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Analytical properties and optimization of time-delayed feedback control
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Time-delayed feedback control is an efficient method for stabilizing unstable periodic orbits of chaotic
systems. If the equations governing the system dynamics are known, the success of the method can be
predicted by a linear stability analysis of the desired orbit. Unfortunately, the usual procedures for evaluating
the Floquet exponents of such systems are rather intricate. We show that the main stability properties of the
system controlled by time-delayed feedback can be simply derived from a leading Floquet exponent defining
the system behavior under proportional feedback control. Optimal parameters of the delayed feedback control-
ler can be evaluated without an explicit integration of delay-differential equations. The method is valid for
low-dimensional systems whose unstable periodic orbits are originated from a period doubling bifurcation and
is demonstrated for the Ro¨ssler system and the Duffing oscillator.
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I. INTRODUCTION

Ott, Grebogi, and Yorke@1# have suggested a method a
lowing a conversion of chaotic attractor to any of a lar
number of time periodic motions. The main idea relies on
fact that a chaotic attractor has typically embedded in
dense set of unstable periodic orbits~UPOs! that can be sta-
bilized by a small feedback perturbation. This idea stim
lated a development of a rich variety of new chaos con
techniques@2# among which the delayed feedback cont
~DFC! method@3# has become rather popular. The DFC
based on applying a feedback proportional to the deviatio
the current state of the system from its state-one period in
past so that the control signal vanishes when the stabiliza
of the desired orbit is attained. The method has the advan
of not requiring prior knowledge of anything but the perio
of the desired orbit. It is particularly convenient for fast d
namical systems since it does not require the real-time c
puter processing. The time-delayed feedback control
been successfully used in quite diverse experimental cont
including electronic chaos oscillators@4#, mechanical pendu
lums @5#, lasers@6#, a gas discharge system@7#, a chaotic
Taylor-Couette flow@8#, chemical systems@9#, and a cardiac
system@10#. Socolar, Sukow, and Gauthier@11# improved an
original DFC scheme by using an information from ma
previous states of the system. This extended DFC~EDFC!
scheme achieves stabilization of UPOs with a greater de
of instability @12,13#.

The theory of the DFC is rather intricate since it involv
nonlinear delay-differential equations. Even linear stabi
analysis of the delayed feedback systems is difficult. So
general analytical results have been obtained only rece
@14–16#. Justet al. @14# showed that a finite torsion of th
orbits close to the UPO is a necessary condition for the D
method to work at all. More generally and precisely th
topological limitation has been proved by Nakajima@15# and
Nakajima and Ueda@16#. They showed that the delayed fee
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back methods fail for any UPO with an odd number of re
positive Floquet exponents~FEs!. The limitation has been
recently eliminated in a new modification of the DFC b
introducing into a feedback loop an additional unstable
gree of freedom that changes the total number of unsta
torsion-free modes to an even number@17#.

Several numerical methods for the linear stability analy
of time-delayed feedback systems have been developed.
main difficulty of this analysis is related to the fact that p
riodic solutions of such systems have an infinite number
FEs, though only several FEs with the largest real parts
relevant for stability properties. The most straightforwa
method for evaluating several largest FEs is described in R
@12#. It adapts the usual procedure of estimating t
Lyapunov exponents of strange attractors@18#. This method
requires a numerical integration of the variational system
delay-differential equations. Bleich and Socolar@13# devised
an elegant method to obtain the stability domain of the s
tem under EDFC in which the delay terms in variation
equations are eliminated due to the Floquet theorem and
explicit integration of time-delay equations is avoided. U
fortunately, this method does not define the values of the
inside the stability domain and is unsuitable for optimizati
problems.

