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Transforming complex multistability to controlled monostability
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Multistability, a commonly observed feature among nonlinear systems, could be inconvenient under various
circumstances. We demonstrate that a control in the form of slow and weak periodic parameter modulation can
be effectively applied to transform a complex multistable system to a controlled monostable one. For the
representative of a nonlinear system, we choose theoklanap as the standard model. The number of
coexisting stable states is known to increase as the dissipativity reduces. We show that even in the low
dissipative limit, when the number of coexisting states could be arbitrarily large, the periodic parameter
modulation can destroy the states coexisting with stable period 1. Thus, the system can be brought from any
other branch to period-1 branch, leading to controlled monostability. This method works in the presence of
noise as well.
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Nonlinear dynamical systems, having large dimengion optical fiber communication is signal transmissi@mplifi-

the phase spate@r (and under low dissipation, commonly cation through a light-wave carrier. This process may be
exhibit multistability, i.e., coexistence in the phase space otompared to the dynamics of a driven nonlinear system
several stable statésinks when the system parameter val- which can exhibit multistability. Indeed, semiconductor la-
ues remain unchanged. Systems with two sifikstability)  sers, anddoped optical fibers exhibit a wealth of nonlinear
and the associated hysteresis are well known. A more CoMpptical phenomeng 18], including various bifurcations,
plex form of multistability(several periodic or chaotic stajes chaos[19], and multistability under currerfpump modula-
has also been observed in various systems, including CGion [5] or optical injection[6,7]. We believe, multistability

lasers[1—-4], semiconductor laserf5—7], nonlinear elec- yould pose inconvenience in efficient communication and
tronic circuits[8], voltage controlled buck convertg®], the  thus needs to be avoided.

Rayleigh-Bernard experimer{tl0], thermal hydraulics in (i) In some applications, in addition to reliability and
two-phase natural circulation loof41], cardiac dynamics reproducibility, the more important issue is the safety of the
[12], and periodically stimulated neurg3]; in addition to  jnstallation and the neighborhood. As an example, we refer
some :_;tandard models,_under periodic forcing or parametrigy the two-phase natural circulation loops that have many
excitation, such as Duffing, van der Hdl], and Toda os-  gpplications including the future generation natural circula-
ciIIators[15,.163.l Und(_er several circumstances, multistability tion nuclear reactorgl1,20. In nuclear reactors, the coolant
can create inconveniences. \We outline very briefly some ofjgy design is crucial to avoid all sorts of instabilities that
these issues. may lead to a holocaust. Therefore, multistability might be
(i) If a system is designed to remain at a certain dynamijnconvenient while designing the operating regittiee per-
cal equilibrium, a jump to a coexisting sink may change themjtted region of operation in the parameter spackthe
performance and spoil the reproducibility and hence reliabilxgglant flow.
ity. We believe there are many applicatiofuevices where (iii) A deterministic nonlinear dynamics approach has en-
multistability should therefore be avoided. For instanceered various disciplines, including Cardio Science. The tran-
rapid progress has been taking place in research and techngltion from a normal cardiac rhythm to arrythmia has been
ogy development in the area of optical fiber communicationppserved to follow period doubling route to chd@4]. Car-
[17,18. This has led to the development of a variety of semi-gjac alternangperiod-2 rhythm could be a precursor to ar-
conductor lasergamplifiery, doped fiber laser@mplifiers,  rythmia and therefore efforts have been made to devise some
in addition to vast i.mprovement in optical fiber tephnology_contrms_ Indeed, the chaos contf@2] and tracking[23]
and other accessories. A very basic phenomenon involved echniques have been successfully applied to suppress car-
diac alternans and stabilize the cardiac rhythm in the un-
. _ _ _ stable period-1 statg24]. Notably, under certain circum-
Email address: bgoswami@apsara.barc.emet.in stances, a stable period-2 rhythm can coexist with the stable
"Email address: n9026014@ccs.iitb.ac.in period 1[12]. In such cases, changing the cardiac rhythm
The primary origin of multistability in periodically forced non- back to stable period-1 state might be an attractive proposi-
linear systems may be sought in harmonic and various subharmonfton.
resonances. The overlap of these resonances in the parameter spacel hus we have briefly mentioned some of the areas where
gives rise to multistability. multistability would be undesirable. Such disturbances often
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also restrict the operating regimes of the system. Also, probronlinear electronic circuits, etc. We also expect that the
lems can become more acute when the basin boundaries Bechnique demonstrated in the e map may as well be
come fracta[25]. Because, under such circumstances, if theeffective in controlling multistability in other nonlinear sys-
transients place the system close to a basin boundary, evé@ms including cardiac rhythms, and thermal hydraulics.
noise(which is unavoidable in many experimental and real- The number of coexisting attractors is known to increase
life system$ can lead to a transition from one basin to an-as the dissipativity of the system reduces. We consider the
other. In order to control multistability, Poon and Grebogi €Xtreme  situation, i.e., at the near-conservatiftew-

