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Analytical properties and optimization of time-delayed feedback control
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Time-delayed feedback control is an efficient method for stabilizing unstable periodic orbits of chaotic
systems. If the equations governing the system dynamics are known, the success of the method can be
predicted by a linear stability analysis of the desired orbit. Unfortunately, the usual procedures for evaluating
the Floquet exponents of such systems are rather intricate. We show that the main stability properties of the
system controlled by time-delayed feedback can be simply derived from a leading Floquet exponent defining
the system behavior under proportional feedback control. Optimal parameters of the delayed feedback control-
ler can be evaluated without an explicit integration of delay-differential equations. The method is valid for
low-dimensional systems whose unstable periodic orbits are originated from a period doubling bifurcation and
is demonstrated for the Rsler system and the Duffing oscillator.
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[. INTRODUCTION back methods fail for any UPO with an odd number of real
positive Floquet exponent§~E9. The limitation has been
Ott, Grebogi, and York¢l] have suggested a method al- recently eliminated in a new modification of the DFC by
lowing a conversion of chaotic attractor to any of a largeintroducing into a feedback loop an additional unstable de-
number of time periodic motions. The main idea relies on thegree of freedom that changes the total number of unstable
fact that a chaotic attractor has typically embedded in it aorsion-free modes to an even nump&v].
dense set of unstable periodic orbitdPOg9 that can be sta- Several numerical methods for the linear stability analysis
bilized by a small feedback perturbation. This idea stimu-of time-delayed feedback systems have been developed. The
lated a development of a rich variety of new chaos contromain difficulty of this analysis is related to the fact that pe-
techniqueq 2] among which the delayed feedback controlriodic solutions of such systems have an infinite number of
(DFC) method[3] has become rather popular. The DFC isFEs, though only several FEs with the largest real parts are
based on applying a feedback proportional to the deviation ofelevant for stability properties. The most straightforward
the current state of the system from its state-one period in thmethod for evaluating several largest FEs is described in Ref.
past so that the control signal vanishes when the stabilizatiof12]. It adapts the usual procedure of estimating the
of the desired orbit is attained. The method has the advantagegapunov exponents of strange attractpt8]. This method
of not requiring prior knowledge of anything but the period requires a numerical integration of the variational system of
of the desired orbit. It is particularly convenient for fast dy- delay-differential equations. Bleich and Socdla8] devised
namical systems since it does not require the real-time coman elegant method to obtain the stability domain of the sys-
puter processing. The time-delayed feedback control hatem under EDFC in which the delay terms in variational
been successfully used in quite diverse experimental contextgjuations are eliminated due to the Floguet theorem and the
including electronic chaos oscillatoré], mechanical pendu- explicit integration of time-delay equations is avoided. Un-
lums [5], lasers[6], a gas discharge systefii], a chaotic fortunately, this method does not define the values of the FEs
Taylor-Couette flowf8], chemical systemf®], and a cardiac inside the stability domain and is unsuitable for optimization
system[10]. Socolar, Sukow, and Gauthigtl] improved an  problems.
original DFC scheme by using an information from many An approximate analytical method for estimating the FEs
previous states of the system. This extended BEDFC) of time-delayed feedback systems has been developed in
scheme achieves stabilization of UPOs with a greater degreRefs.[14,19. Here as well as in Ref13] the delay terms in
of instability [12,13]. variational equations are eliminated and the Floquet problem
The theory of the DFC is rather intricate since it involvesis reduced to a system of ordinary differential equations.
nonlinear delay-differential equations. Even linear stabilityHowever, the FEs of the reduced system depend on a param-
analysis of the delayed feedback systems is difficult. Someter that is a function of the unknown FEs themselves. In
general analytical results have been obtained only recentlRefs.[14,19 the problem is solved on the assumption that
[14-16. Justet al. [14] showed that a finite torsion of the the FE of the reduced system depends linearly on the param-
orbits close to the UPO is a necessary condition for the DF@ter. This method gives a better insight into the mechanism
method to work at all. More generally and precisely thisof the DFC and leads to reasonable qualitative results. In this
topological limitation has been proved by Nakajifd®] and  paper, we use a similar approach but do not employ the
Nakajima and UedfL6]. They showed that the delayed feed- above linear approximation and show how to obtain the ex-
act results. Here we do not consider the problem of stabiliz-
ing torsion-free orbits and restrict ourselves to the UPOs that
*Electronic address: pyragas@kes0.pfi.lt are originated from a flip bifurcation.
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The rest of the paper is organized as follows. In Sec. llJayed feedback perturbatiof) also vanishes provided the
we consider the EDFC versus the proportional feedback cordesired UPO is stabilized. The DFC uses the delayed output
trol (PFQO and derive the transcendental equation relating thg(t—T) as the reference signal and the necessity of the UPO
Floquet spectra of these two control methods. In Sec. I, waeconstruction is avoided. This feature determines the main
suppose that the FE for the PFC depends linearly on thadvantage of the DFC over the PFC.
control gain and derive the main stability properties of the Hereafter, we consider a more gendiattended version
EDFC. The case of nonlinear dependence is considered faf the delayed feedback control, the EDFC, in which a sum
the specific examples of the Bsler and Duffing systems in of states at integer multiples in the past is upet:

