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Chaotic function generator: Complex dynamics and its control in a loss-modulated Nd:YAG laser
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The complex dynamics resulting from electronic feedback of a laser’s intensity are explored and character-
ized. Distinct stable and chaotic regimes can be elicited from the laser by tuning the bias of the feedback loop.
An additional branch of the feedback loop, containing a derivative filter, provides access to new kinds of
dynamics, including a more gradual transition to chaos. The whole feedback network together allows the laser
dynamics to be selected from among a wide range of chaotic wave forms distinguished by statistical or spectral
information. In other words, this laser system can be used as a tunable generator of chaotic functions.
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I. INTRODUCTION

There is continued growth in the field of nonlinear d
namics and an ever-increasing appreciation of its appl
tions among researchers. With this growth, devices cap
of generating complicated wave forms may be of use
complement the standard function generator. In this pa
we construct an example of such a device and present
concept of its operation.

We build a laser with externally accessible tuning para
eters. Within a range of tuning, the laser exhibits a variety
dynamics, including low-dimensional chaos. As chao
wave forms are not periodic functions, these dynamics
best distinguished from one another by their statistical ch
acteristics. It is possible to create a table of the recor
statistical characteristics of the chaotic time series for diff
ent values of the tuning parameter~s!. Once such a lookup
table is built, the laser may be used to generate wave fo
selected by the information recorded about them. In this
per, we will calculate and record the discrete probability d
sity functions, the power spectra, and the leading Lyapu
exponents of the wave forms generated by the laser.

The time evolution of a generic homogeneously bro
ened laser is described by three dynamical variables:
complex electric field, the population inversion, and t
complex polarization@1#. In a class-B laser, of which a
neodymium laser is an example, the decay rate of the po
ization is large enough compared to those of the other
variables, so that the polarization is essentially determi
by the instantaneous values of the electric field and invers
@2#. Neodymium lasers, such as the one used here, are o
employed for research and industrial applications in eit
stable@continuous wave~cw!# or regularly pulsed modes o
operation@3#.

There are simple ways to generate chaotic wave fo
from lasers for uses such as transmitting digital informat
@4#. It may also be possible to generate wave forms app
priate for encoding speech. One method to induce th
kinds of chaos in a laser is modulation with an external
riodic signal.
1063-651X/2002/66~2!/026216~10!/$20.00 66 0262
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A simple way to destabilize a class-B laser without
external drive is through the use of feedback. This confi
ration was proposed for the first time in 1986 for a CO2 laser
with an intracavity electro-optic modulator~EOM! @5#. The
dynamics of a CO2 laser with feedback requires a more d
tailed description than a simple three-dimensional~3D! flow
for a quantitative comparison between numerical results
experimental measurements@6#.

Within the large variety of class-B lasers, which also i
cludes solid state and semiconductor lasers, diode-pum
Nd:YAG ~yttrium aluminum garnet! lasers can be smalle
than CO2 lasers, with cavity lengths of a few centimeters
less, and may be designed to be more robust against env
mental perturbations@7#. In this paper, we model the
Nd:YAG laser with feedback by a set of three coupled d
ferential equations, one each for the laser intensity, the po
lation inversion, and the voltage of the feedback loop.

In the laser system we study either the pump paramete
cavity losses can be modulated at rates of several M
However, the decay rate of the electric field in the cavity
much faster than that of the population inversion. Lo
modulation is therefore more effective at influencing the
tensity dynamics of the laser than pump modulation. Co
pared with EOMs, acousto-optic modulators~AOMs! operat-
ing in the visible or near-infrared region offer th
considerable advantages of~1! a driving voltage lower than
that of EOMs, and~2! not requiring the use of intracavity
polarization elements~Brewster windows, gratings, etc.!. For
this reason, the voltage of the feedback network will mod
late the cavity loss via an AOM.

The dynamics of the Nd:YAG laser with feedback reve
the presence of two distinct regions of instability easily a
cessible by varying the bias voltage in the feedback lo
These regimes bound the domain where the stationary s
tion is stable. Toward positive bias, the transition to oscil
tory behavior occurs through a subcritical Hopf bifurcatio
Toward negative bias, the transition occurs through a su
critical Hopf bifurcation. Though the subcritical and supe
critical bifurcations cannot be distinguished in the lineariz
model, the presence of hysteresis@8# in the numerical simu-
©2002 The American Physical Society16-1
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lation and in the laser system are good indications that
bifurcation at positive bias is subcritical.

