching a
statistically steady state, and also for the need of fair sam-
pling over a sufficiently representative realization of the fluc-
tuations over time. Under such circumstances, no systematic
high-resolution three-dimensional parametric study has been
performed. However, in the many cases that have been run,
the parametey remains of the order of 10%, with one ex-
ception: it was shown if22] that when the forcing is purely
compressionaleither an expansion wave in the momentum
equation or heating terms in the energy equation, such as
would result from the blast wave emanating from a super-
nova or from cosmic rays or ionization winds from O stars in
the interstellar mediuim and in the absence of both rotation
and of magnetic fields, then the vorticity never gets very
large and the parametgrin the steady state settles to a value
close to unity.

The compressibility of the flow is traditionally measured
by the Mach number. We show in Fi§ a histogram of the
Mach number for run 3. The mean is 0.97 with excursions up
to M 2= 3.5 and with 50% of the flow having a local Mach
number of unity or above. Several other histograms are given

In all computations of decaying two-dimensional turbu-in Fig. 3, namely the divergence of the velocity, the vorticity

lence, the resulting value of the parametedefined above

(absolute valug for which a clear exponential scaling ob-

after a few eddy turnover times is always of the order oftains, and the density. Note that the histogram of divergence
10% or less(see, e.g.[19]). Computations in three dimen- is asymmetric, with substantially stronger values for rarefac-
sions on a grid of 256points gives similar results. We show tion waves, and that vorticity develops even stronger values.
in Fig. 2 the temporal evolution for three such computationsWe also note that the density develops, for low values,

with initially, respectively,y=0.10 (solid line) and y=0.90
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FIG. 2. Temporal evolution of =E/EY [see Eq(7)] for three-
dimensional decay computations with initialjy=0.1 (solid line)

and y=0.9 (dash lineg at different resolutions.

power-law wings, with an exponent close tqrbt shown.
One-dimensional cuts of the divergence and of the vortic-
ity are given in Fig. 4(respectively, top and bottom, see
labelg at the same time and for the same run as for Fig. 3.
These fields display strong fluctuations, with substantially
higher values for the vorticity; this is linked to the shear-
wave driving of the flow, withuz/ug~0.18 in the steady
state. The second-order longitudirfafossesand transverse
(circles structure functions of the velocity are given as well
in Fig. 4; the solid line represents the Kolmogorov scaling;
finally, the energy spectra for the solenoiéiddsh ling, com-
pressible(dotted ling, and total square velocitisolid line)
are also shown. All three spectra are compensated by a K41
€?*53 law, wheree is the time averaged energy transfer
rate per unit mass. The second-order structure functions
shown in Fig. 4 present a nearly linear behavior of more than
a decade in scale. These structure functions were derived by
taking displacements purely along the axexXY{E
method described belowwhich are aligned with the large
scale driving force. This method of sampling is most sensi-
tive to the large scale anisotropy due to the driving force.
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FIG. 3. Histograms for run 3 d@t=9.2 of the divergence of the velocity, the vorticity magnitude, the density, and the Mach n(saber
labely. Logarithmic counts are performed on the vertical axis for the first two histograms. Note the clear exponential wings for both
derivative fields constructed on the velocity.

The variation in the slope dff 5U+|?) seen in Fig. 4 can be nent with an overshooting—as compared to the Kolmogorov
associated with this anisotropy. When the structure functionfaw—by more than a factor of 2, smears the scaling; it cor-
are derived from data collected along displacements at mamgsponds to a Gibbs-like effect due to the abrupt ending of
different angles relative to the large scale driving the scalingshe variation of the structure function in configuration space
are much improved. This “LT” method, where LT stands for at the onset of the dissipative range; it can also be modeled
collecting the longitudinal and transverse components of vepy the so-called bottleneck effect for incompressible flows,
locity _relative to arbitrarily oriented spatial displacements, iswhereby the energy cascading to small scales encounters
described below. For example, the transverse second-ordgprptly the dissipation range with significantly less energy.
structure functions of the velocity, collected via the LT 1o compensated energy spedfAE (k)/ €2 plotted in Fig.
method, when compensated by the She-Leveque sd@ing 4 ;0 essentially a measure of the Kolmogorov cons@t,

