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Chaotic function generator: Complex dynamics and its control in a loss-modulated Nd:YAG laser
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The complex dynamics resulting from electronic feedback of a laser’s intensity are explored and character-
ized. Distinct stable and chaotic regimes can be elicited from the laser by tuning the bias of the feedback loop.
An additional branch of the feedback loop, containing a derivative filter, provides access to new kinds of
dynamics, including a more gradual transition to chaos. The whole feedback network together allows the laser
dynamics to be selected from among a wide range of chaotic wave forms distinguished by statistical or spectral
information. In other words, this laser system can be used as a tunable generator of chaotic functions.
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[. INTRODUCTION A simple way to destabilize a class-B laser without an
external drive is through the use of feedback. This configu-
There is continued growth in the field of nonlinear dy- ration was proposed for the first time in 1986 for a.d@ser
namics and an ever-increasing appreciation of its applicawith an intracavity electro-optic modulat¢eOM) [5]. The
tions among researchers. With this growth, devices capablgynamics of a C@ laser with feedback requires a more de-
of generating complicated wave forms may be of use tdailed description than a simple three-dimensidi3®) flow
complement the standard function generator. In this papefpr a quantitative comparison between numerical results and
we construct an example of such a device and present thexperimental measuremeng.
concept of its operation. Within the large variety of class-B lasers, which also in-
We build a laser with externally accessible tuning param-<cludes solid state and semiconductor lasers, diode-pumped
eters. Within a range of tuning, the laser exhibits a variety olNd:YAG (yttrium aluminum garnetlasers can be smaller
dynamics, including low-dimensional chaos. As chaoticthan CQ lasers, with cavity lengths of a few centimeters or
wave forms are not periodic functions, these dynamics aréess, and may be designed to be more robust against environ-
best distinguished from one another by their statistical charmental perturbationg7]. In this paper, we model the
acteristics. It is possible to create a table of the recorde®d:YAG laser with feedback by a set of three coupled dif-
statistical characteristics of the chaotic time series for differferential equations, one each for the laser intensity, the popu-
ent values of the tuning parameg®r Once such a lookup lation inversion, and the voltage of the feedback loop.
table is built, the laser may be used to generate wave forms In the laser system we study either the pump parameter or
selected by the information recorded about them. In this paeavity losses can be modulated at rates of several MHz.
per, we will calculate and record the discrete probability denHowever, the decay rate of the electric field in the cavity is
sity functions, the power spectra, and the leading Lyapunowuch faster than that of the population inversion. Loss
exponents of the wave forms generated by the laser. modulation is therefore more effective at influencing the in-
The time evolution of a generic homogeneously broad4ensity dynamics of the laser than pump modulation. Com-
ened laser is described by three dynamical variables: thpared with EOMs, acousto-optic modulatépgOMs) operat-
complex electric field, the population inversion, and theing in the visible or near-infrared region offer the
complex polarization[1]. In a class-B laser, of which a considerable advantages @) a driving voltage lower than
neodymium laser is an example, the decay rate of the polathat of EOMs, and2) not requiring the use of intracavity
ization is large enough compared to those of the other twgolarization element&@Brewster windows, gratings, efcFor
variables, so that the polarization is essentially determinethis reason, the voltage of the feedback network will modu-
by the instantaneous values of the electric field and inversiofate the cavity loss via an AOM.
[2]. Neodymium lasers, such as the one used here, are often The dynamics of the Nd:YAG laser with feedback reveals
employed for research and industrial applications in eithethe presence of two distinct regions of instability easily ac-
stable[continuous wavecw)] or regularly pulsed modes of cessible by varying the bias voltage in the feedback loop.
operation[3]. These regimes bound the domain where the stationary solu-
There are simple ways to generate chaotic wave formsion is stable. Toward positive bias, the transition to oscilla-
from lasers for uses such as transmitting digital informatiortory behavior occurs through a subcritical Hopf bifurcation.
[4]. It may also be possible to generate wave forms approToward negative bias, the transition occurs through a super-
priate for encoding speech. One method to induce theseritical Hopf bifurcation. Though the subcritical and super-
kinds of chaos in a laser is modulation with an external pe<ritical bifurcations cannot be distinguished in the linearized
riodic signal. model, the presence of hysteref8s in the numerical simu-
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lation and in the laser system are good indications that the Scanning