Secs. IV and V, respectively. For these examples we discuss .
the problem of optimizing the parameters of the delayed no1
feedback controller. The paper is finished with conclusions p(t)=K (1_R)n§1 R y(t=nT)—y(D)|. (6)
presented in Sec. VI.
The sum represents a geometric series with the parameter
Il. PROPORTIONAL VERSUS TIME-DELAYED |R|<1 that determines the relative importance of past differ-
FEEDBACK ences. FOR=0 the EDFC transforms to the original DFC.
Consider a dynamical system described by ordinary dif-The _e_xtended metho_d is supe_rior to the o_riginal in that it can
ferential equations stab|I|_ze UPQs of higher _perl(_)d_s _and with larger FEs._ I_:or
experimental implementation, it is important that the infinite
x=f(x,p.t) ) sum in Eqg.(6) can be generated using only a single time-
e delay element in the feedback loop.
where the vectok e ™ defines the dynamical variables and 1€ success of the above methods can be predicted by a

p is a scalar parameter available for an external adjustmentnéar stability analysis of the desired orbit. For the PFC
We imagine that a scalar variable method, the small deviations from the UP&X(t)=x(t)

—Xo(t) are described by the variational equation

y()=g(x(t)) 2)

that is a function of dynamic variablegt) can be measured

as the system output. Let us suppose that=a0 the system where A(t)=A(t+T) and B(t)=B(t+T) are both
has an UPOxy(t) that satisfiesco=f(X,,01) andxo(t+T)  T-periodicmXxm matrices,

=Xo(t), whereT is the period of the UPO. Here the value of

ox=[A(t)+GB(t)]4x, (7)

the parametep is fixed to zero without a loss of generality. A1) =Dy f(xo(1),00), (8a)
To stabilize the UPO we consider two continuous time feed-

back techniques, the PFC and the DFC, both introduced in B(1)=D; f(xo(1),0)@ Dg(xo(1)). (80)
Ref.[3].

HereD; (D,) denotes the vectgscalaj derivative with re-

spect to the firstsecondl argument. The matriA(t) defines
Yo(t) =g (Xo(t)) (3)  the stability properties of the UPO of the free system and

B(t) is the control matrix that contains all the details on the

that corresponds to the system output if it would move alongoupling of the control force.

the desired UPO. For chaotic systems, this periodic signal Solutions of Eq.(7) can be decomposed into eigenfunc-

can be reconstructefB] from the chaotic outpuy(t) by  tions according to the Floquet theory,

using the standard methods for extracting UPOs from chaotic

time series dat§20]. The control is achieved via adjusting ox=expAt)u(t), u(t)=u(t+T), 9)

the system parameter by a proportional feedback,

The PFC uses the periodic reference signal

whereA is the FE. The spectrum of the FEs can be obtained
p(t)=G[yo(t)—y(t)], (4)  with the help of the fundamentahXm matrix ®(G,t) that
is defined by the equalities
whereG is the control gain. If the stabilization is successful

the feedback perturbatiop(t) vanishes. The experimental D(G,t)=[A() +GB(t)]P(G,t), D(G,0=I. (10
implementation of this method is difficult since it is not sim- o - _
ply to reconstruct the UPO from experimental data. For any initial conditionx;,, the solution of Eq(7) can be