An approximate analytical method for estimating the F
of time-delayed feedback systems has been develope
Refs.@14,19#. Here as well as in Ref.@13# the delay terms in
variational equations are eliminated and the Floquet prob
is reduced to a system of ordinary differential equatio
However, the FEs of the reduced system depend on a pa
eter that is a function of the unknown FEs themselves.
Refs. @14,19# the problem is solved on the assumption th
the FE of the reduced system depends linearly on the par
eter. This method gives a better insight into the mechan
of the DFC and leads to reasonable qualitative results. In
paper, we use a similar approach but do not employ
above linear approximation and show how to obtain the
act results. Here we do not consider the problem of stab
ing torsion-free orbits and restrict ourselves to the UPOs
are originated from a flip bifurcation.
©2002 The American Physical Society07-1
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The rest of the paper is organized as follows. In Sec.
we consider the EDFC versus the proportional feedback c
trol ~PFC! and derive the transcendental equation relating
Floquet spectra of these two control methods. In Sec. III,
suppose that the FE for the PFC depends linearly on
control gain and derive the main stability properties of t
EDFC. The case of nonlinear dependence is considered
the specific examples of the Ro¨ssler and Duffing systems i
Secs. IV and V, respectively. For these examples we disc
the problem of optimizing the parameters of the delay
feedback controller. The paper is finished with conclusio
presented in Sec. VI.

II. PROPORTIONAL VERSUS TIME-DELAYED
FEEDBACK

Consider a dynamical system described by ordinary
ferential equations

ẋ5f~x,p,t !, ~1!

where the vectorxPRm defines the dynamical variables an
p is a scalar parameter available for an external adjustm
We imagine that a scalar variable

y~ t !5g„x~ t !… ~2!

that is a function of dynamic variablesx(t) can be measured
as the system output. Let us suppose that atp50 the system
has an UPOx0(t) that satisfiesẋ05f(x0,0,t) and x0(t1T)
5x0(t), whereT is the period of the UPO. Here the value
the parameterp is fixed to zero without a loss of generalit
To stabilize the UPO we consider two continuous time fe
back techniques, the PFC and the DFC, both introduce
Ref. @3#.

The PFC uses the periodic reference signal

y0~ t !5g„x0~ t !… ~3!

that corresponds to the system output if it would move alo
the desired UPO. For chaotic systems, this periodic sig
can be reconstructed@3# from the chaotic outputy(t) by
using the standard methods for extracting UPOs from cha
time series data@20#. The control is achieved via adjustin
the system parameter by a proportional feedback,

p~ t !5G@y0~ t !2y~ t !#, ~4!

whereG is the control gain. If the stabilization is success
the feedback perturbationp(t) vanishes. The experimenta
implementation of this method is difficult since it is not sim
ply to reconstruct the UPO from experimental data.

More convenient for experimental implementation is t
DFC method, which can be derived from the PFC by repl
ing the periodic reference signaly0(t) with the delayed out-
put signaly(t2T) @3#:

p~ t !5K@y~ t2T!2y~ t !#. ~5!

Here we exchanged the notation of the feedback gain foK
to differ it from that of the proportional feedback. The d
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layed feedback perturbation~5! also vanishes provided th
desired UPO is stabilized. The DFC uses the delayed ou
y(t2T) as the reference signal and the necessity of the U
reconstruction is avoided. This feature determines the m
advantage of the DFC over the PFC.

Hereafter, we consider a more general~extended! version
of the delayed feedback control, the EDFC, in which a s
of states at integer multiples in the past is used@11#:

p~ t !5KF ~12R! (
n51

`

Rn21y~ t2nT!2y~ t !G . ~6!

The sum represents a geometric series with the param
uRu,1 that determines the relative importance of past diff
ences. ForR50 the EDFC transforms to the original DFC
The extended method is superior to the original in that it c
stabilize UPOs of higher periods and with larger FEs. F
experimental implementation, it is important that the infin
sum in Eq.~6! can be generated using only a single tim
delay element in the feedback loop.

The success of the above methods can be predicted
linear stability analysis of the desired orbit. For the PF
method, the small deviations from the UPOdx(t)5x(t)
2x0(t) are described by the variational equation

d ẋ5@A~ t !1GB~ t !#dx, ~7!

where A(t)5A(t1T) and B(t)5B(t1T) are both
T-periodicm3m matrices,

A~ t !5D1 f„x0~ t !,0,t…, ~8a!

B~ t !5D2 f„x0~ t !,0,t…^ Dg„x0~ t !…. ~8b!