bifurcation at positive bias is subcritical. 8;‘3";; IFatbg'Pemtt
As the transition to chaos in the experiment is very abrupt Lasz:al AOM 5 nierierometer

and leads quickly to high-amplitude chaos, we focus part ofPump, l"y" 1 I N _x0)

our attention on softening this transition to increase the va-beam L L_I _/

riety of lower-amplitude chaotic dynamics available to the Band-pass Photodiode

function generator. Control of chaos often takes advantage o Optical Filter

steady states or periodic orbits inside a chaotic attractor tc

regularize dynamics. One of the major ways in which this is . < 1B

accomplished is by applying perturbations to state variables gf"'l’ief‘]‘;a """""" g:;ftml

or system parameters. The key idea in the pioneering work Banﬂwidthﬁ AGain

by Ott, Grebogi, and York€OGY) [9] is to use linear control Gain f L1

theory and feedback on a system parameter to direct the mc High- u(®)

tion of trajectories along the stable manifold of an unstable 1;,?155

state. A scalar version of the OGY control method, occa- wer | prmmmmeneeea-

sional proportional feedbadik.0], and some variations of it

have been successfully applied to stabilize unstable stead Digital

states and periodic orbits in a multimode Nd:YAG Oscilloscope

frequency-doubled lasdthe green probleim11-14.

The problem of the stabilization of an unstable steady FIG. 1. Experimental setup of a diode-pumped Nd:YAG laser
state can also be approached by using a derivative control amith an intracavity acousto-optic modulator and a feedback net-
a state variable, i.e., feedback control loops containing termgork. The solid line connecting the detector to the AOM indicates
proportional to the derivative of the output of a given systemthe main feedback loop generating the dynamics. The dashed line
Derivative control has been successfully applied to manyndicates the additional control loop including a reshaping filter,
systems, for example Refgl5-19, for stabilization. Other ~Wavetek model 452, in the high-pass configuration with a slope of
forms of control have also been used to maintain chaos, as i#8 dB per octave. With or without the control loop being active, the
Ref.[20]. biasB i§ a tuning parameter that allows access to a variety of laser

As we would prefer to use control for a purpose interme-dynamics.