More convenient for experimental implementation is theexpressed with this matrixx(t) =®(G,t)x;,. Combining
DFC method, which can be derived from the PFC by replacthis equality with Eq.(9), one obtains the systepd (G,T)
ing the periodic reference signgy(t) with the delayed out- —expAT)I]x;,=0 that yields the desired eigensolutions.
put signaly(t—T) [3]: The characteristic equation for the FEs reads

p(t)=K[y(t—T)—y(t)]. (5) def®(G,T)—exp(AT)I]=0. (11

Here we exchanged the notation of the feedback gairKfor It definesm FEs A; [or Floquet multipliersu;=exp(A;T)],
to differ it from that of the proportional feedback. The de- j=1, ... m that are the functions of the control ga&
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Aj=Fi(G), j=1,...m. (12 ing from initially stable FEs may become dominant in some
intervals of the parametéq [19]. Third, the functiong~; in
The values=;(0) are the FEs of the free system. By assump-the proportional feedback technique are defined for the real-
tion, at least one FE of the free UPO has a positive real parivalued argumenG; however, we may need a knowledge of
The PFC is successful if the real parts of all eigenvalues arthese functions for the complex values of the argument

negative, R&;(G)<0, j=1,... min some interval of the KH(A) when considering the solutions of Eq47).

parametelG. In spite of the possible occurrence of the above difficul-
Consider next the stability problem for the EDFC. Theties, there are many specific, practically important problems

variational equation in this case reads for which the most important information on the EDFC per-

_ formance can be simply extracted from E¢E5) and (17).
ox=A(t) ox(t) +KB(t) Such problems cover low-dimensional systems whose UPOs
w arise from a period-doubling bifurcation.
_ N1 surs T In what follows we concentrate on the special type of free
x4 R)ngl RTZox(t=nT)=ox(1)). (13 orbits, namely, those that flip their neighborhood during one

turn. More specifically, we consider UPOs whose leading
The delay terms can be eliminated due to E®), Sx(t Floguet multiplier is real and negative so that the corre-
—nT)=exp(—nAT)dX(t). As a result the problem reduces to sponding FE obeys Ifi;(0)=#/T. It means that the FE is
the system of ordinary differential equations similar to Eq.placed on the boundary of the “Brillouin zone.” Such FEs

(7), are likely to remain on the boundary under various perturba-
) tions and hence the condition I (G) = =/T holds in some
Sx=[A(t)+KH(A)B(t)]dx, (14)  finite interval of the control gairG e[Gnmin,Gmaxl, Gmin
<0, Ga> 0. Subsequently we shall see that the main prop-
where erties of the EDFC can be extracted from the function
ReF ith th ing in th
e 1—exp(— AT) " infenl/;?)’ with the argumentG varying in the above
~ 1-Rexp—AT) Let us introduce the dimensionless function
is the transfer function of the extended delayed feedback d(G)=F(G)T—im (18

controller. Equationg7) and (14) have the same structure

defined by the matrice&(t) andB(t) and differ only by the  that describes the dependence of the real part of the leading
value of the control gain. The equations become identical iFE on the control gail@ for the PFC and denote by
we substituteG=KH(A). The price one has to pay for the
elimination of the delay terms is that the characteristic equa- AN=AT—inw (19
tion defining the FEs of the EDFC depends on the FEs itself:
the dimensionless FE of the EDFC shifted by the amatnt
def ®(KH(A),T)—exp(AT)I]=0. (16)  along the complex axes. Then from E@$5) and (17) we

Nevertheless, we can take advantage of the linear stabilitgj/er

analysis for the PFC in order to predict the stability of the A=¢(G), (209
system controlled by time-delayed feedback. Suppose that

the functions~;(G) defining the FEs for the PFC are known. 1+Rexg — ¢(G)]