{(2) i ithi i
OXT" [see Fig. &)] are constant to .W'thm 2.5% of the|r_ for this Mach one driven flow. We find th& is within 45%
average value over a factor of 16 in displacement. Even W|thf 1.5 for KL, in the range from 7 to 549, wheis, is the
. 0 1

the structure functions shown in Fig. 4, which are derive Size of the box 0 that,.; L= 27 andky . o=5127. Ex-

from the XY Z method—most sensitive to imposed driving ; ) . . .
force anisotropies, the maximum variation of these compenP€'imental evaluations dty for incompressible flow give a

sated second-order structure functions is 7% over the sant@lué close to 1.5 as well. The similarity @y between
range of displacement. incompressible flows and this compressible one may be due

By contrast, the compensated Fourier spectra—and pat0 the dominance of the solenoidal modes, which is a result
ticularly the solenoidal component—have two bumps whichof the pure solenoidal driving. _ .
are much larger in amplitude. The one at large scale corre- Finally, we note that in the statistically stationary regime,
sponds to the adjusting between the energy-containing rangbe Taylor wave number saturates at a value close to 16.8 and
and the inertial range. The one at small scale, rather promihe integral wave number is close to 1.9. The resulting effec-
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FIG. 4. One-dimensional cut through the computational box of the divergence of the vétopjtyand the vorticity(botton); second-
order longitudinakcrossesand transversécircles structure functions of the velocity; the solid line represents the K41 law; and finally the
energy spectra for the solenoiddiashed ling compressiblédotted ling, and total square velocitisolid line—all three spectra compen-
sated by a K4%¥%3% 52 law, whiche is the energy transfer rate per unit mass. A valu€gf 1.5 is indicated by the horizontal long-dashed
line. All figures are given for run 3a at the same time as for Figs. 1 and 3.

tive Taylor-based Reynolds numbgee, e.g.[1]) is thus of  Less extreme variations, in each case, are rendered transpar-
the order of 80, with moreover negligible dissipation in theent. Furthermore, note that the hot spots in the energy trans-
large scales, because of the numerical algorithm used herder are mostly associated with strong vortex filaments. What
is perhaps more striking is that such filaments, from interac-
C. The structures of the flow tions such as intertwining, organize on larger scales as larger
. ) filaments, the latter being clearly delineated in the other three
Figure 5 showdtop leff) the entropy andtop right the | 5iaples displayed here. The strong sheet-like structures in
vorticity, together with(bottom lefy the divergence of the 4 givergence of the velocity are also producing significant
velocity and finally(bottom righy the energy transfer; all of - oeqy transfer. The density also organizes in patches with
these grayscale images are given for run 3 at time 9.2in g,4i5ns delineating either the vorticity filaments or the
section of the volume which spans the whlandY extent  ¢1qcks.
of the simulation, and Z in the interv{0.6,0.7L,. At intermediate amplitudes, a wealth of structures emerge

Note the significant spatial correlation—both at strongnqt shown: for example, besides filaments, both sheets and
values and for voids—between all variables which can b%pirals are found as well in the vorticifyL6].

seen as representing different stages of evolution of the flow.
All fields are mostly of a filamentary nature, at least at high

values. These images are thresholded in amplitude at from
about 1 to about &: the entropy, the vorticity, the diver- Numerous studies have shown that strongly localized
gence of velocity, and the forward transfer are thresholdedtructures in vorticity, divergence, and entropy as well as for
respectively at 0.83 above the mean, @ above zero, 2.6 the energy transfer develop through dynamical interactions.
below zero(thus showing only compressiprand 7.54 above We now proceed in assessing in a quantitative way the inter-
the mean(thus showing only very strong forward trangfer mittency of supersonic flows through the determination of

lIl. INTERMITTENCY OF COMPRESSIBLE FLOWS
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and [7.54,78.32 ¢ above the mean for transfer, showing only —
strong forward transfer. Note the similar filamentary structures in all i L -
fields. N N E— i