diate between suppressing and sustaining chaos, we 100k i85, take into account diffraction losses, scattering losses,
employ the derivative control to alter the dynamics within g insertion losses due to the AOM. From observation of
the chaotic regions without eliminating the chaos. the behavior of the experiment, a reasonable estimate of the
The paper is organized as follows. Section Il describes thgqt cavity loss isk,=6.6x 10 s %, which is the value used
design of the function generator. In Sec. Ill, we report on the, the model(Sec. IV).
experimental measurements of the laser dynamics with feed- \jeasurements of the laser intensity are obtained with a
back_ as well as with control. We compare the probabilityphotodiode_ We block the pump beam from the photodiode
distributions, power spectra, and leading Lyapunov expopy piacing a 1064-nm bandpass filter between the laser and
nents of the intensity wave forms that the laser generates fqpo photodiode. The cavity and crystal are aligned such that
different values of the feedback bias. Section IV contains thge vAG |aser operates in the TE)Gaussian transverse
theoretical model for the laser, and describes the results ¢f,ode. The longitudinal mode structure of the YAG laser is
linear stability analysis. Conclusions are drawn in Sec. V. | onitored with a scanning confocal Fabry-Perot interferom-
eter. The cavity typically lases in one to three longitudinal
Il. EXPERIMENTAL APPARATUS modes, with more than one Iongitudinal mode occurring
most often for high values of bias. As the laser does not
Our function generator is the diode-pumped solid stateontain any strongly polarizing elements within the cavity,
laser, including the feedback loop and an additional controthe laser field may consist of a single polarization or of two
loop, shown in Fig. 1. The crystal, Nd:YAG, has an absorp-orthogonal polarizations.
tion band centered near 810 nm, and lases near 1064 nm. Between the crystal and the output coupler, the intracavity
One face of the crystal is coated with a dielectric mirror AOM allows an electrical signal to deflect a portion of the
highly reflective at 1064 nm and highly transmissive at 810lasing beam, and therefore increase the cavity loss. Acoustic
nm. Population inversion in the solid-state laser is achievedvaves with an amplitude proportional in intensity to a volt-
by diode laser pumping at 810 nm through that face. Theage applied at the input of the AOM driver create a phase
beam from the diodéSDL model 2350H1 is shaped and grating through which the light in the cavity passes. With the
focused down to a small region inside the crystal. AOM in place and the input to its driver grounded, the laser
The output coupler is a spherical mirror with a radius ofthreshold is found to be at a pump power of 21 mW and the
curvature of 10 cm and a transmissivityof 2% at 1064 nm.  operating condition is 39 mW, making the pump parameter
The optical lengthL of the cavity is approximately 9 cm. P=1.85 for the measurements reported here.
From these figures, the decay rdgfor the laser intensity The cavity loss induced by the modulator is proportional
would be estimated asT/2L=3.3x 10" s !, wherecis the  to siff(mV/V,,.), WhereV is the voltage applied to the
speed of light in vacuum. The cavity loss parameter musimodulation input of the AOM driver an¥ o4 is the satura-
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2 FIG. 2. Experimental time traces of the laser
ER intensity with feedback but without the control
'§ loop for sixteen values of the biaB, showing
= OMAMMMMMMM chaotic spiking B>—0.0525 V), chaos just af-
'q ,  B=00180 B = 0.0345 B = 0.0525 B =0.0705 ter the Hopf bifurcation B=—0.0525 V), near
g steady-state (cw) operation (B=—0.0345,

—0.0180, 0.0000, and 0.0180 \another variety
of chaotic oscillations(B=0.0345, 0.0525, and

L/\AAMAMAR 0.0705 V), and bursting(B=0.0870, 0.1050,
0 0.1230, and 0.1395 V

Uit oot WL il
Time (ms)

tion voltage of the driver. With a dc signal applied to the dynamics will be systematically investigated in a future
AOM driver, the intensity output of the laser is stable andstudy.
depends upon the cavity alignment and pump power. Measurements of the photodiode signal are made with a
Feedback can be added to the system by applying theigital oscilloscope(CompuScope CS145@vith 14 bits of
voltage from the photodiode to the AOM driver through anpPrecision and capable of acquiring 50 Msamples/s. We find
amplifier/attenuator. Feedback with sufficient amplitude andneasurement at 2 Msamples/s provides for sufficient resolu-
bias destabilizes the steady state laser intensity value arfpn of the time series.
gives rise to a variety of dynamical behaviors, including cha-
otic spiking and bursting. . EXPERIMENTAL RESULTS
We add a second branch of the feedback network, which ) )
we refer to as the control loop. This loop consists of a high- Figureé 2 shows short segments of experimental time
pass filter with a 48 dB per octave rolloff and an amplifier faces seen by adjusting only the bias of the feedback loop
with adjustable gail’; the output of this amplifier is applied ywth_out the effect of the second bfa’.‘@"“tro' loop shown_
to the inverting input of the differential amplifier in Fig. 1. in Fig. 1. T_hese 16 valugs of the p|as were cho_sen to illus-
This differential amplifier has a bandwidi of 100 kHz. trate a variety of intensity dynamics observed in the laser

i : . system. These dynamics include multiple-spike bursting at
Igr?trr:)eltlgg;)nigltf‘he feedback loopfiand the net gain of the large positive bias, moderate-amplitude chaos at small nega-

tive and small positive bias, and high-amplitude chaotic spik-
The delay of the feedback loop comes in two parts, propal—ng at large ne%ative bias. g P P