As the transition to chaos in the experiment is very abr
and leads quickly to high-amplitude chaos, we focus par
our attention on softening this transition to increase the
riety of lower-amplitude chaotic dynamics available to t
function generator. Control of chaos often takes advantag
steady states or periodic orbits inside a chaotic attracto
regularize dynamics. One of the major ways in which this
accomplished is by applying perturbations to state variab
or system parameters. The key idea in the pioneering w
by Ott, Grebogi, and Yorke~OGY! @9# is to use linear contro
theory and feedback on a system parameter to direct the
tion of trajectories along the stable manifold of an unsta
state. A scalar version of the OGY control method, oc
sional proportional feedback@10#, and some variations of i
have been successfully applied to stabilize unstable ste
states and periodic orbits in a multimode Nd:YA
frequency-doubled laser~the green problem! @11–14#.

The problem of the stabilization of an unstable stea
state can also be approached by using a derivative contro
a state variable, i.e., feedback control loops containing te
proportional to the derivative of the output of a given syste
Derivative control has been successfully applied to ma
systems, for example Refs.@15–19#, for stabilization. Other
forms of control have also been used to maintain chaos, a
Ref. @20#.

As we would prefer to use control for a purpose interm
diate between suppressing and sustaining chaos, we loo
employ the derivative control to alter the dynamics with
the chaotic regions without eliminating the chaos.

The paper is organized as follows. Section II describes
design of the function generator. In Sec. III, we report on
experimental measurements of the laser dynamics with fe
back as well as with control. We compare the probabi
distributions, power spectra, and leading Lyapunov ex
nents of the intensity wave forms that the laser generates
different values of the feedback bias. Section IV contains
theoretical model for the laser, and describes the result
linear stability analysis. Conclusions are drawn in Sec. V

II. EXPERIMENTAL APPARATUS

Our function generator is the diode-pumped solid st
laser, including the feedback loop and an additional con
loop, shown in Fig. 1. The crystal, Nd:YAG, has an abso
tion band centered near 810 nm, and lases near 1064
One face of the crystal is coated with a dielectric mirr
highly reflective at 1064 nm and highly transmissive at 8
nm. Population inversion in the solid-state laser is achie
by diode laser pumping at 810 nm through that face. T
beam from the diode~SDL model 2350H1! is shaped and
focused down to a small region inside the crystal.

The output coupler is a spherical mirror with a radius
curvature of 10 cm and a transmissivityT of 2% at 1064 nm.
The optical lengthL of the cavity is approximately 9 cm
From these figures, the decay ratek0 for the laser intensity
would be estimated ascT/2L53.33107 s21, wherec is the
speed of light in vacuum. The cavity loss parameter m
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also take into account diffraction losses, scattering los
and insertion losses due to the AOM. From observation
the behavior of the experiment, a reasonable estimate of
net cavity loss isk056.63107 s21, which is the value used
in the model~Sec. IV!.

Measurements of the laser intensity are obtained wit
photodiode. We block the pump beam from the photodio
by placing a 1064-nm bandpass filter between the laser
the photodiode. The cavity and crystal are aligned such
the YAG laser operates in the TEM00 Gaussian transvers
mode. The longitudinal mode structure of the YAG laser
monitored with a scanning confocal Fabry-Perot interfero
eter. The cavity typically lases in one to three longitudin
modes, with more than one longitudinal mode occurri
most often for high values of bias. As the laser does
contain any strongly polarizing elements within the cavi
the laser field may consist of a single polarization or of tw
orthogonal polarizations.

Between the crystal and the output coupler, the intraca
AOM allows an electrical signal to deflect a portion of th
lasing beam, and therefore increase the cavity loss. Acou
waves with an amplitude proportional in intensity to a vo
age applied at the input of the AOM driver create a pha
grating through which the light in the cavity passes. With t
AOM in place and the input to its driver grounded, the las
threshold is found to be at a pump power of 21 mW and
operating condition is 39 mW, making the pump parame
P51.85 for the measurements reported here.