[26] have proposed a method where the system is placed in@ssmqtlve_llmn when the number of coexisting states (_:ould
(or removed from some sink by applying noise and feed- be arbitrarily Iarge. .We show Fhat even under such circum-
back control. In spite of its applicability in general, under Stances, the per|od|c ”.‘00'“'6‘“0” of some system parameter
certain circumstances, some difficulties may still remain. Fo ay be effectively applied to transform such an exceedingly

. . . . complex multistable system to a controlled monostable one.
instance, if we want to.brlng the system to the stable P?”(.)(ch\le also demonstrate the applicability of the method in the
1 from a coexisting sink by some fast and deterministic

o . .~ "“presence of noise.
method, then the application of noise may not be an efﬁmen'iJ

" ; . Since the Haon map is a two-parameter map, the order
proposition. An alternative approach could be transformingy¢ o-currence of the sink@s one changes the valueoffor

the multistable system to a monostable one by some contrg] given value of]) can change as the value dfchanges
mechanism. Pisarchik and Goswali] have recently pro-  r3g] However, the sinks are not created in a totally arbitrary
posed a method of converting a bistable system to a COMmanner. Mindlinet al. [39] have shown(by means of a
trolled monostable system by a slow and weak modulation of, o seshoe implication diagranthat a minimal set of peri-

some system parameter. They have theoretically demonygic orhits can be constructed, which force the existence of
strated the method in the Hen map[28] and laser rate | the remaining periodic states associated with a strange
equationg29], and experimentally realized in a G@ser. In  ayractor, up to any given period. In fact, a large class of
the experlme_nts, the CZOaser_ was r_nade bistable by a cavity periodic and chaotic orbits are created in the phase and pa-
loss modulation. Next, the bistability is controlled by a slow (5 meter space in an organized manf&5]. We explain the

and weak modulation of resonator cavity length. The basi,ganization in brief to highlight the associated complex
idea in this controlling method is to introduce a collision of multistability. We consider a low dissipative cask=(0.98)

the undesirable state with its basin boundaflye stable 4n increase the value of as the control parameter. Figure
manifold of the neighboring saddleso that such a state is 15 shows the bifurcation diagram of the period-1 branch
destroyed and the transients settle down to the desired bas'(raenoted byp,). Notably, around each sink of the period-1

In the current paper we study the applicability of this panch an’infinitely large series of perioetupled saddle
technique when the system exhibits coexistence of an arbly4es seems to appear in the following sequenoe (

trarily large number of coexisting sinks. For the representa 5 4 3). Each newly born nodsay of perioch) later