(b) x/8x (LT method) dx/tx (XYZ method)

scaling laws of structure functions of order higher than that FIG. 6. (a) Third-order velocity structure functions for run 3
for the energy, and for various physical fields, beginningaveraged over 24 snapshots evenly spaced from time 2 to 4.6, for
with the velocity. u_ (circle) and ur (cross and using either theXYZ or the LT
method, as labeled. Log-log coordinates are uggdLocal slopes
for the same structure functions with on the top andi; on the
A. The longitudinal and transverse components of the velocity  pottom, with the LT method on the left and the&r Z method on the

Structure functions are constructed for the Iongitudinal”ght-

and transverse components of the velocity field, and for the . .

density and entropy as well, with, respective&p_L(r) ferent fashions. On the one hand, dlsplacement vectars
> ; . . : L

~r% for the longitudinal component of the velocity, taken along the grid axes, i.e., in th&Y Z directions. But

7 . o since the forcing for run 3 is alongY Z as well, a second
Sp;r(r)~re for its transverse componert, ,(r)~r* for  ethod(named LT was implemented whereby the displace-

the density, ancSp;S(r)~r§§ for the entropy. For the poly- ments are taken in all individugsay, horizontalplanes with
tropic ideal gas considered here, the density and pressuesreraging over a set of up to 12 angles in each plane, de-
field varaibles may be scaled by a constant numerical factopending on the value of the modulus f This method al-
the same flow evolution will result, with only an appropriate lows for a more isotropic evaluation of the exponefsse
scaling of time. Thus, in terms of the evolution of the flow [20] for a discussion of isotropy in the context of intermit-
and of the structures, density contrasts—as opposed to detency), although full isotropy would only be recovered by
sity differences—is what matters. Typical density contrastsising the data in the third direction as well, a task left for
are of order unity in the flows presented here, a statisticafuture work. As stated before, the data is built with 14 tem-
measure of density fluctuations which is not skewed by posiporal snapshots separated by 0.2 eddy turnover times, with a
tive definiteness is desired. Hence, in characterizing variatotal of 1.5< 10° data points.
tions in density it is most appropriate to construct structure The extent of the inertial range over which the slopes of
functions based on the differences in the logarithm of thestructure functions are computed is obtained by examination
density, viz.S, ,(r)=(41)(r)) wherel ,=logp. of bothS;. andSg. . Their scaling for run 3using absolute
Absolute values of velocity differences are employed, invalues of velocity differencesre displayed in Figs.(6) and
order to improve the signal-to-noise ratio. The intermittency7(a) for bothu, (circle) andu; (cross and using both the LT
exponentsy (with a=L,T,p,S) are computed in two dif- andXYZmethods(see labels on curyeFor the LT method,
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FIG. 7. (a) Eighth-order velocity structure functions for run 3 N 2|
averaged over 24 snapshots evenly spaced from time 2 to 4.6, fo
u_ (circle) and u; (crosg and using either theXYZ or the LT 10
method, as labeled. Log-log coordinates are ufledLocal slopes s Co~ & X SN A A A Aps ]
for the same structure functions with on the top andi; on the < L ]
bottom, using the ESS methodology on the right and direct slopes A N . ]
on the left. All four sets are measured using the LT method. There is'Fs L + * 4 4 A A p=d4 |
S : . 2
S|gn|f|9antly less scatter in the slopes using the ESS methodology | 2 @ a a o a o .
especially foru, . X  x B p=5
® = X x X x x <
ey . . . . .. . 10"’ - & ] Po 5 X X p=6
the range within which scaling appli¢$1,64] is in units of E ° x o ]
the grid spacingsx=2m/512. We checked that both methods C | | o bt 1
. . . 111 1 1 1 1 1 11
give the same exponents to within a few percent when the 10 100
interval is reduced t§115x,235x]; larger errorgof the or- (b) 8x/Ax

der of 109 arise in theXY Z method, and the discrepancy i (o) § or the lonai
between the two methods increases with increasing order ofd!:lel' 8.(@ SCZ |tng exponen_tgr— (p) for runt3 ?rtr: € olngl_:[
the structure function, but is negligible at the order examinec?u inal (cros$ and transversécircles components of the velocity

here. Indeed, the data in Fig(a7 for p=8 shows a lesser or the LT method; the solid line represents the K41 law and the
) S . 9 P dashed line the SL moddb) Second through eighth order velocity
range of linear scaling.