gation of the sound wave inside the AOM and transmission “1gpje | displays the leading Lyapunov exponents calcu-
time of the electronic signal. The speed of sound within thgated for the sets of data in Fig. 2. These calculations were
AOM (a PbMoQ crysta) is 3630 m/s and the distance be- performed with the software packagspwz which uses the
tween the transducer and the laser beam is approximately figorithms described in Ref21]. When the intensity signal
mm. This corresponds to a time delay of 1,83. The time  pecomes nearly steady, the small amount of ambient noise
delay of the electronic portion of the loop, including the recorded by the oscilloscof®.02 peak-to-peak in the arbi-
AOM driver, is measured to be approximately uS. The trary units used in these figujeis registered by thespw
effect of the time delay on the dynamics is uncertain. How-package as a chaotic signal. For this reason, we never calcu-
ever, we do not observe a peak in the power spectrum cotate a nonpositive leading Lyapunov exponent.

responding to the delay, which indicates that the effect is Figure 3 shows a bifurcation diagram of the laser dynam-
probably small. This is further confirmed by the fact that theics with respect to the bias of the feedback loop, still without
characteristic frequency associated with the delay time ishe additional control loop present. Each vertical strip in the
higher than the cutoff frequency of the feedback lodp ( diagram represents the discrete probability density function
=100 kHz). The resulting dynamics occurs on the charactertPDF) of the laser intensity at a particular value of bias. The
istic time of the laser relaxation oscillation frequer@pout  darkness at each location represents the relative amount of
75 kHz, see Sec. I\ which is about five times longer than time the laser spends at a particular intensity. We have cho-
that of the delay time. The effect of the time delay on thesen to examine the PDF of the intensity signal because from
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TABLE I. Leading Lyapunov exponents as calculated by thethe more exponential tail in the PDF of the bursting (
cspwprogram for the time series used to generate Figs. 2, 4, and 5=0.0870).
When the laser is near steady-state operati@ —0.0345, The power spectra of the dynamics at the same values of
—0.0180, 0.0000, and 0.0180)Vhoise in detection equipment re- bjas are displayed in Fig. 5. The main peak when the laser is
sults in calculation of what is most likely a false positive Lyapunov near steady-state operatioi3=—0.0345, —0.0180, and

exponent. 0.000 V) represents the laser relaxation oscillation frequency.
Figure 6 shows a bifurcation diagram of the laser dynam-
Bias(V) Leading Lyapunov (10s') ics with the control loop being active. The control loop sig-
01230 212 nificantly alters the dynamics o_f the laser for all regions
' ' where the laser was not already in steady state. In the case of
—0.1050 2.06 this diagram, the onset of chaos is significantly delayed in
—0.0870 2.00 the direction of negative bias. For positive bias values, the
—0.0705 1.70 regions of bursting are replaced by limit cycles or chaos,
—0.0525 0.28 both with smaller amplitudes than in Fig. 2.
—0.0345 2.34 The effect of our filtering control on the time series is
—0.0180 2.88 shown in Fig. 7, where we display excerpts of the traces of
0.0000 1.66 the laser intensity for the same 16 values of bias as in Fig. 2,
0.0180 0.88 but with the control loop being active. Note the expanded
0.0345 0.34 intensity scale. Table Il shows the leading Lyapunov expo-
0.0525 0.96 nents calculated for these sets of data.
0.0705 0.78 In Fig. 8, we present the PDFs calculated for these the
0.0870 230 wave forms produced with control at the same values of bias.
0.1050 1.34 The intensity scale has been expanded because the range of
0.1230 1.86 the Ia;er intensity is smaller. Figure 9 displays the corre-
01395 180 sponding power spectra. Both PDFs and power spectra are

markedly different than those found in Figs. 2-5.

The form of control explored in this section renders the
transition from steady state to chaos to be more gradual. The
the PDF we can calculate the standard statistical measurggsntrol loop we have used to quench the dynamical range of
Arrows at the bottom of the figure indicate locations thatthe |aser intensity has increased the variety of distinct behav-
have been sampled to create Figs. 2, 4, and 5. iors that the laser intensity signal can exhibit.