tive of a nonlinear_systen;, we choose theinble mazp[28] constitutes its own brancHirst-order secondary cascade
described byx,,;=1—uxy+y,, andy,1==J%." The  gengted byp. . For instance, period-5, -4, -3 cascades are
Henon map is considered as a standard theoretical model fQf,own to coexist with period 1 in Fig.(l). Again, around
the continuous-time experimentally realizatiieal-world  each sink of every secondary cascade, an infinitely large se-
systems. The iteratesandy may be considered as two pro- yies of periodn-tupled saddle nodes seems to appear follow-
jected dynamical variables. The parameienay be related jng the same sequence. Each node later constitutes its own
to the dissipativity, an,cp represents an externally control- branch(second-order secondary cascader example, Fig.
lable parameter. The ken map and Toda oscﬂla_t’bhgve 2(a) shows period-20, -16, -12 cascades, each coexisting
shown striking similarity in the self-similar organization of \yitn the period 4 of period-4 branch. Figuréb? shows
the secondary cascads,35. Such similarity could be be- period-25, -20, -15 cascades, each coexisting with the period
cause both have a similar hyperbolic horsesf&@. Nota- g ¢ period-5 branch. These processes recur in a self-similar
bly, the bifurcation structures of a large number of drivenanner, giving birth to higher and higher-order secondary
nonlinear systems, including the Duffing and Toda oscilla-cascades; more evidence of the creation of higher-order cas-
tors, exh|b|t qualitative S|m|Iar|ty3_7]. Therefore, thg Heon  cades may be seen in RES5]. Each cascade survives within
map might be all the more suitable for the driven low- 4 small subinterval of the control parameter window where
dimensional systems, e.g., ¢@nd semiconductor lasers, he respective sink from the immediate lower-order second-
ary cascade exists. Thus, subject to the choice of parameter
X ) _ _ _ values, the number of coexisting sinks could be arbitrarily
The Hexon map reduces to one-dimensional quadratic map fofarge. In principle, in an infinitely large number of parameter
J=0. Multistability occurs wher>0 [30]. values, there could be an infinitely large series of coexisting

3The Toda oscillator is a well-known model of G@nd semicon- ~ Sinks. This scenario suggests an exceedingly complex multi-
ductor lasers. The recent experiments on multistability in periodi-Stability, although organized in a self-similar manther.
cally forced CQ laser[4] have shown good agreement with the
theoretical predictiongl5] on the basis of the Toda oscillator model
[31] of laser rate equatiorfd,32]. Moreover, laser rate equations of  “The creation of sinks is in good agreement with the predictions of
semiconductor lasef$], and vibro rotational model of CQOasers  Gavrilov and Silnikov[40], Newhouse[41], and Robinsor{42].
[33,34 also reveal the Toda oscillator form. More detail in this regard may be seen in R&b].
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FIG. 1. (a) Bifurcation diagram of the period-1 branch,(. (b)

Successive appearance of a series of first-order secondary cascadesFIG. 2. Successive appearance of second-order secondary cas-
namely, period -5, -4, and -3 branches, around the period 1. cades around the period-4 sink @f, branch, and around the
period-5 sink ofps branch.(a) Period-20, -16, -12 cascades around
period 4. The sampling period is foub) Period-25, -20, -15 cas-

We apply sinusoidal control modulation ovgras x(n) cades around period 5. The sampling period is five.