The cavity loss induced by the modulator is proportion
to sin2(pV/Vmod), where V is the voltage applied to the
modulation input of the AOM driver andVmod is the satura-

FIG. 1. Experimental setup of a diode-pumped Nd:YAG las
with an intracavity acousto-optic modulator and a feedback n
work. The solid line connecting the detector to the AOM indica
the main feedback loop generating the dynamics. The dashed
indicates the additional control loop including a reshaping filt
Wavetek model 452, in the high-pass configuration with a slope
48 dB per octave. With or without the control loop being active, t
biasB is a tuning parameter that allows access to a variety of la
dynamics.
6-2
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FIG. 2. Experimental time traces of the las
intensity with feedback but without the contro
loop for sixteen values of the biasB, showing
chaotic spiking (B.20.0525 V), chaos just af-
ter the Hopf bifurcation (B520.0525 V), near
steady-state ~cw! operation ~B520.0345,
20.0180, 0.0000, and 0.0180 V!, another variety
of chaotic oscillations~B50.0345, 0.0525, and
0.0705 V!, and bursting ~B50.0870, 0.1050,
0.1230, and 0.1395 V!.
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tion voltage of the driver. With a dc signal applied to th
AOM driver, the intensity output of the laser is stable a
depends upon the cavity alignment and pump power.

Feedback can be added to the system by applying
voltage from the photodiode to the AOM driver through
amplifier/attenuator. Feedback with sufficient amplitude a
bias destabilizes the steady state laser intensity value
gives rise to a variety of dynamical behaviors, including ch
otic spiking and bursting.

We add a second branch of the feedback network, wh
we refer to as the control loop. This loop consists of a hig
pass filter with a 48 dB per octave rolloff and an amplifi
with adjustable gainG; the output of this amplifier is applied
to the inverting input of the differential amplifier in Fig. 1
This differential amplifier has a bandwidthb of 100 kHz.
The net gain of the feedback loop isf and the net gain of the
control loop isG f .

The delay of the feedback loop comes in two parts, pro
gation of the sound wave inside the AOM and transmiss
time of the electronic signal. The speed of sound within
AOM ~a PbMoO4 crystal! is 3630 m/s and the distance b
tween the transducer and the laser beam is approximate
mm. This corresponds to a time delay of 1.37ms. The time
delay of the electronic portion of the loop, including th
AOM driver, is measured to be approximately 1.5ms. The
effect of the time delay on the dynamics is uncertain. Ho
ever, we do not observe a peak in the power spectrum
responding to the delay, which indicates that the effec
probably small. This is further confirmed by the fact that t
characteristic frequency associated with the delay time
higher than the cutoff frequency of the feedback loopf
5100 kHz). The resulting dynamics occurs on the charac
istic time of the laser relaxation oscillation frequency~about
75 kHz, see Sec. IV!, which is about five times longer tha
that of the delay time. The effect of the time delay on t
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dynamics will be systematically investigated in a futu
study.

Measurements of the photodiode signal are made wit
digital oscilloscope~CompuScope CS1450! with 14 bits of
precision and capable of acquiring 50 Msamples/s. We fi
measurement at 2 Msamples/s provides for sufficient res
tion of the time series.

III. EXPERIMENTAL RESULTS

Figure 2 shows short segments of experimental ti
traces seen by adjusting only the bias of the feedback l
without the effect of the second branch~control loop! shown
in Fig. 1. These 16 values of the bias were chosen to ill
trate a variety of intensity dynamics observed in the la
system. These dynamics include multiple-spike bursting
large positive bias, moderate-amplitude chaos at small ne
tive and small positive bias, and high-amplitude chaotic sp
ing at large negative bias.

Table I displays the leading Lyapunov exponents cal
lated for the sets of data in Fig. 2. These calculations w
performed with the software packageCSPW2, which uses the
algorithms described in Ref.@21#. When the intensity signa
becomes nearly steady, the small amount of ambient n
recorded by the oscilloscope~0.02 peak-to-peak in the arbi
trary units used in these figures! is registered by theCSPW

package as a chaotic signal. For this reason, we never ca
late a nonpositive leading Lyapunov exponent.