Then the FEs of the UPO controlled by time-delayed feed- K=G . (20b)
back can be obtained through solution of the transcendental 1+exgd —¢(G)]

equations,

These equations define the parametric dependenoersus
A=F;(KH(A)), j=1,...m, (17) K for the EDFC. HereG is treated as an independent real-
valued parameter. We suppose that it varies in the interval
Though a similar reduction of the EDFC variational equation] G in,Gmaxl SO that the leading exponeRt(G) associated
has been considered previoushf. Refs.[13,14,19), here  with the PFC remains on the boundary of the “Brillouin
we emphasize the physical meaning of the functibf(<s), zone.” Then the variable&, K, and the functiong are all
namely, these functions describe the dependence of the Floeal valued.
guet exponents on the control gain in the case of the PFC. To demonstrate the benefit of EqR0) let us derive the
In the general case, the analysis of the transcendentatability threshold of the UPO controlled by the extended
equations(17) is not a simple task due to several reasonstime-delayed feedback. The stability of the periodic orbit is
First, the analytical expressions of the functidgh§G) are  changed when reverses the sign. From E@03 it follows
usually unknown; they can be evaluated only numericallythat the function¢(G) has to vanish for some valué
Second, each FE of the free systéj(0) yields an infinite =G, ¢(G;)=0. The value of the control gaiG, is noth-
number of distinct FEs atK+#0; different eigenvalue ing but the stability threshold of the UPO controlled by the
branches that originate from different exponents of the fregroportional feedback. Then from E(0b) one obtains the
system may hybridize or cross so that the branches originastability threshold
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k=0 andk—x, respectively. Fok=0 (an open loop sys-
tem), there is a real-valued roat=\,>0 that corresponds

to the FE of the free UPO and an infinite number of the
complex rootsA=InR+imn, n=*=1,+3,... in theleft
half-plane associated with the extended delayed feedback
controller. Fork—«, the roots tend to the locations
=imn, n=x1,£3,... determined by the poles ap(\)
function. For intermediate values &f, the roots can evolve

by two different scenarios depending on the value of the

Im A/n

parameteR.
37 4 © ?] (d) If Ris small enough R<R*) the conjugate pair of the
2+ 14 K K controller’s rootsh =In R=is collide on the real axefFig.
L &2k, A, P T Kep : 1(a)]. After collision, one of these roots moves along the real
3 0 n PR axes towards—, and another approaches the FE of the
E 14 ¥k, 1 Rean UPO, then collides with this FE &=k,, and pass to the
21 24 complex plane. Afterwards this pair of complex conjugate
-3 4 3] Y ® roots moves towards the pointsi . At k=k, they cross
32401 2 0o 1 2 3 4 into the right half plane. In the intervit <k<k; all roots of
Re k Eq. (23) are in the left half plane and the UPO controlled by

) ) the extended time-delayed feedback is stable. The left
FIG. 1. Root loci of Eq.(23) ask varies from 0 toe and 5 ndary of the stability domain satisfies Eg1). For the
dependence Re vs k for A\;=2 and two different values of the renormalized value of the control gain it reads
parameteR: (a) and(b) R=0.2<R*, (c) and(d) R=0.4>R*. The
crosses and circles denote the location of roots=a® andk— oo,
respectively. Thick solid lines ifb) and (c) symbolized by (\) ki=Ao(1+R)/2. (24
are the dependencés= ¢(\) for real \.

An explicit analytical expression for the right boundéeyis
Ki=Gy(1+R)/2 (21 unavailable. Inside the stability domain there is an optimal

. alue of the control gaik=k,, that for the fixedR provides
e o o e et st o e il vl for (5 sl patof e leaing P
: T prop lf{:ig. 1(b)]. To obtain the valuek,, and \ i, it suffices to
EDFC by using the specific examples of chaotic systems, b examine the properties of the fun%tiajnj)\) for the real val-
first we consider general features of the EDFC for a simple prop

example in which a linear approximation of the function ues of the afg“mer’;‘- The vaIugskop an.dkmi” are cpndl—
. tioned by the maximum of this function and satisfy the
¢(G) is assumed.

equalities

Ill. PROPERTIES OF THE EDFC: SIMPLE EXAMPLE
. . ' (Nmin) =0, kop: W (Nmin) - (25
To demonstrate the main properties of the EDFC let us

suppose that the functio$y(G) defining the FE for the pro-

portional feedback depends linearly on the control gain 1he above scenario is valid when the functigfi) pos-
(cf. Refs.[14,19), sesses the maximum. The maximum disappeaiR=aR*,

when it collides with the minimum of this function so that
d(G)=No(1—-G/G,). (220  the conditionsy’'(A)=0 and ¢”"(\)=0 are fulfilled. For
No=2, these conditions yiel®* ~0.255.
Here\ denotes the dimensionless FE of the free system and Now we consider an evolution of roots f&>R* [Figs.
G, is the stability threshold of the UPO controlled by pro- 1(c,d)]. In this case the modes related to the controller and
portional feedback. Substituting approximati@?®) into Eq.  the UPO evolve independently from each other. The FE of