= wo+ n Sin(2mvn). By “slow” modulation we imply that
the period of modulation (1) is much larger than the period _ ) ) ) _ _
of the sink to be controlled. Also, by “weak” modulation we transients jump to the basin of the neighboring sink from the
imply that the addition of over u in the uncontrolled case |mmed|ate lower-order secondary cascade. In the following
will lead to no bifurcation of the sink. We demonstrate that if igures where we show the controlled scenario, the controlled
the system exists in any secondary cascade, one can desti#pt Sink of ap, branch is also denoted ly, . Each bifur-
that cascade by contrdln the form of a slow and weak Ccation diagram of the controlled, has been plotted with
periodic modulation ovew) and bring the system to the Sampling period (1/). We demonstrate some examples of
period-1 branch. Since within a branch, the largest paramet(g,ontrolled destruction starting from second-order secondary
window is that of the first sink, for control we choose the cascades. Figure@ shows the controlled destruction pf,
value of u, such that the uncontrolled case refers to the firs@nd subsequent jump to,. Figures 8b) and 3c) show a
sink of the given secondary cascade to be destroyag.  Similar controlled destruction of;s and pyo, respectively.
shall see later that the control modulation induces the deEach destruction is followed by a transition pa. In Fig.
struction of the sink after the creation of a sequence of perio@(d), the values ofu, and v have been kept same as in the
doubling in control frequency. After destruction, the chaoticcase ofp;¢ destruction. Next by increasing, p, gets de-
stroyed and the chaotic transients jump to periocpd) (A
similar destruction op, also occurs when the value pf, is
50ther sinks of a given branch can also be destroyed by a similaf€t anywhere, including in the parameter subintervals where
control. Under such circumstances, the valug.ghas to be chosen Other second-order secondary cascades, pjz.andp,, ex-
such that the uncontrolled case refers to the given sink. In generaiSt. Figures 4a—9 show similar destruction ofp, (n
the required control amplitude to destroy these sinks is much less15,20,25) branches respectively. In each case, the system
than that required for the destruction of first sink. jumps tops. In Fig. 4d), we keep the values of and ug
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FIG. 3. (a)—(c) Bifurcation diagrams show the controlled de-
structions of some second-order secondary cascades, born aroundFIG. 4. (a)—(c) Bifurcation diagrams show controlled destruc-
period 4;v=0.005.(a) p1» (ug=0.177),(b) p1s (uo=0.142), and tions of some second-order secondary cascades, born around period
(©) pao (mo=0.121). After each destruction, the transients jump5 (ps); »=0.005.(a) p;s5 (1= —0.259),(b) pyy (no=—0.286),
[shown by arrous)] to period 4 f,). (d) Bifurcation diagram of  (c) p,5 (no= —0.305). After each destruction, the chaotic transients
controlled period 4 §,) shows its destruction and jump to period 1 jump (shown by an arroyto period 5. Enlargements of bifurcation
(p1); mo=0.142; v=0.005. Enlargements of the bifurcation dia- diagrams in plotga) and(b) are shown later in Figs.(6) and 5d).

grams in plots(@) and (d) are shown later in Figs.(8 and 5b), (d) Bifurcation diagram of controlleghs shows its destruction and
respectively. transition (shown by an arroyvto period 1 @;); wo=—0.286; v
=0.005.

same as in the case @h,. Then by increasingy, ps is  order cascade does not always need the system to become
destroyed and the transients jumps to period 1. A similachaotic as a precursor. Such a jump can occur even prior to
destruction ofps can also be observed when the valueugf ~ chaos. For instance, Fig(& shows that no period doubling

is set anywhere, including in the parameter subinterval®ccurred in controlleg,s before the jump tgs. Figure 5d)
where other second-order secondary cascades,pyizand  shows that the controlled period 20 undergoes just two steps
p,s exist. In Fig. 5, we show enlargments of the previouslyof period doubling followed by two steps of an inverse pe-
shown bifurcation diagrams to illustrate the sequence of period doubling before being destroyed in a similar manner.

riod doubling in control frequency before the destruction. Figure 6 shows the destruction curves of these cascades in
Figures. %a) and %b) show the magnified results of con- (% versusv) parameter subspace; we consider the case of the
trolled p;, and p,, respectively. In each case, one notices adestruction of first sinks only. In Fig.(&—9 we compare the
period doubling route) to chaos. The lifetime of the chaotic destruction thresholds of some second-order secondary cas-
transient depends on how far the chosen parameter value ¢ades versus those of the respective first-order secondary
from the respective boundary crisis threshf8D]. There- cascades. The destruction curve of a second-order cascade,
fore, if the value of the control amplitude is sufficiently over say p,, is denoted byC,. C, , represents the destruction
the destruction threshold, the time span of chaotic transientsurve of the periodn branch(a first-order secondary cas-
can be reduced significantly. Moreover, a jump to a lower-cade when ug is kept same as in the case of the destruction
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FIG. 5. Enlargements of some bifurcation diagrams shown ear- giG. 6. Controlled destruction curves, denoted@yor C,p,.
lier in Figs. 3 and 4,»=0.005.(&) 1> (140=0.177),(b) ps (ko () Period 12 o= 1.103), period 15 fo=1.072), and period 3 at
=0.142), () p1s (o= —0.259), and(d) pzo (no=-0.286).(8  poth the u, values. (b) Period 16 f1,=0.142), period 20 fo
and(b) show period doubling route to chads) Controlled period =0.121), and period 4 at both the, values.(c) Period 20 fuo=
15 does not undergo any period doublind. Controlled period 20 _ 2g86), period 25 fo=—0.305), and period 5 at both the,
undergoes just two steps of period doubling followed by two steps;gjues.(c) Period 4 (1,=0.177), period 5 fo= —0.259), and the
of inverse period doubling. controlled period doubling (4-2) bifurcation curves at both the