Figure 3 shows a bifurcation diagram of the laser dyna
ics with respect to the bias of the feedback loop, still witho
the additional control loop present. Each vertical strip in t
diagram represents the discrete probability density func
~PDF! of the laser intensity at a particular value of bias. T
darkness at each location represents the relative amou
time the laser spends at a particular intensity. We have c
sen to examine the PDF of the intensity signal because f
6-3
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the PDF we can calculate the standard statistical meas
Arrows at the bottom of the figure indicate locations th
have been sampled to create Figs. 2, 4, and 5.

In Fig. 4, we have plotted the normalized discrete pro
ability density functions for the same values of bias as in F
2. The slices of Fig. 3 allow us to distinguish between ve
different sorts of behaviors that appear similar in both
estimates of leading Lyapunov exponent and the bifurca
diagram of Fig. 3. Note, for example, the cusped tail in
PDF of the spiking behavior (B<20.0705 V), as opposed t

TABLE I. Leading Lyapunov exponents as calculated by t
CSPWprogram for the time series used to generate Figs. 2, 4, an
When the laser is near steady-state operation~B520.0345,
20.0180, 0.0000, and 0.0180 V!, noise in detection equipment re
sults in calculation of what is most likely a false positive Lyapun
exponent.

Bias~V! Leading Lyapunov (106 s1)

20.1230 2.12
20.1050 2.06
20.0870 2.00
20.0705 1.70
20.0525 0.28
20.0345 2.34
20.0180 2.88

0.0000 1.66
0.0180 0.88
0.0345 0.34
0.0525 0.96
0.0705 0.78
0.0870 2.30
0.1050 1.34
0.1230 1.86
0.1395 1.80

FIG. 3. Bifurcation diagram of the discrete probability distrib
tion function ~PDF! of the laser intensity signal for 200 values
feedback biasB without control. Arrows indicate the bias values
which the time traces in Fig. 2 were obtained. The grayscale
represents the log10 of the probability.
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the more exponential tail in the PDF of the bursting (B
>0.0870).

The power spectra of the dynamics at the same value
bias are displayed in Fig. 5. The main peak when the lase
near steady-state operation~B520.0345, 20.0180, and
0.000 V! represents the laser relaxation oscillation frequen

Figure 6 shows a bifurcation diagram of the laser dyna
ics with the control loop being active. The control loop si
nificantly alters the dynamics of the laser for all regio
where the laser was not already in steady state. In the ca
this diagram, the onset of chaos is significantly delayed
the direction of negative bias. For positive bias values,
regions of bursting are replaced by limit cycles or cha
both with smaller amplitudes than in Fig. 2.

The effect of our filtering control on the time series
shown in Fig. 7, where we display excerpts of the traces
the laser intensity for the same 16 values of bias as in Fig
but with the control loop being active. Note the expand
intensity scale. Table II shows the leading Lyapunov exp
nents calculated for these sets of data.

In Fig. 8, we present the PDFs calculated for these
wave forms produced with control at the same values of b
The intensity scale has been expanded because the ran
the laser intensity is smaller. Figure 9 displays the cor
sponding power spectra. Both PDFs and power spectra
markedly different than those found in Figs. 2–5.

The form of control explored in this section renders t
transition from steady state to chaos to be more gradual.
control loop we have used to quench the dynamical rang
the laser intensity has increased the variety of distinct beh
iors that the laser intensity signal can exhibit.

In this section, we have been able to evoke a wide var
of chaotic wave forms from the laser. These wave forms
be distinguished from one another by their statistical char
teristics and power spectra. In this sense, we have been
to record and classify the laser intensity dynamics. One
now view the laser as a device for selecting and genera
chaotic wave forms with desired characteristics.