HereD1 (D2) denotes the vector~scalar! derivative with re-
spect to the first~second! argument. The matrixA(t) defines
the stability properties of the UPO of the free system a
B(t) is the control matrix that contains all the details on t
coupling of the control force.

Solutions of Eq.~7! can be decomposed into eigenfun
tions according to the Floquet theory,

dx5exp~Lt !u~ t !, u~ t !5u~ t1T!, ~9!

whereL is the FE. The spectrum of the FEs can be obtain
with the help of the fundamentalm3m matrix F(G,t) that
is defined by the equalities

Ḟ~G,t !5@A~ t !1GB~ t !#F~G,t !, F~G,0!5I . ~10!

For any initial conditionxin , the solution of Eq.~7! can be
expressed with this matrix,x(t)5F(G,t)xin . Combining
this equality with Eq.~9!, one obtains the system@F(G,T)
2exp(lT)I# xin50 that yields the desired eigensolution
The characteristic equation for the FEs reads

det@F~G,T!2exp~LT!I #50. ~11!

It definesm FEs L j @or Floquet multipliersm j5exp(LjT)#,
j 51, . . . ,m that are the functions of the control gainG:
7-2
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L j5F j~G!, j 51, . . . ,m. ~12!

The valuesF j (0) are the FEs of the free system. By assum
tion, at least one FE of the free UPO has a positive real p
The PFC is successful if the real parts of all eigenvalues
negative, ReF j (G),0, j 51, . . . ,m in some interval of the
parameterG.

Consider next the stability problem for the EDFC. T
variational equation in this case reads

d ẋ5A~ t !dx~ t !1KB~ t !

3F ~12R! (
n51

`

Rn21dx~ t2nT!2dx~ t !G . ~13!

The delay terms can be eliminated due to Eq.~9!, dx(t
2nT)5exp(2nLT)dx(t). As a result the problem reduces
the system of ordinary differential equations similar to E
~7!,

d ẋ5@A~ t !1KH~L!B~ t !#dx, ~14!

where

H~L!5
12exp~2LT!

12R exp~2LT!
~15!

is the transfer function of the extended delayed feedb
controller. Equations~7! and ~14! have the same structur
defined by the matricesA(t) andB(t) and differ only by the
value of the control gain. The equations become identica
we substituteG5KH(L). The price one has to pay for th
elimination of the delay terms is that the characteristic eq
tion defining the FEs of the EDFC depends on the FEs its

det@F„KH~L!,T…2exp~LT!I #50. ~16!

Nevertheless, we can take advantage of the linear stab
analysis for the PFC in order to predict the stability of t
system controlled by time-delayed feedback. Suppose
the functionsF j (G) defining the FEs for the PFC are know
Then the FEs of the UPO controlled by time-delayed fe
back can be obtained through solution of the transcende
equations,

L5F j„KH~L!…, j 51, . . . ,m. ~17!

Though a similar reduction of the EDFC variational equat
has been considered previously~cf. Refs. @13,14,19#!, here
we emphasize the physical meaning of the functionsF j (G),
namely, these functions describe the dependence of the
quet exponents on the control gain in the case of the PF

In the general case, the analysis of the transcende
equations~17! is not a simple task due to several reaso
First, the analytical expressions of the functionsF j (G) are
usually unknown; they can be evaluated only numerica
Second, each FE of the free systemF j (0) yields an infinite
number of distinct FEs atKÞ0; different eigenvalue
branches that originate from different exponents of the f
system may hybridize or cross so that the branches origi
02620
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ing from initially stable FEs may become dominant in som
intervals of the parameterK @19#. Third, the functionsF j in
the proportional feedback technique are defined for the r
valued argumentG; however, we may need a knowledge
these functions for the complex values of the argum
KH(L) when considering the solutions of Eqs.~17!.

In spite of the possible occurrence of the above diffic
ties, there are many specific, practically important proble
for which the most important information on the EDFC pe
formance can be simply extracted from Eqs.~15! and ~17!.
Such problems cover low-dimensional systems whose UP
arise from a period-doubling bifurcation.