Mo values.

of p, branch(a second-order cascadé&or instance, in Fig.
6(a), the destruction curves of period 12 and period 15 argespectivelyC, 1, denotes the destruction curve pf when
denoted byC;, andCs, respectively. This plot also shows the u is kept same as in the case f,. Similarly, Cs 15
the destruction curve gi; branch wher, is kept the same  denotes the destruction curvemf when theu is kept same
as in the case of the destruction pf, and p,5 branches. as in the case op;s. Plot (d) shows that the controlled
These destruction curves are denoted @y, and Cj 45, period doubling from period 1 requires a much larger value
respectively. This plot reveals that for a broad range ofof % in comparison to those required for the destruction of
modulation frequencyp;, and p;s can be destroyed at a p, andps.
lower modulation amplitude in comparison to that required Thus our observations suggest the following features in
for ps destruction. Similarly plotb) reveals that the destruc- general.
tion thresholds o5 and p,, are much smaller in compari- (i) The control amplitude to destroy a giverih-order
son to that required fgp,. Plot(c) shows that the destruction secondary cascade is much less in comparison to that re-
thresholds of,g andp,s are much smaller in comparison to quired for the destruction of the neighboring- 1)th-order
that required fomps. Thus, for any modulation frequency, if secondary cascade. Consequently, after the destruction of the
one increases the control amplitude appropriately, theth-order secondary cascade, the system jumps to the respec-
second-order cascades can be destroyed and the chaotic tréde (n— 1)th-order secondary cascade.
sients would settle in the respective first-order cascades. In (ii) The control amplitude required for period doubling
plot (d), C; 1, and C; 45 denote the bifurcation curves for (1—2) in the period-1 branch is much larger in comparison
period doubling from period 1 when the values @ are to that required for the destruction of any first-order second-
kept same as in the case of the destructiopgfand p;s, ary cascade. As a consequence, after the destruction of a
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first-order secondary cascade, the system jumps to th 25
period-1 branch.

Therefore, if we know the period of the state to be de- o
structed, we can set some appropriate slow control frequenc, | .#*
and then as we increase the control amplitude beyond the
respective destruction threshold, the state can be destroye
and the system will jump to the immediate lower-order sec-X
ondary cascade. Again by increasing the control amplitude
further, the new state can also be destroyed and the systei_s
will then jump to a further lower-order secondary cascade.
Subject to enough increase of the valuepothis process can
go on in a recursive manner till the system jumps to the
period-1 branch. This process does not require amyiori
information about the destruction threshold of various sec-_, 25
ondary cascades. It needs a gradual increase of the contr0.139 0.144 0.02 0.1 0.18
amplitude and monitoring till the system returns to the
period-1 branch. In this process, the transitionpto will
occur via a sequence of jumps among the hierarchy of secg4 |
ondary cascades, viz., threh-order secondary cascade
(n—1)th-order cascade- ...— first-order cascade-p;.
Such jumps within secondary cascades can be reduced ar
the system can be straightway brought to any lower-order
(saynth) secondary cascadperiod-1 branchwhen the de-
struction threshold of the respectiva+ 1)th (first) -order
secondary cascade is knowanpriori. Then the control am-  x
plitude can be set straightway higher than the destructior 2
threshold of the respectiven{ 1)th (first) -order cascade.
This would lead to a direct transition to thngh secondary -
cascadgperiod-1 branchinstead of a sequential transition g |~ = 7T e S e
through the secondary cascades. We shall show some e ) | , ,

6.4 |

Pie

amples of such a direct transition to period-1 branch in Fig. o 0.001 0.002 0 0.03 0.06
11. n n

To show the applicability of the control in the presence of
noise, we introduce Gaussian white noigeand ¢) in the FIG. 7. (a) Uncontrolled period-16 branctp(e) around period 4

Henon map as foIIowsan:l—/.LxﬁJr Yot &, andyp,,q (p4) in the presence of noiser&0.001). Sampling period is four.

