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Possible neural coding with interevent intervals of synchronous firing
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Neural networks composed of excitable neurons with noise generate rich nonlinear dynamics with spa-
tiotemporal structures of neuronal spikes. Among various spatiotemporal patterns of spikes, synchronous firing
has been studied most extensively both with physiological experimentation and with theoretical analysis. In
this paper, we consider nonlinear neurodynamics in terms of synchronous firing and possibility of neural
coding with such synchronous firing, which may be used in the “noisy brain.” In particular, reconstruction of
a chaotic attractor modeling a dynamical environment is explored with interevent intervals of synchronous
firing from the perspective of nonlinear time series analysis and stochastic resonance.
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I. INTRODUCTION that should be smoothed away for good estimation of firing
rates is an intriguing question. Related to this question, the
It is widely believed that information in the brain is car- problem of whether the cortical neuron serves as an integra-
ried by neuronal spikes or action potentials. But the problenmor or a coincidence detect8] has recently been revisited
of how the information is encoded in these spikes remaings a very important research topit;9]. It is usually under-
unsolved. The most commonly accepted hypothesis is thaftood that the integrator neuron and the coincidence detector
firing rates of spikes encode the information. However, theneyron contribute to rate coding and spatiotemporal spike
possibility of spatiotemporal spike coding on the basis Ofcoding, respectively1,9].
spike timing, interspike interval@Sls), and mutual correla- In this light, theoretical analysis of ISI reconstruction
tion of spikes from different neurons is currently being ex-110_13 is interesting because these results imply that a kind
plored from a viewpoint of nonlinear neurodynamie®e  of spatiotemporal spike coding is possible even with the per-
Refs.[1,2] for background reviews In fact, a single neuron  fgct integrator neurons that generate spikes by integrating the
has pecul_|ar nonlinear d_ynam|cs Wlth_athreshold, whlch Caput signal S(t) without any leak during interspike inter-
be described by nonlinear dynamical systems like theis: each interspike interval is equal to the “short-term”

Hodgkin-Huxley equationg3] and the FitzHugh-Nagumo averaged H(t) times the thresholfiL].
equationg4]; such nonlinear dynamics generates various dy-

namical behaviors including the deterministic chfok

In this paper, the possibility of spatiotemporal spike cod-
ing is considered particularly from the standpoint of nonlin-
ear time series analys[$]. To approach this problem, we  Meeset al.[14] showed that deterministic chaos of squid
analyze response characteristics of a neural network conzxon response can be detected by building a nonlinear dy-
posed of the FitzHugh-Nagumo neurons when they ar@amical model directly from noisy electrophysiological data
forced by a chaotic stimulus that models dynamical inputwithout anya priori model. Applicability of the nonlinear
from an environment. In particular, we study how the dy-time series analysis to ISI data has been also intensively
namical structure of the chaotic input is encoded into interexplored by analyzing ISIs of various neuronal models
event intervalgIEls), where the event is defined by timing of stimulated by chaotic inpitt0—13, where a chaotic system
synchronous firing in the neural network. is used as a model of a dynamical environment whose com-
plex behavior is neither purely random nor perfectly predict-
able. In the case of the perfect integrator neuron without any
leak Sauer[10] showed that the geometrical structure of a
chaotic system can be reconstructed with delay coordinates
Spike timing and ISIs of real neurons are highly variableof ISI sequence data.

IIl. METHODS OF ATTRACTOR RECONSTRUCTION

II. IS THE CORTICAL NEURON AN INTEGRATOR OR A
COINCIDENCE DETECTOR?

and irregulaf7]. Whether variability and irregularity of neu- A neuron fires a spike when the membrane potential

ronal spikes carry significant information or are just noisecrosses a threshold. From the firing times of the neuronal
spikes{T,,T,, ..., Ty}, the ISI sequence data can be ob-
tained as
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With the ISI data, the dynamical structure of the chaotic nee [
input is reconstructed in d-dimensional delay-coordinate  o°f
spacg 15| as follows:

U=t s g o diegen). @ |

In the present study, accuracy of the ISI reconstruction or T

interevent intervallEl) reconstructionsee Sec. Y of cha-
otic dynamics is measured by the normalized prediction error
(NPE). First, we divide the ISI or IEIl data into two parts.