In Fig. 4, we have plotted the normalized discrete prob- |n this section, we have been able to evoke a wide variety
ability density functions for the same values of bias as in Figof chaotic wave forms from the laser. These wave forms can
2. The slices of Fig. 3 allow us to distinguish between verybe distinguished from one another by their statistical charac-
different sorts of behaviors that appear similar in both theeristics and power spectra. In this sense, we have been able
estimates of leading Lyapunov exponent and the bifurcatioio record and classify the laser intensity dynamics. One can
diagram of Fig. 3. Note, for example, the cusped tail in thenow view the laser as a device for selecting and generating
PDF of the spiking behavioB< —0.0705 V), as opposed to chaotic wave forms with desired characteristics.

IV. MODEL AND NUMERICAL ANALYSIS

20

Let us consider the experimental apparatus shown in Fig.
7 1. Our goal in modeling the laser with feedback is to retain
g 18 the coarse features of the laser intensity behavior. Such a
s system can be most simply described by three first-order dif-
= ferential equations, one each for the laser intenjtyhe
%‘ ’ population inversiomA, and the modulation voltag¥ ap-
8 plied to the intracavity AOM:
o
o5 . vV

I =—ko|1+asir? l+glA,
Vmod
= TETIT PP L ETI I T A=—yA—2gIA+yAg,

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15 ) o
Bias (V) V=—pB(V-B-T), (1)

FIG. 3. Bifurcation diagram of the discrete probability distribu- Wherekq is the cavity loss parameter introduced in Sec. II.
tion function (PDF) of the laser intensity signal for 200 values of The parametea is the modulation strength of the additional
feedback bia® without control. Arrows indicate the bias values at losses introduced by the AOM modulation signgljs the
which the time traces in Fig. 2 were obtained. The grayscale axipopulation inversion decay ratg,is the damping rate of the
represents the Igg of the probability. feedback loof 27 times the cutoff frequengyg is the field-
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2 B =-0.1230 B =-0.1050 B =-0.0870 B = -0.0705

’ g WMWM \'WMW Wi

AL Y ; ’ ; WWM
B = -0.0525 B = -0.0345 B =-0.0180 B = 0.0000

FIG. 4. PDFs taken from Fig. 3 for the same
values of bias displayed in Fig. 2. A variety of

log,,(Probablilty)
R °©

,_ B=00180 B =0.0345 B8 = 0.0525 B = 0.0705 shapes can be seen and the transition between
\ [ . them is also apparent. The area under each curve
0 [ is normalized to 1 and the curves are displayed
T % ) on a log-linear scale.
2 -
B =0.0870 B = 0.1050 B =0.1230 B=0.1395
2 " i
0 1 2 0 1 2 0 1 2 0 1 2

Intensity (arb. units)

matter Coup"ng Constan?’ is the Sca"ng between intensity In this notation, the intenSitXiS normalized to the saturation
incident on the photodiode and the voltage read from it timedntensity, the population inversionand the pumg are nor-

the amplification of the differential amplifier, amlis a bias malized to the threshold populatlon Inversion, and the feed-
voltage applied to the modulator preamplifier. The parametel?aCkZ and biasB are normalized relative to the range of the

A. represents the population inversion induced by the act.ormodulation. For our model, we use the parameter vakges
OfOthepdiOde-pumppbep;m.l nv ! I u y ! =6.6X 107 Sﬁl, 7:416®< 163 Sil, B:628>< 105 Sﬁl, a

With  suitable  normalization, P=Aog/ky, f :OF-?grf{ l;=sl(.;3)5, ng‘ifa%aghg\elvt?h”aeto'thb;t(‘:"c’)izfi‘ﬂgna”d L
= T Y1(29V,nod, B=7BIV og, X=291/7, y=gA/ko, and asis)

z=7wVIV 4, these equations become 5 1
arcsw( Vm_ a) —xf—B=0 (3)

is fulfilled by the stationary solution of the model, denoted
by the vectorr(x,y,z). Once the solutions of Eq3) are
known, the stationary values of the other two variables are
z=—B(z—B—fx). (20  y=P/(1+X%) andz=B+Xxf.

x=—kox[ 1+ asir?(z)—y],

y=—y(y—P+xy),

B =-0.1050

FIG. 5. Power spectra for the laser intensity
signals of Fig. 2. The peaks observed near steady-
state operation represent the characteristic laser
relaxation oscillation frequencyapproximately
79 kH2. Away from these values of bias, the la-
ser exhibits a variety of broad spectral shapes.