=—Jx,+ ¢,. We consider for simplicity both noise terms (b) Uncontrolled period-4 branctpg) around period 1f,) in the

having zero mean and identical standard deviatiep Sub-  presence of noises(=0.005).(c) Controlledp,¢ gets destroyed and

ject to the strength of nois@etermined by the standard de- the system jumps(shown by arrows to ps; ue=0.142; v

viation), the dynamics of a nonlinear system, in general,=0.005; 0=0.001.(d) Controlled noisyp, gets destroyed and the

could be complex. This is where the basins of attraction playpystem jumps(shown by an arrowto period 1; uo=0.12; v

a significant role. Noise of adequate strength can induce & 0-005;0=0.005.

spontaneous transition from one basin to another. Even the

system may get further disturbed, leading to intermittent

transitions among the coexisting basins. On the other hand, {fascades. Higher the order of the cascades, smaller their ba-

a basin is broad enough, scenario could be different. Undegins become progressively. Consequently, the effect of noise

such circumstances, even though noise can induce randowould be more prominent for the higher-order secondary

ness(and hence transientsthe dissipativity of the system cascades. We will show later a strong noise-induced transi-

would always attempt to pull and retain the system bacKion (without contro) from higher-order to lower-order sec-

within the same basin. As a consequence, no such transiti®fndary cascades. First we analyze the effect of moderate

or intermittancy may occur. We have studied the basins oRoise when no such transition takes place. Figuag Shows

various secondary cascades in theblemap® The basins of  the bifurcation diagram of the uncontrolleg;s branch

higher-order secondary cascades appear and always remaafound period 4 op, branch in the presence of noiser(

within the basins of the immediate lower-order secondary=0.001). Past the boundary crisispfs, the transients con-
verge top,. Since, the basin of period 4 is comparatively
larger, thep, branch can withstand a relatively stronger

5The creation and evolution of basins in the case of thedde noise. Figure ®) shows the bifurcation diagram qb,

map are similar to those in the case of the Toda oscilgtét. In ~ around period 1 when the standard deviation of noise is rela-

this paper, we concentrate on controlling multistability, and leavetively high (o=0.005). Beyond the boundary crisis pf,

the basin evolutions for a different paper. the transients settle to period[Eig. 7(b)]. We demonstrate
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FIG. 8. (a) Uncontrolled period-25 branclpgs) around period 5
(ps) in the presence of noiser0.001). Sampling period is five.
(b) Uncontrolled period 5 branctpg) around period 11,) in the
presence of noises(= 0.005).(c) Controlledp,s gets destroyed and
the system jumpsishown by an arroyvto the period 5;ug
=0.142; v=0.005; 0=0.001.(d) Controlledps gets destroyed and
the system jumpsgshown by an arroyto period 1;u,=0.12; v
=0.005; 0=0.005.

the effect of control on noisp,¢ by introducing the modu-
lation overu. By increasing the control amplitudey), we
observe a destruction @ [Fig. 7(c)] and consequent tran-
sition to period 4(shown by an arroyv A similar destruction
can also be observed in the case of ngigyandp,y. Each
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FIG. 9. (a) Sequence of controlled destructions, starting from
noise-free pig. Control (7=0.0025p=0.00517=0.142) is
switched onp,¢ after 1000 iterationgshown by the left arrow
After destruction ofp,g, the transients converge {o,. Control
amplitude is increased to 0.079 after next 2000 steps of iterations
(shown by the right arroy p, is destroyed and the iterations con-
verge to period 1(b) Same as(a) in the presence of noises(
=0.001).