IV. MODEL AND NUMERICAL ANALYSIS

Let us consider the experimental apparatus shown in
1. Our goal in modeling the laser with feedback is to reta
the coarse features of the laser intensity behavior. Suc
system can be most simply described by three first-order
ferential equations, one each for the laser intensityI, the
population inversionD, and the modulation voltageV ap-
plied to the intracavity AOM:

İ 52k0F11a sin2S pV

Vmod
D G I 1gID,

Ḋ52gD22gID1gD0 ,

V̇52b~V2B̃2 f̃ I !, ~1!

wherek0 is the cavity loss parameter introduced in Sec.
The parametera is the modulation strength of the addition
losses introduced by the AOM modulation signal,g is the
population inversion decay rate,b is the damping rate of the
feedback loop~2p times the cutoff frequency!, g is the field-

5.

is
6-4



e
f
een
rve
ed

CHAOTIC FUNCTION GENERATOR: COMPLEX . . . PHYSICAL REVIEW E66, 026216 ~2002!
FIG. 4. PDFs taken from Fig. 3 for the sam
values of bias displayed in Fig. 2. A variety o
shapes can be seen and the transition betw
them is also apparent. The area under each cu
is normalized to 1 and the curves are display
on a log-linear scale.
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matter coupling constant,f̃ is the scaling between intensit
incident on the photodiode and the voltage read from it tim
the amplification of the differential amplifier, andB̃ is a bias
voltage applied to the modulator preamplifier. The parame
D0 represents the population inversion induced by the ac
of the diode-pump beam.

With suitable normalization, P5D0g/k0 , f

5p f̃ g/(2gVmod), B5pB̃/Vmod, x52gI/g, y5gD/k0 , and
z5pV/Vmod, these equations become

ẋ52k0x@11a sin2~z!2y#,

ẏ52g~y2P1xy!,

ż52b~z2B2 f x!. ~2!
02621
s
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In this notation, the intensityx is normalized to the saturatio
intensity, the population inversiony and the pumpP are nor-
malized to the threshold population inversion, and the fe
backz and biasB are normalized relative to the range of th
modulation. For our model, we use the parameter valuesk0
56.63107 s21, g54.1663103 s21, b56.283105 s21, a
50.052,P51.85, andf can be tuned between 0 and 1.

From Eqs.~2!, we can show that the condition

arcsinSA P

a~11 x̄!
2

1

aD 2 x̄ f 2B50 ~3!

is fulfilled by the stationary solution of the model, denot
by the vectorr̄ ( x̄,ȳ,z̄). Once the solutions of Eq.~3! are
known, the stationary values of the other two variables
ȳ5P/(11 x̄) and z̄5B1 x̄ f .
ty
dy-
ser

-
.

FIG. 5. Power spectra for the laser intensi
signals of Fig. 2. The peaks observed near stea
state operation represent the characteristic la
relaxation oscillation frequency~approximately
79 kHz!. Away from these values of bias, the la
ser exhibits a variety of broad spectral shapes
6-5
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When the laser without feedback is perturbed away fr
equilibrium, it will display relaxation oscillations at the fre
quency given by

f Rel5
Agk0~P21!

2p
. ~4!

This frequency also gives the characteristic time scale of
laser dynamics, which in our case is about 13ms.

In order to determine the stability of an equilibrium sol
tion r̄ of Eqs.~2!, we consider the Jacobian matrixDf~r ! of
the partial derivatives evaluated atr̄ . Stability of r̄ in the face
of a small perturbation is determined by the eigenvalues

FIG. 6. Bifurcation diagram of the PDF of the laser intens
signal for 200 values of bias with the control loop active. The co
trolling filter rolloff frequencyv55 kHz and the gainG have been
tuned to produce the largest window of steady-state operation.
rows indicate the bias values for which the time traces, PDFs,
power spectra are taken in Figs. 7, 8, and 9. The grayscale
represents the log10 of the probability.
02621
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the linearized flow represented byv̇5Df( r̄ )v, where the vec-
tor v denotes a small deviation from the fixed point. The re
parts of the three eigenvalues are reported in Fig. 10. N
that the leading eigenvalue, where positive, is of the orde
106 s21, as are the leading Lyapunov exponents calcula
for the experiment in Table I. The values of the biasB, where
the fixed point is unstable, occur where the real part of a
eigenvalue is positive. In our case, the fixed point underg
a Hopf bifurcation where an eigenvalue intersects the z
line in Fig. 10. The imaginary part of this eigenvalue corr
sponds to a frequency of 76 kHz, comparable with the rel

-

r-
d

xis

TABLE II. Leading Lyapunov exponents calculated for the las
with feedback and control at the same bias values as in Fig
Again, it is likely that the calculated values for dynamics ne
steady state are false positives.