From the first part of the data, a predictoR‘— RY, which

oer

o5

approximates the data dynamicswgs+1)~T(u(i)) is con- h‘u —————

structed. For the predictdt, a local linear predictof10,16] *[ . . .

is used in this paper. Then, for the second part of the data  ° 1X‘°'7N°ise tensity: D2“°'7 ax10°f
nonlinear prediction is carried out. Namely, for a given initial

S'[ateu(i)7 thes.step future Stata(i +S) is predicted agl(| FIG. 1. NPE of ISI or IEI data generated by a network of the

FHN neurons with noise. The number of neurons is varieK as

_¥s H 1 H 1 H rd
+s)=1°(u(i)) with s iterations of the predictof. The NPE —1 (single, 20, 40, and 80.

£ is finally calculated as the following normalized root-

mean-square error: . :
q Sauef{12] because the property is related to stochastic reso-

(4 =T)2y12 nance phenomena that may contribute to detection of weak
=t r’l (3)  input stimuli by biological systemp20,21] and possibly to
(t—1)H2 higher brain functions.

o The FitzHugh-Nagum@~HN) neuron model with noise is
wheret; andt are the predicted values of then ISI or IEI  described as follow§4,12:
and the average dft;}, and(-) stands for the average over
time series. In the following numerical experiments, the re- ev=—v(v—0.5(v—1)—w+S(t) + &t),
construction dimensiod, the prediction step, and the num- .
ber of the dataN are fixed at €,s,N)=(4,1,5001) unless
specified otherwise.

4

w=p—w-—0.15,

wherev is the membrane potential and is the recovery
variable;£(t) is Gaussianwhite noise withE[ £(t) ]=0 and

IV. NONLINEAR NEURODYNAMICS AND E[£(t)£(s)]=2D(t—s) with the noise intensityD. The
RECONSTRUCTION WITH INTERSPIKE INTERVALS neuron receives weaksubthreshold input S(t)=0.075

Since leaky components inevitably exist in biological +0-009X(t) from variablex of the Rasler equation§22],
neurons of the real brain, effects of the leak on ISI reconx=7(—-y—2), y=7(x+ay), z=7bx+z(x—c)], where
struction should be analyzed in order to consider the ISthe parameter values are fixed ata,lf,c,7)
reconstruction as a possible mechanism of neural coding i (0.36,0.4,4.5,0.5). As reported by Castro and Salg},
the brain. the response characteristic of the FHN neuron shows a single

Racicot and Longtif11] studied ISI sequence data gen- sharp minimum NPE on increasing the noise intenBifyat
erated from different neuronal models such as leakywhich the optimal ISI reconstruction of chaotic dynamics is
integrate-and-fire neurons and clarified short-term determinrealized(see the “single” case of Fig.)1
istic predictability of the I1SI data. Segunéoal.[17] applied
Fhe_ n.onlinear a}nalysis to ISI data recorded from syna_lptically V. NONLINEAR NETWORK DYNAMICS AND
|nh|b|ted crayfish pacemaker neurons and categorized theRECONSTRUCTION WITH INTEREVENT INTERVALS
discharge forms. Richardsoet al. [18] recorded I_SI data OF SYNCHRONOUS EIRING
from a rat cutaneous mechanoreceptor neuron stimulated by
chaotic input and reported that the deterministic structure of Although reconstruction of an input attractor with ISI data
the chaotic input can be preserved in the ISI data. Suzulgenerated by a single neuron provides an intriguing mecha-
et al. [19] also found both numerically and experimentally nism of temporal spike coding, global dynamics at the level
that significant determinism is detectable from the ISI dateof neural networks rather than local dynamics at the level of
generated by the leaky integrator neuron model and crickedingle neurons should be considered because neurons in the
wind receptor cells, which are stimulated by chaotic input.brain, especially in the cortex, interact with each other mas-
Furthermore, Castro and Saydr2] observed improvement sively. For example, Watanabe and Aih@238] showed that
of the ISI reconstruction by adding stochastic noise to theneural networks composed of coincidence detector neurons
FitzHugh-Nagumo neuron with subthreshold chaotic inputgenerate rich dynamical phenomena with spatiotemporal
Castro and Saudr 3] considered reconstruction of chaotic structures of neuronal spikes, which include spatiotemporal
dynamics with the period-parameter plots too. chaos. Among various spatiotemporal spike patterns, syn-