structure functions compensated for by scalings from the She-
A study of the localas opposed to globaslopes of these Leveque(SL) mode|[§p:p/9+2_2(2/3)p/3] for the longitudinal

cgrves confirms this d'aQ”OSt(See alsd 18)) a.S shown in (top) and transversébottom) components of the velocity, both us-
Fig. 6(b) for p=3 and Fig. Tb) for p=8. In Fig. 6b) we ing the LT method.

give these local slopes with, (top two and u; (bottom

two), using the LT methodleft) or the XY Z method(right). is computed. These local scaling exponents are calculated via
In Fig. 7(b) slopes calculated from moments collected via thea least-squares linear fit in the log-log plane. The signifi-
LT method are shown and contrasted with results from theantly larger scatter in the data with tie¥ Z method[Fig.
so-called extended self-simildor ESS methodology[23] 6(b)] is primarily due to the larger range of displacements
(see discussion belgwin both Figs. 6b) and 1b), the extent  tested with theX'Y Z method, as compared to the LT method,
of each line indicates the domain over which the local slopesuch displacements extending into the dissipation and energy
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containing ranges. However, some of this scatter is attributp=8, with those for turbulent incompressible flows and with
able to the fact that th&'Y Z method reinforces the special the SL model. Finally, the longitudinal and transverse expo-
directions of the driving along the three axes, whereas the LTients differ in what may be an insignificant way, the trans-
method avoids this geometrical property of the forcing byverse field being only slightly more intermittent in the sense
angle averaging. Note that there is a slight decrease in scattérat its exponents undergo a slightly stronger departure from
as we move towards larger scales. A further indication conthe K41 linear law. Figure ®) shows the velocity structure
cerning the errors made in evaluating such scaling exponenfanctions compensated by the scaling expected for the SL
is given by dividing the data into a number of different sub-model, where{,=p/9+ 2—2(2/3P", It can be notedsee
sets and looking at the variation in the exponents from onérig. 1 in[18]) that in fact the discrepancy between ﬂteand
set to the other one; for example, [ibg], the temporal evo- /7 exponents stems from the small scales which display
lution of such exponents computed on a two turnover timemore scatter. This result agrees with the findi8gjthat the
subsampling indicates that the range of variation is |imited.discrepancy between the two sets of exponents diminishes
The “4/5” law of Kolmogorov [24] for incompressible  with Reynolds numbers, and vanishes for flows at high Rey-
flows (see also its extension {25]) stipulates tha{ 5uf)= nolds numbers. A detailed study of the variation of both ve-
—2er where e=—d(pou?) is the kinetic energy transfer locity scaling exponents with timg18] indicates that
rate; it seems to apply as well for the driven supersonic flows ;. /{p;v>1 for all values ofp and for all times over a span
we consider in this paper, witt;~0.99, although the dem- Of 27y.. The SL model was developed for incompressible
onstration of this law relies on relationships stemming fromfltid turbulence[4]. While the flow discussed here is com-
the kinematics of incompressible floig6]. Note that an Pressible, we note that the solenoidal component of the flow
independent evaluation of from the energy inputu-F) dominates energetically in this flow. Further, the same kind

- N i of filamentary vortex tube structures—pervasive in incom-
gives e _25; whereas. the Kolmogorov-like phenomenologypressible flows at high vorticitysee, e.g.[29]) and which
gives ex =Uup/lg~3.5, in rough agreement.