(20) one derives the characteristic equation the UPO moves along the real axes towards without
hybridizing with the modes of the controller. As done previ-
K= () )\)1+R9XP(—?\) 23 ously, the left boundark; of the stability domain is deter-
=(\g—

mined by Eq.(24). The right boundark, is conditioned by
the controller mode associated with the roptsIn R=i at
defining the FEs for the EDFC. Hede=K\A,/G; is the k=0 that move towards\= *iz for k—c. The optimal
renormalized control gain of the extended time-delayed feedvaluek,, is defined by a simple intersection of the real part
back. The periodic orbit is stable if all the roots of Eg3)  of this mode with the mode related to the UPO.

are in the left half-plane Re<<0. The characteristic root- Stability domains of the periodic orbit in the plane of
locus diagrams and the dependence\Reersusk for two  parametersk,R) are shown in Fig. @). The left boundary
different values of the parametBrare shown in Fig. 1. The of this domain is the straight line defined by E&4). The
zeros and poles af(\) function define the value of roots at right boundary is determined by parametric equations

Tren Y
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FIG. 2. (a) Stability domains of Eq(23) in (k,R) plane andb) o (OK)
dependenca ., vs R for different values of\y: 1, 2, and 4(in- 0.3 8 {6) . (x’ % )
creasing line thickness corresponds to increasing valugg)ofThe min'_op
stars inside the stability domains denote the optimal values 0.2
(kopvRop)- v
0.14
y A3+s?  \o—scot(s/2) 26 :
27 \ptscot(s/2)’  Ngt+scot(s/2)’ 0.0-— - i -

with the parametes varying in the interva] 0,7r]. As is seen .

from the figure, the stability domain is smaller for the UPOs  FIG. 3. (&) FEs of the Resler system under PFC as a function of
with a larger FE\,. Figure Zb) shows the optimal properties the control gainG. Thick solid, thin broken, and thin solid lines
of the EDFC, namely, the dependencg;, versusR, where  represent the functiond, T—im, A,T (zero exponent and A5T
Amin is the value of the leading Floquet mode evaluated af 7 respectively.(b) Parametric dependende vs \ defined by
k=K,p. This dependence possesses a minimurRaR,, eqS-(ZIO) forftitf EDFC. Ttge(z;lrjt(;eésga_rlgt;i ;U(;vas) \(/)w;h(g;ffer-
=R*. Thus for any given , there exists an optimal value of €Mt Values otine parametsr 2:18) =0.4,19) 0, (%) U.2,

the parameteR= R, that atk= kqp, provides the fastest con- 0:28:(6) 0.4. Solid dots show the maxima of the curves and open
vergence of nearby trajectories to the desired periodic orbit(.:'rcIes indicate their intersections with the line=0.
For R>R,,, the performance of the EDFC is adversely af- . . )
fected with the increase iR since forR close to 1 the modes (27) around the UPO, one obtains explicit expressions for the

of the controller are damped out very slowly, Reln R. matricesA(t) andB(t) defined in Eq(8):
In this section we used an explicit analytical expression
for the functiong(G) when analyzing the stability properties 0 -1 -1
of the UPO controlled by the extended time-delayed feed-
back. In the next sections we consider a situation where the A=| 1 a 0 (28
function ¢(G) is available only numerically and only for xg(t) 0 x?(t)—c

real values of the paramet&: We show that in this case the

main stability characteristics of the system controlled by . 0 )

time-delayed feedback can be derived as well. and B=diag(0;-1,0). Herex;(t) denotes thg component
of the UPO.

First we consider the systei27) controlled by propor-
tional feedback, when the perturbatip(t) is defined by Eqg.
Let us consider the problem of stabilizing the period-one(4)- By solving Eqs(10) and(11) we obtain three FEs\,,
UPO of the Rasler systeni21]: A,, andA; as a function of the control gai@. The real parts
of these functions are presented in Figa)3The values of

the FEs of the free =0) UPO are A;T=0.876+i,

IV. ROSSLER SYSTEM

X1 X7 X3 0 A,T=0, A;T=—31.974+i. Thus the first and the third

)'(2 = X1+ ax, +p(t)| 1. (27 FEs are located on the boundary of the “Br!llouin zone.”