Bias~V! Leading Lyapunov Exponent (106 s1)

20.1230 0.38
20.1050 0.50
20.0870 0.82
20.0705 1.06
20.0525 1.92
20.0345 2.10
20.1800 2.36

0.0000 1.08
0.0180 0.52
0.0345 0.30
0.0525 0.24
0.0705 0.14
0.0870 0.20
0.1050 0.16
0.1230 0.14
0.1395 0.28
n-
FIG. 7. Selected time traces of the laser inte
sity with control for 16 values of the biasB,
showing chaotic oscillations (B<20.1050 V),
near-periodic behavior~B520.0870, 20.0705,
0.0000, 0.0180, 0.0345, and 0.0525 V!, near-
steady-state ~cw! operation ~B520.0525,
20.0345, and20.0180 V!, and chaotic spiking
(B>0.0705 V).
6-6
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FIG. 8. PDFs for the same values of bias as
Fig. 7. A variety of shapes distinct from those
Fig. 4 are evident for large negative and positi
bias values.
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ation oscillation frequency of 76.9 kHz given by Eq.~4!.
The bifurcation diagram for the model system is shown

Fig. 11. The model parameterB, corresponding to the feed
back bias, is slowly increased from negative to positive i
time of 0.05 s, considerably longer than the microseco
time scale of the laser dynamics. On the vertical axis,
local maxima and minima of the laser intensity are show
Toward negative bias, there is evidence of a cascade of
harmonic bifurcations ending with chaos after a supercrit
Hopf bifurcation. However, the model does not displ
bursting for positive bias and the spiking at large negat
bias becomes regular in amplitude rather than chaotic a
the experimental system. The model is also much more
sitive to the choice of parametersP, a, and f than the laser
system.

For positive values ofB, the transition to a region of larg
amplitude oscillations occurs through a subcritical Hopf
02621
a
d
e
.
b-
l
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furcation (B51.05). This bifurcation exhibits hysteresis a
the control parameter is varied in the opposite directionB
50.89). The model does not display the chaotic burst
evident in the experiment.

If we denote the input signal proportional to the las
intensity byx(t), the output signalu(t) of an RC first-order
filter is given by the differential equationu̇52vu1 ẋ,
wherev is defined as 2p times the rolloff frequency~v51/
RC!. In our model, we insert this perturbation into the fee
back loop by adding a term to the equation governingz(t).
With a gain factorG, the perturbation signal affects the dy
namics in following way:

ẋ52k0x@11a sin2~z!2y#, ~5!

ẏ52g~y2P1xy!,
ty
ed

la-

s of
n

FIG. 9. Power spectra for the laser intensi
signals shown in Fig. 7. The peaks observ
near steady-state operation again represent the
ser relaxation oscillation frequency. Away from
these values of bias, the spectral characteristic
the laser signal differ significantly from those i
Fig. 5.
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ż52b@z2B2 f ~x2Gu!#,

u̇5 ẋ2vu.

It is always possible to find a region in the parame
space~v,G! where the control in Eq.~5! stabilizes the steady
state for a given value ofB. But a value ofv near to or lower
than the leading frequency component of the laser inten
fluctuations may significantly alter the system dynam
without stabilizing the steady state. In our case, this lead
frequency corresponds to the frequency of the limit cycle j
after the Hopf bifurcation.

FIG. 10. Plots of the real parts of the eigenvalues of the Ja
bian matrix associated with Eqs.~2! as a function of the
tuning parameterB. The parameter values area50.052, k0

56.63107 s21, g54.1663104 s21, P51.85,b56.283105 rad/s,
and f 50.75. The leading eigenvalue, where positive, is of the or
of 106 s21, comparable to the Lyapunov exponents calculated
Table I.