In what follows we concentrate on the special type of fr
orbits, namely, those that flip their neighborhood during o
turn. More specifically, we consider UPOs whose lead
Floquet multiplier is real and negative so that the cor
sponding FE obeys ImF1(0)5p/T. It means that the FE is
placed on the boundary of the ‘‘Brillouin zone.’’ Such FE
are likely to remain on the boundary under various pertur
tions and hence the condition ImF1(G)5p/T holds in some
finite interval of the control gainGP@Gmin ,Gmax#, Gmin
,0, Gmax.0. Subsequently we shall see that the main pr
erties of the EDFC can be extracted from the functi
ReF1(G), with the argumentG varying in the above
interval.

Let us introduce the dimensionless function

f~G!5F1~G!T2 ip ~18!

that describes the dependence of the real part of the lea
FE on the control gainG for the PFC and denote by

l5LT2 ip ~19!

the dimensionless FE of the EDFC shifted by the amounp
along the complex axes. Then from Eqs.~15! and ~17! we
derive

l5f~G!, ~20a!

K5G
11R exp@2f~G!#

11exp@2f~G!#
. ~20b!

These equations define the parametric dependencel versus
K for the EDFC. HereG is treated as an independent rea
valued parameter. We suppose that it varies in the inte
@Gmin ,Gmax# so that the leading exponentF1(G) associated
with the PFC remains on the boundary of the ‘‘Brillou
zone.’’ Then the variablesl, K, and the functionf are all
real valued.

To demonstrate the benefit of Eqs.~20! let us derive the
stability threshold of the UPO controlled by the extend
time-delayed feedback. The stability of the periodic orbit
changed whenl reverses the sign. From Eq.~20a! it follows
that the functionf(G) has to vanish for some valueG
5G1 , f(G1)50. The value of the control gainG1 is noth-
ing but the stability threshold of the UPO controlled by t
proportional feedback. Then from Eq.~20b! one obtains the
stability threshold
7-3
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K15G1~11R!/2 ~21!

for the extended time-delayed feedback. In Secs. IV an
we shall demonstrate how to derive other properties of
EDFC by using the specific examples of chaotic systems,
first we consider general features of the EDFC for a sim
example in which a linear approximation of the functio
f(G) is assumed.

III. PROPERTIES OF THE EDFC: SIMPLE EXAMPLE

To demonstrate the main properties of the EDFC let
suppose that the functionf(G) defining the FE for the pro-
portional feedback depends linearly on the control gainG
~cf. Refs.@14,19#!,

f~G!5l0~12G/G1!. ~22!

Herel0 denotes the dimensionless FE of the free system
G1 is the stability threshold of the UPO controlled by pr
portional feedback. Substituting approximation~22! into Eq.
~20! one derives the characteristic equation

k5~l02l!
11R exp~2l!

11exp~2l!
[c~l!, ~23!

defining the FEs for the EDFC. Herek5Kl0 /G1 is the
renormalized control gain of the extended time-delayed fe
back. The periodic orbit is stable if all the roots of Eq.~23!
are in the left half-plane Rel,0. The characteristic root
locus diagrams and the dependence Rel versusk for two
different values of the parameterR are shown in Fig. 1. The
zeros and poles ofc(l) function define the value of roots a

FIG. 1. Root loci of Eq.~23! as k varies from 0 to` and
dependence Rel vs k for l052 and two different values of the
parameterR: ~a! and~b! R50.2,R* , ~c! and~d! R50.4.R* . The
crosses and circles denote the location of roots atk50 andk→`,
respectively. Thick solid lines in~b! and ~c! symbolized byc(l)
are the dependencesk5c(l) for real l.
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k50 andk→`, respectively. Fork50 ~an open loop sys-
tem!, there is a real-valued rootl5l0.0 that corresponds
to the FE of the free UPO and an infinite number of t
complex rootsl5 ln R1ipn, n561,63, . . . in the left
half-plane associated with the extended delayed feedb
controller. For k→`, the roots tend to the locationsl
5 ipn, n561,63, . . . determined by the poles ofc(l)
function. For intermediate values ofK, the roots can evolve
by two different scenarios depending on the value of
parameterR.