. b+ (X~ C)X 0 The second, zero FE, is related to the translational symmetry
X3 L 8 that is general for any autonomous system. The dependence

of the FEs on the control gai@ is rather complex if it would

Here we suppose that the feedback perturbapitn) is ap-  be considered in a large interval of the param@&ein Fig.
plied only to the second equation of the ter system and 3(a), we restricted ourselves to a small interval of the param-
the dynamic variablex, is an observable available at the eterG[0,0.67] in which all FEs do not change their imagi-
system output, i.ey(t) =g(x(t))=x,(t). nary parts, i.e., the FEA; and A5 remain on the boundary

For parameter values=0.2,b=0.2, andc=5.7, the free  of the “Brillouin zone,” Im A T=i, ImA3T=i, andA,
[p(t)=0] Rossler system exhibits chaotic behavior. An ap-remains real valued, Ith,=0 for anyG in the above inter-
proximate period of the period-one UPR(t) =Xy(t+T) val. An information on the behavior of the leading BE or,
embedded in chaotic attractoris=5.88. By linearizing Eq. more precisely, of the real-valued function(G)=AT
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—ir in this interval, will suffice to derive the main stability 14 (a
properties of the system controlled by time-delayed feed-
back.

The main information on the EDFC performance can be
gained from parametric Eq$20). They make possible a
simple reconstruction of the relevant Floquet branch in the
(K,\) plane. This Floquet branch is shown in FighBfor
different values of the parametBr Let us denote the depen- — T — T
denceK versush corresponding to this branch by a function ' Tk | ' Tk |
¥, K=y(N\). Formally, an explicit expression for this func-

tion can be written in the form ‘( (d)
1
H =100 e oY) 29 N
= —_, < esses®
1+exp(—N\) E 2 4]

where¢ ! denotes the inverse function ¢{G). More con- 2. v
venient for graphical representation of this dependence is, of : : : , : . : ,
course, the parametric forf20). The EDFC will be success- 00 04 08 12 00 04 08 12
ful if the maximum of this function is located in the region K K

A<0. Then the maximum defines the minimal value of the FIG. 4. Leading FEs of the Rsler system under EDFC as a

I_ead:ng ::E}‘mfinlzor the EIIDFC_ anCKOF;].: lrf()l\qmmf) is the op- function of the control gairK for different values of the parameter
timal value of the control gain at which the fastest conver-o. 4 0.1 (b) 0.2, (c) 0.4, (d) 0.6. Thick solid lines symbolized by

gence of the nearby 'graje(_:tories to the desired orbit is at(—/j()\) show the dependendé= (\) for real \. Solid lines in the
tained. From Fig. @) it is evident, that the delayed feedback regionK >K.,, are defined from Eqg31). The number of terms in

controller should gain in performance through increase of th@eries(30) is N=15. Solid black dots denote the “exact” solutions
parameteR since the maximum of thé(\) function moves  optained from complete system of Eqs0), (15), (16).

to the left. AtR=R*~0.28 the maximum disappears. For
R>R*, it is difficult to predict the optimal characteristics of N+1

the EDFC. In Sec. lll we have established that in this case Z ayr"sinne=0, (313
the valuel i, is determined by the intersection of different n=2
Floquet branches.

The left boundary of the stability domain is defined by
equality K;=(0) [Fig. 3b)] or alternatively by Eq(21), K=Kopt 22 a,r" cosne, (31b
K;=G,(1+R)/2. This relationship between the stability "
thresholds of the periodic orbit controlled by the PFC and the

N+1

EDFC is rather universal; it is valid for systems whose lead- REA=Amint 1 COSe, (319
ing FE of the UPO is placed on the boundary of the “Bril- _

louin zone.” It is interesting to note that the stability thresh- ImA=rsing. (31d
old for the original DFC R=0) is equal to the half of the . ,

threshold in the case of the PFK, =G, /2. Let us suppose thatis an independent parameter. By solv-