5) in the presence of noiserE 0.001). As we increase the
value of uy beyond the boundary crisis thresholdmg, the

transients converge tps. Since, the basin of period 5 is
comparatively larger, thes branch can withstand a rela-
tively stronger noise. Figure(B) shows the bifurcation dia-

destruction would be followed by a transition to noisy periodgram of ps branch around period 1 in the presence of a
4 (py). Next, p, can also be destroyed by increasing thestronger noise ¢=0.005). Beyond the boundary crisis of
control amplitude ¢) when the value ofu, is kept fixed Pps, the transients settle to period[Eig. 8b)]. We demon-
anywhere, including in the parameter subintervals where thetrate the effect of the control on noipys by introducing the

second-order secondary cascades, piz, pPig, andp,g ex-
ist. In Fig. 7d), we show a typical destruction of noigy, in
the presence of a relatively strong noise=(0.005). After
destruction, the transients juniphown by an arroyto pe-

modulation oven. By increasing the control amplitudey],
we observe a destruction @hs [Fig. 8(c)] and consequent
transition to period gshown by an arroyv A similar destruc-
tion can also be observed in the case of ngisyandps.

riod 1 (p;). Figure 8 shows another similar example startingEach destruction would be followed by a transitionpe

from noisy period 25 |§,5). Figure 8a) shows the bifurca-
tion diagram of the uncontrolled,s branch(around period

Next, noisyps can also be destroyed by increasing the con-
trol amplitude » when the value ofu is kept fixed any-
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FIG. 10. (a) Sequence of controlled destructions, starting from  FIG. 11. Straight transition to period-1 branch after controlled
noise-free p,s. Control (»=0.0015p=0.005u,=—0.305) is destruction of the second-order cascades.Control (7=0.04p
switched onp,s after 1000 iterationgshown by the left arroy =0.005u,=0.142) is applied on noise-freg;z after 1000 steps
After destruction ofp,s, the transients converge fms. Control  (shown by the arroyv p4¢ is destroyed and the transients converge
amplitude is increased to 0.062 after next 2000 steps of iteration® p;. (b) Same ag@a) in the presence of noises&0.001). (c)
(shown by the right arroyv ps is destroyed and the iterations con- Control (=0.05p=0.005u,= —0.305) is applied on noise-free
verge to period-1(b) Same as(a) in the presence of noises(  pysafter 1000 stepgshown by the arroyv p,s is destroyed and the
=0.001). transients converge tp,. (d) Same a<gc) in the presence of noise

(0=0.001).
where, including in the parameter subintervals where : . .
thesecond-order secondary cascades, piz., Pao, andp;s a value higher than thg desfcructlon threshold of period 4
exist. In Fig. &d), we show a typical destruction of noigy (p4). Consequently, period 4 is also destroyed and the tran-

even in the presence of a stronger noise=(0.005). After sient_s_converge to period .1' In Figk, we show a _Sim”ar
the destruction o, the transient jump$shoWn by.an ar- transition from a noisy period 16. The control amplitude and

: control frequency are identical to those in Figa@ We find
row) to period 1. . . S
that in the presence of noise also, the scenario is similar to
In Figs. 9 and 10 we show some typical examples of howthe previous case. Figure 10 shows another example starting
the controlled transition from a periad{n>1) branch to from a noise-freep,5. The chosen control amplitude is
period-1 branch takes place in time via sequence of secondiigher than the destruction threshold pf; and lower than
ary cascades. We will show such cases with, as well as withthe destruction threshold qfs. The control is switched on
out, noise. First we consider the case of noise-freg Fig. p,s at 1000th iteratiofFig. 10@)]. p,s is destroyed and the
9(@)]. The control amplitude is chosen higher than the detransients converge tps. Next, after 2000 iterations, the
struction threshold ofp;s and lower than the destruction control amplitude is increasgdhown by the right arrowto
threshold ofp,. The control is applied opqg at 1000th it- a value higher than the destruction threshold of period 5.
eration (shown by the left arrov p,¢ is destroyed and the Consequently, period 5 is also destroyed and the transients
transients converge tp,. Next, after 2000 iterations, the converge to period 1. In Fig. 16), we show a similar tran-
control amplitude is increasgghown by the right arrojo  sition from a noisy period 25. The control amplitude and
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a period 25 @,5). The control amplitude is set much higher
than the destruction threshold p§. Therefore, after the de-
struction ofp,s, the transients settle down to period 1. Simi-