If R is small enough (R,R* ) the conjugate pair of the
controller’s rootsl5 ln R6ip collide on the real axes@Fig.
1~a!#. After collision, one of these roots moves along the r
axes towards2`, and another approaches the FE of t
UPO, then collides with this FE atk5kop and pass to the
complex plane. Afterwards this pair of complex conjuga
roots moves towards the points6 ip. At k5k2 they cross
into the right half plane. In the intervalk1,k,k2 all roots of
Eq. ~23! are in the left half plane and the UPO controlled
the extended time-delayed feedback is stable. The
boundary of the stability domain satisfies Eq.~21!. For the
renormalized value of the control gain it reads

k15l0~11R!/2. ~24!

An explicit analytical expression for the right boundaryk2 is
unavailable. Inside the stability domain there is an optim
value of the control gaink5kop that for the fixedR provides
the minimal valuelmin for the real part of the leading FE
@Fig. 1~b!#. To obtain the valueskop and lmin it suffices to
examine the properties of the functionc(l) for the real val-
ues of the argumentl. The valueskop and lmin are condi-
tioned by the maximum of this function and satisfy th
equalities

c8~lmin!50, kop5c~lmin!. ~25!

The above scenario is valid when the functionc(l) pos-
sesses the maximum. The maximum disappears atR5R* ,
when it collides with the minimum of this function so tha
the conditionsc8(l)50 and c9(l)50 are fulfilled. For
l052, these conditions yieldR* '0.255.

Now we consider an evolution of roots forR.R* @Figs.
1~c,d!#. In this case the modes related to the controller a
the UPO evolve independently from each other. The FE
the UPO moves along the real axes towards2` without
hybridizing with the modes of the controller. As done prev
ously, the left boundaryk1 of the stability domain is deter
mined by Eq.~24!. The right boundaryk2 is conditioned by
the controller mode associated with the rootsl5 ln R6ip at
k50 that move towardsl56 ip for k→`. The optimal
valuekop is defined by a simple intersection of the real p
of this mode with the mode related to the UPO.

Stability domains of the periodic orbit in the plane
parameters (k,R) are shown in Fig. 2~a!. The left boundary
of this domain is the straight line defined by Eq.~24!. The
right boundary is determined by parametric equations
7-4
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k25
l0

21s2

l01s cot~s/2!
, R5

l02s cot~s/2!

l01s cot~s/2!
, ~26!

with the parameters varying in the interval@0,p#. As is seen
from the figure, the stability domain is smaller for the UPO
with a larger FEl0. Figure 2~b! shows the optimal propertie
of the EDFC, namely, the dependencelmin versusR, where
lmin is the value of the leading Floquet mode evaluated
k5kop . This dependence possesses a minimum atR5Rop
5R* . Thus for any givenl0 there exists an optimal value o
the parameterR5Rop that atk5kop provides the fastest con
vergence of nearby trajectories to the desired periodic o
For R.Rop , the performance of the EDFC is adversely a
fected with the increase inR since forR close to 1 the modes
of the controller are damped out very slowly, Rel5 ln R.

In this section we used an explicit analytical express
for the functionf(G) when analyzing the stability propertie
of the UPO controlled by the extended time-delayed fe
back. In the next sections we consider a situation where
function f(G) is available only numerically and only fo
real values of the parameterG. We show that in this case th
main stability characteristics of the system controlled
time-delayed feedback can be derived as well.

IV. RÖSSLER SYSTEM

Let us consider the problem of stabilizing the period-o
UPO of the Ro¨ssler system@21#:

S ẋ1

ẋ2

ẋ3

D 5S 2x22x3

x11ax2

b1~x12c!x3

D 1p~ t !S 0

1

0
D . ~27!

Here we suppose that the feedback perturbationp(t) is ap-
plied only to the second equation of the Ro¨ssler system and
the dynamic variablex2 is an observable available at th
system output, i.e.,y(t)5g„x(t)…5x2(t).