An evaluation of the right boundari, of the stability N9 EQ. (318 we can determing as a function ofr, ¢
domain is a more intricate problem. Nevertheless, for the= ¢(F)- Then Egs.(31b),(31¢ and (31h),(31d define the
parameteR<R* it can be successfully solved by means of Parametric dependences ReversusK and ImA versusk,
an analytical continuation of the functio(\) on the com-  respectively.

plex region. For this purpose we expand the functigh) at Figure 4 shows the dependence of the leading FEs on the
the pointA =\, into power series control gainK for the EDFC. The thick solid line represents

the most important Floquet branch that conditions the main

N+1 stability properties of the system. It is described by the func-
YN =Kop+ > (A= Amin)" (300 tion K=4¢(X\) with the real argumenk. Note that the same
n=2 function has been depicted in Figb3 for inverted axes. For

R<R*, this branch originates an additional sub-branch,
The coefficientsa, we evaluate numerically by the least- which starts at the pointK,,,\min) and spreads to the re-
squares fitting. In this procedure we use a knowledge of nugion K>K,,. The sub-branch is described by E¢31) that
merical values of the functiogy(\,), m=1,... M in M results from an analytical continuation of the functig(\)
>N points placed on the real axes and solve a correspondingn the complex plane. This sub-branch is leading in the re-
system ofN linear equations. To extend the Floquet branch togion K>K,, and its intersections with the line=0 define

the regionK>K,, we have to solve the equatidt= ()
for the complex argument\. Substituting X —\pnin
=r expl¢) into Eq. (30) we obtain

the right boundarK, of the stability domain. In Figs.(4,b
the sub-branches are shown by solid lines. As seen from the
figures, the Floquet sub-branches obtained by means of an
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FIG. 5. (a) Stability domain of the period-one UPO of the : 7 ) o (0K)
Rossler system under EDFC. The thick curve inside the domain 0.6 P .:Kp)
shows the dependent&,, vs R. The star marks the optimal point —
(Kop:Rop). (b) Minimal value i, of the leading FE as a function 0.4
of the parameteR. In both figures solid and broken lines denote the . |
solutions obtained from Eqg$20) and Egs.(10), (15), and (16), 0.2
respectively. ;
analytical continuation are in good agreement with the “ex- 00 % 3 3 A 3 1

act” solutions evaluated from the complete system of Egs.
(10), (15), and(16).

For R>R*, the maximum in the functions(\) disap- FIG. 6. (a) FEs of the Duffing oscillator under PFC, as a func-
pears and the Floquet branch originated from the eigenvaludion of the control gainG. Thick and thin solid lines denote the
A=InR=im of the controller(see Sec. I)l becomes domi- function A;T—im andA,T—ir, respectively(b) The dependence
nant in the regiork >K,,. This Floguet branch as well as K vs\ for the EDFC_defin_ed by parametric Eq20). The numbers
the intersection point Kqp,\min) are unpredictable via a mark the curves with different values of the parameRer(1)
simple analysis. It can be determined by solving the com=9-5:(2 =0.2,(3) 0,(4) 0.1,(5) 0.2,(6) 0.25,(7) 0.4.
plete system of Eq410), (15) and(16). In Figs. 4c,d) these
solutions are shown by dots. Here y is the damping coefficient of the oscillator. The pa-

Fig. 5 demonstrates how much of information one canfametersa andw are the amplitude and the frequency of the
gain via a simple analysis of parametric EqR0). These external force, respectively. We assume that the spgeaf
equations allow us to construct the stability domain in thethe oscillator is the observable, i.g(t) =g(x(t))=x, and
(K,R) plane almost completely. The most important infor- the feedback force(t) is applied to the second equation of
mation on optimal properties of the EDFC can be obtainedhe system(32). We fix the values of parameters=0.02,
from these equations as well. The thick curve in the stabilitya=2.5, o=1 so that the fregp(t)=0] system is in chaotic
domain shows the dependence of optimal value of the conegime. The period of the period-one UPO embedded in cha-
trol gainK,, on the parameteR. The star marks an optimal otic attractor coincides with the period of the external force
choice of both parametersK(,,R,p), which provide the T=2m/w=2m7. Linearization of Eq.32) around the UPO
fastest decay of perturbations. Figurép)sshows how the Yyields the matrice#\(t) andB(t) of the form
decay rate\ ,,;, attained at the optimal value of the control