The present study focuses on the result of Castro andhronous firing has been most extensively studied both by
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FIG. 2. A schematic diagram of a network composed of the

globally coupled FHN neurons with noise. The coincidence detector % 20 40 60 80
neuron receives spike trains from all the FHN neurons and fires Number of Neurons - K

when and only when a large enough number of incident spikes are F|G. 3. An optimal noise range with NPE less than 0.5 increases
received almost simultaneously. This coincidence detector neuron igs the number of the neurons increases fom1 to K = 80.
introduced as an observer for coincidence of input spikes, namely,

synchronous firing in the network. We call the intervals between adjacent events of synchro-

physiological experimentation(for example, see Refs. nous firing as IEls. With the IEI sequence daff.,i

[24,25) and by theoretical analysigor example, see Refs. =1,... N—1}, the chaotic determinism is analyzed by the

[25,26)). attractor reconstruction in the followingl-dimensional
Here, we explore the possibility of extending the temporaldelay-coordinate space:

spike coding with ISI data to more robust spatiotemporal

coding with interevent intervals data, where the event is de- iV=(t. t. _ _

! . . .. U(') (h1t|flvt|721 atrfd+1)- (7)

fined not by a single spike but by synchronous firing emer-

gent in the neural network. _ _

coupled neurons with noise, each of which is the same wittiion by networks of neurons witk =20 ,40, and 80. The

the FHN neuron of Eq(4). The network dynamics is given Parameters for the coincidence detector neuron are set as

as follows(see Fig. 2 (k,p,v)=(0.5,0.25,0.5). As the number of the neurons in-
creases fromK=1 to K=80, the range of optimal noise
evi=—v;(v;—0.5(v;—1)—w; + (1) intensities defined as NPE less than 0.5 widens significantly

as shown in Fig. 3. This implies that the network structure

c X effectively facilitates the neural coding with synchronous fir-
TR > (vj—v)+ &), (5  ing and suppresses noisy components in a way that differs
=1 from population rate coding realized by a network structure

W;=0v;—w,—0.15, ©) with inhibitory coupling[27].

where @;,w;) are the state variables of thé FHN neuron
fori=1,... K; & is noise of theth neuron withE[ &;(t)]
=0 and E[§(1)¢;(s)]=2Dd(t—s)d(i—j); and K is the Next, we analyze a case slprathreshold inputather
number of the neurons in the network. In this model, electri-than subthreshold input; namelg(t) =0.175+ 0.009X(t).

cal connections with the coupling const&hare introduced. Figure 4 shows the NPE values obtained with sugprath-

In the network, each FHN neuron receives the commonesholdchaotic input, where the parameters of the nonlinear
subthreshold chaotic inp@&(t) and generates spike trains at prediction are set asd(s,N)=(4,30,5001) and the param-
firing times{T(i),T,(i),T5(i), ...} fori=1,2,... K. The eters for the neural networks and the coincidence detector
network dynamics depends upon the coupling streytH neuron are set as the same as in shbthresholdcase. The
the coupling is very weak, the neurons with noise tend to firesolid line represents the NPE of the ISI data obtained from a
almost independent of each other. With increasing the valusingle neuron, whereas the other lines indicate the NPE of
of C, we can observe synchronous firing due to networkthe IEI data obtained from networks of neurons whth-2,
dynamics with interactions among neurons. We fix the valuel0, 20, and 40. For the ISI reconstruction by the single neu-
of C at 0.05 in the following analysis. Synchronous firing is ron, the NPE monotonically increases as the noise intensity
defined as coincidence of the incident spikes from more thab® increases. This means that, in the caseugrathreshold
xK neurons g represents the coincidence ratto the coin-  input, noise in the neural dynamics simply deteriorates ISl
cidence detector neuron in Fig. 2 within a coincidence timereconstruction of the chaotic input.
window p. After firing, the coincidence detector neuron is  As shown in Figs. 4 and 5, for the IEI reconstruction by
absolutely refractory for a period. the neural network model, the NPE monotonically decreases