5T T lar phenomena also occur in the presence of noige (
=0.001)[Fig. 11(d)].
Py In Fig. 12 we show the applicability of the control in the
BRmem————— presence of a relatively strong noise that can induce a spon-

p " .
o taneous transition from one state to another. In Figal®e

consider the case starting from period 164} when noise

4 (o=0.01) induces a transition to period g4). The basin of
period 4 is broad enough to deter further transition to any
other basin. In such a case, control needs to be applied only
! to destroy the lower-order cascades. Contraj=(0.04,

0 1250 2500 v=0.005) is appliedshown by the arroyvon p, at 1000th
n step of iterationsp, is destroyed and the transients settle to
l : b period 1. In Fig. 12b), we show a similar example starting
5 : 4 from period 25 p,5). Noise (0=0.01) induces a transition

to period 5 @s). Control (=0.05) is appliedshown by an
arrow) on ps after 1000 steps of iterationps is destroyed

and the transients converge to period 1. Thus, if the noise is
capable of inducing a transition from the basins of higher-
order secondary cascades to the basins of lower-order sec-
ondary cascades, then the control modulation is required to
destroy these lower-order secondary cascades, and bring the
system to period-1 branch.

To conclude, we have demonstrated that by a slow and
weak periodic modulation to some system parameter, one
can destroy any higher-order cascade and induce a transition
0 1000 2000 to a coexisting lower-order cascade. This method can be ef-

n fectively applied to bring the system from any period-
branch to period-1 branch, thus leading to a controlled

FIG. 12. Applicability of the control in the presence of relatively monostability. Therefore, if required, such a control may also
strong noise which spontaneously induces transitignNoise (o extend the operating regime. As such this method does not
=0.01) leads to a transition f_rom pferiod 16 to period 4. Controlhaed anya priori knowledge about the destruction threshold
(7=0.04»=0.00519=0.142) is appliedshown by the arrowon ¢ the various secondary cascades. Although, such knowl-
p, after 1000 steps of iterationpy is destroyed and thent_ransnants edge could be helpful to direct a straight transitionptp
converge to pen_od ib) Noise (r=0.01) leads to a transition fr.om branch. We have also shown the applicability of the method
period 25 to period 5. Control(=0.05=0.00519=-0.305) is 4 presence of noise. Noise of adequate strength can also
applied(shown by the arroyvon ps after 1000 steps of iterations. . . .

b is destroyed and the transients converge to period 1. induce a transition from higher-order secondary. cascades to

lower-order secondary cascades. Under such circumstances,
control needs to be applied to bring the system from the
lower-order cascades to period-1 branch.

contr'ol frequgncy are kept identicall to those in Fig(alol ~ We may also state that by an appropriate choice of the
We find that in the presence of noise also, the scenario i§onirol parameter values, one can make devices with a well-
similar. defined number of coexisting states. For instance, if the con-

_ Next we show some typical examples of a direct ransiyo| amplitude lies in between the destruction threshold of
tion to period 1 after a controlled destruction of the secondsj;st_order and second-order cascades. one can get a con-
ary cascades. Such phenomena occur when the control ag|ied bistable system. We believe such an approach would
plitude is set higher than the destruction threshold of thg,q helpful for avoiding multistability when the system is
respective first-order cascade. Figurd@lishows the case gesigned for a bistable device. In principle, if the effect of
when the control =0.04) is applied on a noise-frgBs  nojse is weak, by a suitable choice of control parameter val-
after 1000 steps of iteratiorishown by the arroyv Since the ues, one may even design a controlled-stable” device,

value of the control amplitude is beyond the destruction; o 5 system that supports coexistencen@i=1,2,3 . . . )
threshold of the respective first-order secondary cascadg,pie states. o

(pa), not only period 16 is destroyed, but also the transients

straightway converge to period 1. Similar phenomena occur We are grateful to Dr. N. Venkatramani, L&PT division,
in the presence of noises=0.001) as well[Fig. 11(b)]. BARC, and Professor S. H. Patil, Department of Physics, IIT
Figure 11c) shows the controlled destruction of a noise-freeBombay, for their encouragement of our work.
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