B =0.0180 B =0.0345

Power (dB)

0 100 200
Frequency (kHz)
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FIG. 6. Bifurcation diagram of the PDF of the laser intensity
signal for 200 values of bias with the control loop active. The con-
trolling filter rolloff frequencyw=5 kHz and the gail” have been
tuned to produce the largest window of steady-state operation. Ar-
rows indicate the bias values for which the time traces, PDFs, and
power spectra are taken in Figs. 7, 8, and 9. The grayscale axis

-0.05

0.00

0.05 0.10 0.15

Bias (V)

represents the lqg of the probability.

When the laser without feedback is perturbed away from
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TABLE Il. Leading Lyapunov exponents calculated for the laser
with feedback and control at the same bias values as in Fig. 7.
Again, it is likely that the calculated values for dynamics near
steady state are false positives.

BiagV) Leading Lyapunov Exponent (16
—0.1230 0.38
—0.1050 0.50
—0.0870 0.82
—0.0705 1.06
—0.0525 1.92
—0.0345 2.10
—0.1800 2.36

0.0000 1.08

0.0180 0.52

0.0345 0.30

0.0525 0.24

0.0705 0.14

0.0870 0.20

0.1050 0.16

0.1230 0.14

0.1395 0.28

equilibrium, it will display relaxation oscillations at the fre-
guency given by

Rel™

VyKo(P—1)

2 '

(4)

the linearized flow represented fy= Df(r)v, where the vec-

tor v denotes a small deviation from the fixed point. The real
parts of the three eigenvalues are reported in Fig. 10. Note
that the leading eigenvalue, where positive, is of the order of
10° s71, as are the leading Lyapunov exponents calculated

This frequency also gives the characteristic time scale of théor the experiment in Table I. The values of the biasvhere
laser dynamics, which in our case is abouu43
In order to determine the stability of an equilibrium solu- eigenvalue is positive. In our case, the fixed point undergoes
tionr of Egs.(2), we consider the Jacobian matid{(r) of

the partial derivatives evaluatedratStability ofr in the face

the fixed point is unstable, occur where the real part of any

a Hopf bifurcation where an eigenvalue intersects the zero
line in Fig. 10. The imaginary part of this eigenvalue corre-

of a small perturbation is determined by the eigenvalues o$ponds to a frequency of 76 kHz, comparable with the relax-

Intensity (arb. units)

5 B=-0.1230 B =-0.1050 B = -0.0870 B = -0.0705
1
MW A ,,M‘ AW ‘v‘vA"V TTYYNSY WMAAMAMAAANY AAAAAAAAAAAAAA
0
2 B =-0.0525 B = -0.0345 B =-0.0180 B = 0.0000
1 FIG. 7. Selected time traces of the laser inten-
AV sity with control for 16 values of the biaB,
0 showing chaotic oscillationsB= —0.1050 V),
B =00180 B = 0.0345 B = 0.0525 B = 0.0705 near-periodic behaviofB=—0.0870, —0.0705,
0.0000, 0.0180, 0.0345, and 0.0525, \hear-
. steady-state (cw) operation (B=—0.0525,
T —0.0345, and—0.0180 Vj, and chaotic spiking
s (B=0.0705 V).
o B=00870 B = 0.1050 B =0.1230 B = 0.1395
’ il o)