FIG. 11. Bifurcation diagram of the local maxima and minim
of the laser intensity vsB. The parameter values are the same
those in Fig. 10. The scan time is 0.05 s, and the steady-state v
is displayed where it is stable. The period doubling cascade be
aroundB520.64.
02621
r

ty
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In the experiment in Sec. III, we use a higher-order fil
to render the process more selective in frequency. Suc
selective filter control can be modeled by cascading sev
first-order filters. Here, we limit the analysis to a third-ord
filter. The overall dynamics is now described by the follow
ing system of differential equations:

ẋ52k0x@11a sin2~z!2y#,

ẏ52g~y2P1xy!,

ż52b@z2B2 f ~x2Gu3!#,

u̇15 ẋ2vu1 ,

u̇25u̇12vu2 ,

u̇35u̇22vu3 . ~6!

The results of the linear stability analysis for both mod
systems from Eqs.~5! and~6! are reported in Figs. 12~a! and
12~b!, respectively, with the most negative exponent not d
played in both cases. Both first- and third-order filters redu
the range of the magnitude of the leading eigenvalue.

The global effect of the controlling perturbation on th
simulated laser dynamics, as seen in the bifurcation diag
in Fig. 13, shows the enlargement of the stability domain
the controlled dynamics. The chaotic region after the sup
critical Hopf bifurcation is replaced by the stationary sol
tion. The subcritical Hopf bifurcation at positiveB is now
replaced by a supercritical Hopf bifurcation.

Comparison of the power spectra and time-delay emb
dings for theoretical and experimental results are displa
in Fig. 14. We present the chaotic attractor just after the on
of chaos~after the Hopf bifurcation! to compare it with the
model. The leading frequency in the numerical simulation
roughly 75 kHz compared to about 83 kHz in the expe
ment. Both peaks are near the relaxation oscillation f

o-

r
n

s
lue
ns

FIG. 12. ~a! Real parts of the eigenvalues of the controlled s
tem of Eqs.~5! ~first-order filter! vs B. ~b! Real parts of the eigen
values of the controlled system of Eqs.~6! ~third-order filter! vs B.
The parameters of the control loop arev55 kHz andg50.88. The
magnitude of the leading eigenvalue is reduced in both cases
factor of 10 from that calculated for the model with feedback on
6-8
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quency of the laser and, as a consequence, the Hopf
quency. In both spectra, subharmonic peaks are observe
approximately one-third the frequency of the main peak.

V. CONCLUSION

Until recently, typical laser applications have focused
either steady-state operation or regularly pulsed operation
this paper, the dynamics of an Nd:YAG laser subject to fe
back modulation of the intracavity losses via an AOM ha
been explored. Tuning the bias of the feedback loop allo
easy exploration of a range of intensity dynamics that
cludes a sudden transition from steady state to hi
amplitude spiking and bursting. An additional branch of t
feedback loop that suppresses higher-frequency compon
of the feedback alters the dynamics of the laser while p
serving the chaos. With this controlling loop active, the tra
sition to chaos is more gradual and low-amplitude chao
oscillations are observed.

We have demonstrated that a laser with suitably desig

FIG. 13. Bifurcation diagram of the local maxima and minim
of the laser intensity vsB for the controlled dynamics of Eqs.~6!.
The laser model parameter values are the same as those in Fi
The scan time is 0.05 s and again the steady-state value is disp
where it is stable. The parameters of the control loop arev
55 kHz andg50.88. The supercritical bifurcation at negativeB
now begins nearB520.96.
02621
re-
at

n
In
-

s
-
-

nts
-

-
c

d

feedback can serve as a tunable generator of chaotic ‘‘fu
tions.’’ These wave forms can be characterized through
furcation diagrams that record discrete probability dens
functions, power spectra or other measures of the dynam
Bifurcation diagrams can then be used as libraries or loo
tables to select particular chaotic signals by their statist
characteristics.
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FIG. 14. Left side shows power spectra and attractor rec
structed from the intensity series of the experiment~with feedback
only! at a bias of20.045 V and with embedding time delayt
50.8ms. Right side shows power spectra and attractor rec
structed from thex values of the simulation of Eqs.~2! ~also with
feedback only! at B520.711 with embedding time delayt
50.8ms.
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