Thus the ESS hypothes23] can also be applied to su- fa]t(r)(\eNc[eSr;t;allzrg tgs)]SL modgd}—are numerous as well in our

personic flows; specifically, in order to avoid too noisy a data
set, we use rathe8;, =(|sul?) as the independent variable
instead of the distance modulus Figure 7b) displays the
data using this methodology, and better scaling is obtained, Compressible flows generally have two independent ther-
particularly striking for the longitudinal componenfgig.  modynamic fields. Density and entropy are examined here
7(b), top rightl. The range in which a linear fit appliém because density is a fundamental conserved quantity of the
these log-log coordinatgsvith an agreement between both flow, and entropy is a constant of the flow except for source
methods is indeed extended, as proposed by the proponeriggms such as dissipation and #&“ cooling term used in

of the ESS method. However, the best estimates of the scapur driven flows. In the low to moderate Mach number flows
ing exponents from the raw data and those given by ESS agonsidered here, advective terms appear to dominate over
essentially the same for this data set. We, therefore, wilthese source terms. Hence, the entropy tends to behave like a
evaluate exponents with the raw data using scaling of strugeassively advected scalar, for which there is a predicted scal-
ture functions against distance over ranges of displacementsg of the structure functions which comes from studies of
where the two methods agree. incompressible flow9].

As noted in the different context of magnetohydrody- One can compute the intermittency exponents of the en-
namic flows[12], other abscissa might be used for the deteriropy and of the logarithm of the density in a manner similar
mination of scaling exponents of transverse fields, using théo that used with the velocity field. For the polytropic ideal
exact scaling law derived i[25] and involving a combina- gas considered here the entropy can be writterSasS,
tion of the transverse and longitudinal components of thet S;In[(p/po)/(p/po)”], wherepy andpg are the average pres-
velocity. Similarly, a new relationship involving all compo- sure and density an§l are constants related to both physical
nents of both the velocity and the vorticity in third-order units and gas constanisuch as molecular weight For
structure functions has been derived[2Y] on the basis of given pressure and density fields, the scaling of the structure
the conservation in the inviscid limit of the kinetic helicity functions of entropy is independent of the consta®tsp,,
HY=(u- ) (see[28] for the derivation of a relation involv- and p,. The data is given in Fig. 9, with triangles for the
ing correlation functions of the velocity using as well the entropy and squares for the logarithm of the density. The
conservation of kinetic helicity entropy appears significantly more intermittent than the ve-

Figure &a) gives the variations with ordgrof the scaling locity, in a manner somewhat reminiscent of the passive sca-
exponents of structure functions for run 3 for the velocitylar. Contrary to the case of the velocity, the exponents de-
using the LT method which has less scatter, as discussettease at higlp. Note that the assertion stipulating that the
above; a crosgircle) stands for the longitudindtransversg  {,, curve for a given variable is convex relies on the assump-
components of the velocity field; the solid line represents thaion of the existence of a bound for that field; such a bound
K41 law [2], and the dashed line follows the SL modél] may not exist for the log of density nor the entropy, since,
(the log-normal model with its parametgr=0.21 is undis- e.g., rarefaction waves can lead to an arbitrarily large density
tinguishable from the SL model at these ordefhe longi-  contrastp,ax/pmin, @nd spatial variations in the dissipation
tudinal exponents for this supersonic flow agree, again up tanay lead to arbitrarily large entropy jumps.

B. Intermittency of the density and entropy
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FIG. 9. Scaling exponents,=f(p) for the logarithm of the FIG. 11. Scaling exponents of the longitudinal and transverse
density(squareys and for the entropytriangles. velocity for run 1 for all three directionésee labels Only the X
component of velocity is directly driven; the driving acceleration
C. The effect of anisotropy: Driving with a one-dimensional varies as a sine wave in thedirection.