0
10 11 12

1.2 10 11 12
Time (ms)
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2 B =-0.1230 B =-0.1050 B =-0.0870 B =-0.0705
A
A ! |
L i
-2
2 B = -0.0525 B =-0.0345 B =-0.0180 B =0.0000
§ 2 FIG. 8. PDFs for the same values of bias as in
é ,_ B=00180 B =0.0345 B = 0.0525 B =0.0705 Fig. 7. A variety of shapes distinct from those in
a0 Fig. 4 are evident for large negative and positive
= . [\ m K\/-\ [\\\M bias values.
2 L S|
2 B =0.0870 B =0.1050 B =0.1230 B =0.1385
0 (\\m (\\M KV\VM
-20.0 0.2 0.4 0.0 0.2 0.4 0.0 0.2 04 0.0 0.2 0.4
Intensity (au)
ation oscillation frequency of 76.9 kHz given by Hd). furcation B=1.05). This bifurcation exhibits hysteresis as

The bifurcation diagram for the model system is shown inthe control parameter is varied in the opposite directiBn (
Fig. 11. The model paramet&; corresponding to the feed- =0.89). The model does not display the chaotic bursting
back bias, is slowly increased from negative to positive in aevident in the experiment.
time of 0.05 s, considerably longer than the microsecond If we denote the input signal proportional to the laser
time scale of the laser dynamics. On the vertical axis, théntensity byx(t), the output signali(t) of an RC first-order
local maxima and minima of the laser intensity are shownfilter is given by the differential equationi=—wu+X,
Toward negative bias, there is evidence of a cascade of sulherew is defined as 2 times the rolloff frequencyw=1/
harmonic bifurcations ending with chaos after a supercriticaRC). In our model, we insert this perturbation into the feed-
Hopf bifurcation. However, the model does not displayback loop by adding a term to the equation goverrifi.
bursting for positive bias and the spiking at large negativewith a gain factorT’, the perturbation signal affects the dy-
bias becomes regular in amplitude rather than chaotic as inamics in following way:
the experimental system. The model is also much more sen-
sitive to the choice of parametePs a, andf than the laser

x=—kox[ 1+ asir’(z)—y], 5
oystom. ol (2)-y] 5)
For positive values 0B, the transition to a region of large
amplitude oscillations occurs through a subcritical Hopf bi- y=—y(y—P+xy),
B =-0.1230 B =-0.1050 B = -0.0870 B =-0.0705

FIG. 9. Power spectra for the laser intensity
signals shown in Fig. 7. The peaks observed
near steady-state operation again represent the la-
ser relaxation oscillation frequency. Away from
these values of bias, the spectral characteristics of
the laser signal differ significantly from those in
Fig. 5.

Power (dB)

100 200 0 100 200 o0 100 200
Frequency (kHz)
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FIG. 10. Plots of the real parts of the eigenvalues of the JacoEem of Eqs.(5) (first-order filte) vs B. (b) Regl parts Of_ the eigen-
bian matrix associated with Eqs2) as a function of the values of the controlled system of Eq8) (third-order filtey vs B.

. ’ ~ The parameters of the control loop ase=5 kHz andg=0.88. The
tuning parameterB. The parameter values ara=0.052, kg . . . . .
—6.6x10' s L, y=4.166<10° 51, P=1.85, 3= 6.28x 10° rads, magnitude of the leading eigenvalue is reduced in both cases by a

andf =0.75. The leading eigenvalue, where positive, is of the ordeFactor of 10 from that calculated for the model with feedback only.

o .
?.;;Igﬁ ls  comparable to the Lyapunov exponents calculated in In the experiment in Sec. Ill, we use a higher-order filter

to render the process more selective in frequency. Such a
selective filter control can be modeled by cascading several
first-order filters. Here, we limit the analysis to a third-order
filter. The overall dynamics is now described by the follow-
U=X— wU. ing system of differential equations:

z=—-B[z—B—f(x—Tu)],

_ _ _ o x=—Kkox[1+asiré(z)—y],
It is always possible to find a region in the parameter

space(w,I') where the control in Eq5) stabilizes the steady
state for a given value @. But a value ofw near to or lower
than the leading frequency component of the laser intensity
fluctuations may significantly alter the system dynamics
without stabilizing the steady state. In our case, this leading
frequency corresponds to the frequency of the limit cycle just
after the Hopf bifurcation.