For parameter valuesa50.2, b50.2, andc55.7, the free
@p(t)[0# Rössler system exhibits chaotic behavior. An a
proximate period of the period-one UPOx0(t)5x0(t1T)
embedded in chaotic attractor isT'5.88. By linearizing Eq.

FIG. 2. ~a! Stability domains of Eq.~23! in (k,R) plane and~b!
dependencelmin vs R for different values ofl0 : 1, 2, and 4~in-
creasing line thickness corresponds to increasing values ofl0). The
stars inside the stability domains denote the optimal val
(kop ,Rop).
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~27! around the UPO, one obtains explicit expressions for
matricesA(t) andB(t) defined in Eq.~8!:

A~ t !5S 0 21 21

1 a 0

x3
0~ t ! 0 x1

0~ t !2c
D ~28!

and B5diag(0,21,0). Herexj
0(t) denotes thej component

of the UPO.
First we consider the system~27! controlled by propor-

tional feedback, when the perturbationp(t) is defined by Eq.
~4!. By solving Eqs.~10! and~11! we obtain three FEs,L1 ,
L2, andL3 as a function of the control gainG. The real parts
of these functions are presented in Fig. 3~a!. The values of
the FEs of the free (G50) UPO areL1T50.8761 ip,
L2T50, L3T5231.9741 ip. Thus the first and the third
FEs are located on the boundary of the ‘‘Brillouin zone
The second, zero FE, is related to the translational symm
that is general for any autonomous system. The depend
of the FEs on the control gainG is rather complex if it would
be considered in a large interval of the parameterG. In Fig.
3~a!, we restricted ourselves to a small interval of the para
eterGP@0,0.67# in which all FEs do not change their imag
nary parts, i.e., the FEsL1 andL3 remain on the boundary
of the ‘‘Brillouin zone,’’ Im L1T5 ip, Im L3T5 ip, andL2
remains real valued, ImL250 for anyG in the above inter-
val. An information on the behavior of the leading FEL1 or,
more precisely, of the real-valued functionf(G)5L1T

s

FIG. 3. ~a! FEs of the Ro¨ssler system under PFC as a function
the control gainG. Thick solid, thin broken, and thin solid line
represent the functionsL1T2 ip, L2T ~zero exponent!, andL3T
2 ip, respectively.~b! Parametric dependenceK vs l defined by
Eqs.~20! for the EDFC. The numbers mark the curves with diffe
ent values of the parameterR: ~1! 20.5,~2! 20.2,~3! 0, ~4! 0.2,~5!
0.28, ~6! 0.4. Solid dots show the maxima of the curves and op
circles indicate their intersections with the linel50.
7-5
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2ip in this interval, will suffice to derive the main stabilit
properties of the system controlled by time-delayed fe
back.

The main information on the EDFC performance can
gained from parametric Eqs.~20!. They make possible a
simple reconstruction of the relevant Floquet branch in
(K,l) plane. This Floquet branch is shown in Fig. 3~b! for
different values of the parameterR. Let us denote the depen
denceK versusl corresponding to this branch by a functio
c, K5c(l). Formally, an explicit expression for this func
tion can be written in the form

c~l!5f21~l!
11R exp~2l!

11exp~2l!
, ~29!

wheref21 denotes the inverse function off(G). More con-
venient for graphical representation of this dependence is
course, the parametric form~20!. The EDFC will be success
ful if the maximum of this function is located in the regio
l,0. Then the maximum defines the minimal value of t
leading FElmin for the EDFC andKop5c(lmin) is the op-
timal value of the control gain at which the fastest conv
gence of the nearby trajectories to the desired orbit is
tained. From Fig. 3~b! it is evident, that the delayed feedbac
controller should gain in performance through increase of
parameterR since the maximum of thec(l) function moves
to the left. At R5R* '0.28 the maximum disappears. F
R.R* , it is difficult to predict the optimal characteristics o
the EDFC. In Sec. III we have established that in this c
the valuelmin is determined by the intersection of differe
Floquet branches.