shear wave

In the case of run 1 with a one-dimensional shear wavdaking the displacements in either of the three directises
driving in the X direction and varying in th& direction, the ~ 1abels; no averaging over multiple directions is performed
resulting flow displays clear signs of anisotropy, as can b&1€re in contrast to run 3, a three-way driven flow. The aver-
observed in Fig. 10: whereas the two directions orthogonal t§9€ iS done on six temporal snapshots spanning two eddy

the driving are in equipartition, there is an excess of energftrnover times, and with the scaling applied in the inertial
in the X component of the velocity by a factor of 100 kat Interval [ 326x, 646x]. Each of the coordinate directions is

=k,; it decreases to a factor of about 3kat 3k, and §pecia|: the d_riving for(_:e is applied only tg and the driy-
continues to decrease wikiuntil all three components of the N9 force varies only inZ. It is notable that of the nine
velocity are in equipartition ak=20k;,, thus recovering anomalous exponents shown, the ones involving (i.e.,
some isotropy in the small scales at the level of second-orddf€ directly driven velocity componenhave the largest val-
correlations. The Kolmogorov law is better achieved for theU€S: and that, of these thregy, varying in theZ direction
unidirectional spectrum with the highest energy level, as({the direction the driving varles')ns thg Iargest.' The scatte'r
seen, e.g., in the power spectrumuwyf. Similarly, this an- N {p for p>6 may be due to |rlls.uff|C|ent statistics, .the Six
isotropy is noticeable insofar as the scaling exponents of thgnapshots of this 5]?2@ata providing about 810° points.
velocity structure functions at all orders in thedirection ~ However, the scatter ig, and 5 is undoubtedly due to the
differ substantially from the other two directions, as can be2nisotropy of the driving force, which is evidently felt at
seen from Fig. 11 giving thé,ﬁ’T exponents as a function of sc_al_es an order of magnitude smaller than the scale of the
order p for all nine components of the matrix that can be drving.

constructed with the three components of the velocity and
IV. THE ENERGY TRANSFER
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We now examine the scaling behavior of the moments of
the energy transfer

(le(r)[Py~r7.

The computation of the energy transfer averaged over a ball
of linear dimensiom is performed using a Gaussian filter, the
Fourier width of the filtelKz being taken as representative of
the given scale,~K*. Here,e is based on the contribution
to the evolution of the kinetic energy of the flow on resolved
scales due to the effect of the subfilter-scale stresses through
L Ll 8 the nonlinear term of the Navier-Stokes equations. The equa-
tions of motion are Favre filtered. From the filtered continu-
ity and momentum equations the equation of evolution for
FIG. 10. Energy spectra for run 1 in the direction of the driving the kinetic energy of the resolve fields is derived. Specifi-
(solid ling), and in theY (dashed lingandZ (dotted ling directions.  cally, we use a Gaussian Favre filter
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-
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The momentum equation for the filtered velocity is L =7, = 0.31 |
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While U;d;7;; is not Galilean invariant, the ternd{U;) 7;; ° 1 2 3

is invariant under a velocity boost. The teﬂ]f(Uirij) is the

effect onK of the kinetic energy fluxwiTij) due to the SGS FIG. 12. Top: variation with the Fourier width of the filter of the
stresses: it only transports the kinetic energy of the resolvefirst three moments of the local energy transfer(L, 2, and 3at
scale flow, and does not correspond to any forward or baCRmet=9.2. Bottom: scaling exponents of the transfer together with

transfer of energy from resolved to unresolved fields. Hence? €St of the Kolmogorov refined similarity hypothesis; the log-
we identify normal model withu=0.21 (label In) and the She-Levequgabel

sl) models are also shown.
€(r)=—(9;U;) 7 14 .

ity and about=0.2 for the transverse velocity. Hence, our
as the local SGS energy flux due to the nonlinear terms of théata, overall, is consistent with the Kolmogorov KRSH hy-
momentum equations. The analysis is performed on twgothesis within the error bars of our measureg pf despite
snapshots at=3 andt=9.2, with nearly identical scalings: the fact that this is a supersonic flow and exchanges with the
the values ofr;, 7,, and 73 each differ by about 10% be- pressure field constitute about 10% of the total energy trans-
tween the two times. Given the nonambiguous scaling obfer. The same conclusion concerning the validity of the
served for this data in Fig. 12, we feel there is no need, givelRSH hypothesis is reached [i8] for incompressible fluids.
the high cost of this specific computation, to go over the
whole temporal data set.