y=—y(y—P+xy),
7=—plz—B—f(x—Tuy)],
Ulz)'(—wul,

U2: Ul_ (1)U2,

3.0 U3:U2_LOU3. (6)
2'5,' /"’w The results of the linear stability analysis for both model
20k 4 | systems from Eqg5) and(6) are reported in Figs. 18 and
I ; : 12(b), respectively, with the most negative exponent not dis-
1.5 played in both cases. Both first- and third-order filters reduce
DEM of the range of the magnitude of the leading eigenvalue.
S The global effect of the controlling perturbation on the

simulated laser dynamics, as seen in the bifurcation diagram
in Fig. 13, shows the enlargement of the stability domain of
the controlled dynamics. The chaotic region after the super-
critical Hopf bifurcation is replaced by the stationary solu-
tion. The subcritical Hopf bifurcation at positi® is now
replaced by a supercritical Hopf bifurcation.

Comparison of the power spectra and time-delay embed-
dings for theoretical and experimental results are displayed

FIG. 11. Bifurcation diagram of the local maxima and minima in Fig. 14. We present the chaotic attractor just after the onset
of the laser intensity v8. The parameter values are the same asOf chaos(after the Hopf bifurcationto compare it with the
those in Fig. 10. The scan time is 0.05 s, and the steady-state valigodel. The leading frequency in the numerical simulation is
is displayed where it is stable. The period doubling cascade begin®ughly 75 kHz compared to about 83 kHz in the experi-
aroundB= —0.64. ment. Both peaks are near the relaxation oscillation fre-

o o
j=] [5))
»
-
w s .“?‘."1 o o

o0kl . . . . .
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

B
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FIG. 13. Bifurcation diagram of the local maxima and minima
of the laser intensity v8 for the controlled dynamics of Eq6). FIG. 14. Left side shows power spectra and attractor recon-
The laser model parameter values are the same as those in Fig. $fructed from the intensity series of the experiminith feedback
The scan time is 0.05 s and again the steady-state value is display@8ly) at a bias of—0.045 V and with embedding time delay
where it is stable. The parameters of the control loop are =0-8us. Right side shows power spectra and attractor recon-
=5kHz andg=0.88. The supercritical bifurcation at negatiBe structed from thex values of the simulation of Eq$2) (also with
now begins neaB= —0.96. feedback only at B=—0.711 with embedding time delay
=0.8us.

guency of the laser and, as a consequence, the Hopf fr
guency. In both spectra, subharmonic peaks are observed
approximately one-third the frequency of the main peak.

feedback can serve as a tunable generator of chaotic “func-
fns.” These wave forms can be characterized through bi-
furcation diagrams that record discrete probability density
functions, power spectra or other measures of the dynamics.
V. CONCLUSION Bifurcation diagrams can then be used as libraries or lookup

Until recently, typical laser applications have focused Or]tables to _se_lect particular chaotic signals by their statistical
' (r;lharactenstlcs.

either steady-state operation or regularly pulsed operation. |
this paper, the dynamics of an Nd:YAG laser subject to feed-
back modulation of the intracavity losses via an AOM have
been explored. Tuning the bias of the feedback loop allows This research was supported in part by the U.S. Depart-
easy exploration of a range of intensity dynamics that in-ment of Energy, Office of Basic Energy Sciences. The Oak
cludes a sudden transition from steady state to highRidge National Laboratory is managed for the U.S. DOE by
amplitude spiking and bursting. An additional branch of theUT-Battelle, LLC, under Contract No. DE-ACO05-
feedback loop that suppresses higher-frequency componer@®OR22725. We also gratefully acknowledge support from
of the feedback alters the dynamics of the laser while prethe Office of Naval ReseardPhysicg. R.M. also wishes to
serving the chaos. With this controlling loop active, the tran-acknowledge European Contract No. HPRN-CT-2000-00158
sition to chaos is more gradual and low-amplitude chaotidor supporting his visit to the University of Maryland. We
oscillations are observed. thank Yuri Braiman for helpful discussions and Don Martin
We have demonstrated that a laser with suitably designefbr expert technical assistance.
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