gainK,, depends on the paramet@r The left part of this 0 1 0 0
dependence is simply defined by the maximum of the func- A(t)= Oyera2 ) —( ) (33
tion ¥(N\) while the right part is determined by intersection 1-3[a1° —» 0 1

of different Floquet branches and can be evaluated only with

the complete system of Eq&L0), (15), and(16). Unlike the First we analyze the Duffing oscillator under proportional

simple model considered in Sec. Il here the intersection ocfeedback defined by E¢4). This system is nonautonomous
curs before the maximum in the functiof(\) disappears, and does not have the zero FE. By solving E@8) and(11)

i.e., at R=R,,<R*. Nevertheless, the valuB* gives a we obtain two FEs\; and A, as a function of the control
good estimate for the optimal value of the param&egsince  gainG. The real parts of these functions are presented in Fig.

R* is close toR,. 6(a). Both FEs of the free&=0) UPO are located on the
boundary of the “Brillouin zone,”A;T=1.248+i7, A,T
V. DUFFING OSCILLATOR =0, A, T=—-1.373+im. As before, we restrict ourselves

with a small interval of the paramet&<[0,1.6 in which
Both FEs remain on the boundary.

As was in the previous example, the main properties of
e system controlled by time-delayed feedback can be ob-
tained from parametric Eq$20). Figure &b) shows the de-

X X, 0 pendenceK = (\) for different values of the paramet&
=l +p| | (2

To justify the universality of the proposed method we
demonstrate its suitability for nonautonomous systems. As
typical example of such a system we consider the Duffinqh
oscillator

For the fixed value oR, the maximum of this function de-

3 .
17X~ yXptasinot fines the optimal control gaik,,= ¢(\ ). The maximum

X2
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Re A

FIG. 8. The same as in Fig. 5 but for the Duffing oscillator.

by time-delayed feedback. Our consideration is restricted to
low-dimensional systems whose unstable periodic orbits
originate from a period doubling bifurcation. These orbits

flip their neighborhood during one turn so that the leading
Floquet exponent is placed on the boundary of the “Brillouin

zone.” Knowing the dependence of this exponent on the con-
trol gain for the proportional feedback control one can sim-
ply construct the relevant Floquet branch for the case of
time-delayed feedback control. As a result the stability do-
{gain of the orbit controlled by time-delayed feedback as
well as optimal properties of the delayed feedback controller
can be evaluated without an explicit integration of time-

disappears aR=R*~0.25. The left boundary of the stabil- delay equations. . . I .
ity domain isK; = ¢(0)=G,(1+R)/2, as previously. The proposed algorithm gives a better insight into how

; ; ; ; the Floguet spectrum of periodic orbits controlled by time-
Figure 7 shows the results of analytical continuation of . : . .
the relevant Floquet branch on the regkop-K . The con- delayed feedback is formed. We believe that the ideas of this

tinuation is performed via Eq$31). For small values of the approach will be useful for further development .Of time-

parameteR[Fig. 7(a,B], a good quantitative agreement with delayed feedback control techniques and will stimulate a
the “exact” result o’bta,ined from complete system of Eqs search for other modifications of the method in order to gain
(10), (15), and(16) is attained. FOR=0.2<R*, the Floquet better performance.

mode associated with the controller becomes dominant in the Herg no 90n5|derat|on has been glven.Fo the 'ForS|0n-free
regionK>K, . In this case the analytical continuation pre- periodic orbits. These orbits can be stabilized with the un-
dicts correcﬁg the second largest FE stable time-delayed feedback controller proposed recently in

Again, as in the previous example, a simple analysis ofef' [17.]' Sta_bil_ity analysis of such_systems_can be per-

parametric Eq(20) allows us to construct the stability do- ormed n a similar manner as descr_|bed in this paper. Th's

main in the K,R) plane almost completefFig. &a] and to problen"_n is currently under investigation and the results will
: P : : : be published elsewhere.

obtain the most important information on the optimal prop-

erties of the delayed feedback controll€ig. 8b)].

Re A
Re A

FIG. 7. The same as in the Fig. 4 but for the Duffing oscillator.
The values of the paramet& are (a) 0, (b) 0.1, (c) 0.2, (d) 0.4.
Open circles denote the second largest FE obtained from comple
system of Eqs(10), (15), and(16).
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