VI. CASE WITH SUPRATHRESHOLD INPUT
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FIG. 6. Two-dimensional IEI reconstructiort; (t;_,) of the

h FItC_S. 4 NtPI_E”?f thel_(ljsll_ or I_E:j.rectons;[rr]uctllgr fsupratthretsholg Rossler attractor by the IEI data obtained from a network of 1008
chaotic input. The solid line indicates the reconstruction by a_ oo D — 55 1078,

single neuron, whereas the other lines indicate the IEI reconstruc-

tions by networks composed of neurons witk-2, 10, 20, and 40. . . . L . o .
ues reflecting chaotic stimuli. Similar chaotic oscillation with

as the number of the neurons increases fiém1 to K synchronous firing is also observed by periodically stimulat-
—1008. This implies that the network structure contributes tdn9 @ network composed of locally coupled FHN neurons
improvement of the neural coding with synchronous firingl3C] With respect to coherence resonance phenorfgtia
also for thesuprathresholcchaotic input and that better re- A kind of global coupling through electrical synapses is
construction of the original chaotic dynamics is realized. Asconsidered in this paper. Actually, rich electrical synapses up
demonstrated in Fig. 6, a smooth geometrical structure th4P distances of about 10am are found especially between
resembles the original Reler attractor is well reconstructed Ccortical interneurons of fast-spiking cells and low-threshold-
in the two-dimensional IEI space on the basis of IEI dataSPiking cells and thought to contribute to the emergence of

generated by a network of 1008 FHN neurons wiltk5 synchronization among such neurdBg]. It is probable that
<1078 spatial distribution of electrical coupling is dependent on dis-

tances between neurons. Further, a variety of chemical syn-
apses also coexist with electrical orj8g]. Generally speak-
ing, local coupling and global coupling can produce different

Synchronous firing in the neural network composed of thehetwork dynamics as typically demonstrated by coupled map
globally coupled FHN neurons has been analyzed in thidattices and globally coupled magd®9]. In this respect,
paper from the viewpoint of neural coding. Synchronizationanalysis on effects of the different network structures upon
itself has been widely studied in many systef®8,29. the IEI coding is an important future problem.
Among various synchronous phenomena, the salient charac- Another point to be carefully examined is a difference of
teristic of the synchronous firing in the present model is thathe types of neurons. Both biological neurons and neuronal
the IEI sequence data take continuous and nonperiodic vamodels are generally classified to class | and class Il accord-

ing to the repetitive firing characteristi¢83—35. Class-I

0B y y y y y neurons and class-Il ones can be usually characterized by
saddle-node bifurcations and Hopf bifurcations, respectively
[34,35. The FHN neuron model is a typical example of a
class-1l neuron. On the other hand, there are many cortical
neurons that are thought to be of clasg3b]. It should be
noted that IEI coding has been also observed in a network
composed of leaky integrate-and-fire neurdB6|, whose
response characteristics are similar to those of class-I neu-
rons. It is also an important future problem to consider ef-
fects of the different neuronal types upon the IEI coding.

VII. DISCUSSION
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VIIl. CONCLUSION

—0
- 200 w00 500 %0 1000 A neural network composed of the globally coupled FHN
Network Sze : neurons with noise is introduced as a model that encodes
FIG. 5. NPE of the IEI reconstruction for the suprathresholddynamical information of chaotic input with IEI time series
chaotic input withD=5x10"8 when the number of the neurons data. The numerical analysis demonstrated that the spa-
increases fronK=1 to K=1008. tiotemporal neurodynamics can be used to realize a kind of
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