For the fourfold range of scales considered in Fig. 12
(top), within the inertial range, the scatter is small with a  For the sustained supersonic flows examined in this paper,
maximum deviation-1.5%; the scaling fop=1/3, 1, and 3  the intermittency exponents for the velocity field are similar
is given in Fig. 12(bottom). Note thatle,|~ constantin that to those for the incompressible case although numerous
range. We also performed a check of the refined Sim"arit)shocks are present at all timégl]; these Mach one flows,
hypothesis of Kolmogoro¥KRSH) which stipulates that,  with y=E/EY~0.03—measuring the relative shock-to-
=p/3+ 7,3, this relationship stems from evaluating the lo- vortex energy—have incompressible-like behavior as far as
cal energy transfe¢, at scald aSe,~u|3/I; 7p is shown with  the scaling of structure functions is concerned.
triangles, whereas the crogsrcle) gives{;,—p for the lon- In that light, it should be remembered that observations
gitudinal (transversgcomponents of the velocity; finally, the for both the solar wind and the interstellar medium give in-
solid line is for K41, the dotted line for the She-Levequedications that the behavior in such turbulent compressible
model, and the dashed line for the log-normal model withmedia is interpretable in terms of classical turbulence, dis-
n=0.21(see alsd30]). Figure Tb) shows the spread in our playing histograms with strong non-Gaussian wings, and
measure ofg to be roughly+ 0.1 for the longitudinal veloc- with—at least in one casesu®)~r [11]. This raises the

V. CONCLUSION
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guestion of the universality of the Kolmogorov phenomenol-of the structure functions of the longitudinal velocity field
ogy, beyond its original domain of applicability. For ex- follow the scaling of the solenoidal component for this run
ample, it is not clear whether the inclusion of a magneticwith y~0.03? Furthermore, what will be the scaling laws for
field breaks such a universality because of the interactions gfompressible flows with a drastically different value in the
turbulent eddies with Alfve waves propagating along the steady state ok, as could be obtained with a mostly com-
lines of a strong background magnetic field, and leading t@ressible forcing? Indeed, another physical problem worth
substantially lesser energy transfer to small scales as embo@¥amining is the one dominated energetically by shocks, a
ied in the Iroshnikov-KraichnaffIk” ) phenomenology de- Fegime which may arise through a driving in the heat equa-

veloped in[32]. Whether it is the K41 or the IK phenom- tion, as that stemming from either cosmic rays or ionization

enology that applies to such flows—i.e., whether in the?Vinds or a blast wave emanating from a supernova in the

former case local interactioribetween modes of comparable interstellar mediuntISM). Will such flows behave agamla

wavelengthsdominate the nonlinear transfer, or in the latter EolmogorO\? or?r_?_thher asa fo;. the 1I£3urgt¢r_? equat;)on with Itt'SI
nonlocal Alfvenic anisotropic transfer is dominant—is still -wave system: 1€ proauction ot vorticity may be essentia

an open question presentigee, e.g.[33)). in this case; with either rotatiofof strength(),) or magnetic

In order to ascertain more precisely the characteristics ofi€!ds (Of strengthBy) present in the ISM, vorticity will be
the compressible component of supersonic flows besides tgoduced; but with bott), andB, equal to zero, the out-
information already given here on the density and entropyS°Me may be different. In view of the huge observational
one could examine as well the pressure and temperature sc&l0rt made presently in the community studying the ISM,
ing laws; the former will allow for another comparison with and giving already access to low-order structure functions of

the incompressible case by looking, e.g., at histograms, arlfje velocity, these questions merit attention and are left for

the latter is of particular interest to the astrophysical commuluture work.

nity since it relates more directly to observations. Another
piece of information will come from an evaluation of the

scaling exponents of the compressible part of the velocity This work was supported at the University of Minnesota
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