The left boundary of the stability domain is defined
equality K15c(0) @Fig. 3~b!# or alternatively by Eq.~21!,
K15G1(11R)/2. This relationship between the stabili
thresholds of the periodic orbit controlled by the PFC and
EDFC is rather universal; it is valid for systems whose le
ing FE of the UPO is placed on the boundary of the ‘‘Br
louin zone.’’ It is interesting to note that the stability thres
old for the original DFC (R50) is equal to the half of the
threshold in the case of the PFC,K15G1/2.

An evaluation of the right boundaryK2 of the stability
domain is a more intricate problem. Nevertheless, for
parameterR,R* it can be successfully solved by means
an analytical continuation of the functionc(l) on the com-
plex region. For this purpose we expand the functionc(l) at
the pointl5lmin into power series

c~l!5Kop1 (
n52

N11

an~l2lmin!
n. ~30!

The coefficientsan we evaluate numerically by the leas
squares fitting. In this procedure we use a knowledge of
merical values of the functionc(lm), m51, . . . ,M in M
.N points placed on the real axes and solve a correspon
system ofN linear equations. To extend the Floquet branch
the regionK.Kop we have to solve the equationK5c(l)
for the complex argumentl. Substituting l2lmin
5r exp(iw) into Eq. ~30! we obtain
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n52

N11

anr n sinnw50, ~31a!

K5Kop1 (
n52

N11

anr n cosnw, ~31b!

Rel5lmin1r cosw, ~31c!

Im l5r sinw. ~31d!

Let us suppose thatr is an independent parameter. By sol
ing Eq. ~31a! we can determinew as a function ofr, w
5w(r ). Then Eqs.~31b!,~31c! and ~31b!,~31d! define the
parametric dependences Rel versusK and Iml versusK,
respectively.

Figure 4 shows the dependence of the leading FEs on
control gainK for the EDFC. The thick solid line represen
the most important Floquet branch that conditions the m
stability properties of the system. It is described by the fu
tion K5c(l) with the real argumentl. Note that the same
function has been depicted in Fig. 3~b! for inverted axes. For
R,R* , this branch originates an additional sub-bran
which starts at the point (Kop ,lmin) and spreads to the re
gion K.Kop . The sub-branch is described by Eqs.~31! that
results from an analytical continuation of the functionc(l)
on the complex plane. This sub-branch is leading in the
gion K.Kop and its intersections with the linel50 define
the right boundaryK2 of the stability domain. In Figs. 4~a,b!
the sub-branches are shown by solid lines. As seen from
figures, the Floquet sub-branches obtained by means o

FIG. 4. Leading FEs of the Ro¨ssler system under EDFC as
function of the control gainK for different values of the paramete
R: ~a! 0.1, ~b! 0.2, ~c! 0.4, ~d! 0.6. Thick solid lines symbolized by
c(l) show the dependenceK5c(l) for real l. Solid lines in the
regionK.Kop are defined from Eqs.~31!. The number of terms in
series~30! is N515. Solid black dots denote the ‘‘exact’’ solution
obtained from complete system of Eqs.~10!, ~15!, ~16!.
7-6
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ANALYTICAL PROPERTIES AND OPTIMIZATION OF . . . PHYSICAL REVIEW E 66, 026207 ~2002!
analytical continuation are in good agreement with the ‘‘e
act’’ solutions evaluated from the complete system of E
~10!, ~15!, and~16!.

For R.R* , the maximum in the functionc(l) disap-
pears and the Floquet branch originated from the eigenva
l5 ln R6ip of the controller~see Sec. III! becomes domi-
nant in the regionK.Kop . This Floquet branch as well a
the intersection point (Kop ,lmin) are unpredictable via a
simple analysis. It can be determined by solving the co
plete system of Eqs.~10!, ~15! and~16!. In Figs. 4~c,d! these
solutions are shown by dots.

Fig. 5 demonstrates how much of information one c
gain via a simple analysis of parametric Eqs.~20!. These
equations allow us to construct the stability domain in
(K,R) plane almost completely. The most important info
mation on optimal properties of the EDFC can be obtain
from these equations as well. The thick curve in the stabi
domain shows the dependence of optimal value of the c
trol gain Kop on the parameterR. The star marks an optima
choice of both parameters (Kop ,Rop), which provide the
fastest decay of perturbations. Figure 5~b! shows how the
decay ratelmin attained at the optimal value of the contr
gain Kop depends on the parameterR. The left part of this
dependence is simply defined by the maximum of the fu
tion c(l) while the right part is determined by intersectio
of different Floquet branches and can be evaluated only w
the complete system of Eqs.~10!, ~15!, and~16!. Unlike the
simple model considered in Sec. II here the intersection
curs before the maximum in the functionc(l) disappears,
i.e., at R5Rop,R* . Nevertheless, the valueR* gives a
good estimate for the optimal value of the parameterR, since
R* is close toRop .

V. DUFFING OSCILLATOR

To justify the universality of the proposed method w
demonstrate its suitability for nonautonomous systems. A
typical example of such a system we consider the Duffi
oscillator

S ẋ1

ẋ2
D 5S x2

x12x1
32gx21a sinvt D 1p~ t !S 0

1D . ~32!

FIG. 5. ~a! Stability domain of the period-one UPO of th
Rössler system under EDFC. The thick curve inside the dom
shows the dependenceKop vs R. The star marks the optimal poin
(Kop ,Rop). ~b! Minimal valuelmin of the leading FE as a function
of the parameterR. In both figures solid and broken lines denote t
solutions obtained from Eqs.~20! and Eqs.~10!, ~15!, and ~16!,
respectively.
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Hereg is the damping coefficient of the oscillator. The p
rametersa andv are the amplitude and the frequency of t
external force, respectively. We assume that the speedx2 of
the oscillator is the observable, i.e.,y(t)5g„x(t)…5x2 and
the feedback forcep(t) is applied to the second equation
the system~32!. We fix the values of parametersg50.02,
a52.5, v51 so that the free@p(t)[0# system is in chaotic
regime. The period of the period-one UPO embedded in c
otic attractor coincides with the period of the external for
T52p/v52p. Linearization of Eq.~32! around the UPO
yields the matricesA(t) andB(t) of the form

A~ t !5S 0 1

123@x1
0~ t !#2 2g D , B5S 0 0

0 21D . ~33!

First we analyze the Duffing oscillator under proportion
feedback defined by Eq.~4!. This system is nonautonomou
and does not have the zero FE. By solving Eqs.~10! and~11!
we obtain two FEsL1 and L2 as a function of the contro
gainG. The real parts of these functions are presented in
6~a!. Both FEs of the free (G50) UPO are located on the
boundary of the ‘‘Brillouin zone,’’L1T51.2481 ip, L2T
50, L2T521.3731 ip. As before, we restrict ourselve
with a small interval of the parameterGP@0,1.6# in which
both FEs remain on the boundary.

As was in the previous example, the main properties
the system controlled by time-delayed feedback can be
tained from parametric Eqs.~20!. Figure 6~b! shows the de-
pendenceK5c(l) for different values of the parameterR.
For the fixed value ofR, the maximum of this function de
fines the optimal control gainKop5c(lmin). The maximum

in

FIG. 6. ~a! FEs of the Duffing oscillator under PFC, as a fun
tion of the control gainG. Thick and thin solid lines denote th
functionL1T2 ip andL2T2 ip, respectively.~b! The dependence
K vs l for the EDFC defined by parametric Eqs.~20!. The numbers
mark the curves with different values of the parameterR: ~1!
20.5, ~2! 20.2, ~3! 0, ~4! 0.1, ~5! 0.2, ~6! 0.25, ~7! 0.4.
7-7
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K. PYRAGAS PHYSICAL REVIEW E 66, 026207 ~2002!
disappears atR5R* '0.25. The left boundary of the stabi
ity domain isK15c(0)5G1(11R)/2, as previously.

Figure 7 shows the results of analytical continuation
the relevant Floquet branch on the regionK.Kop . The con-
tinuation is performed via Eqs.~31!. For small values of the
parameterR @Fig. 7~a,b!#, a good quantitative agreement wi
the ‘‘exact’’ result obtained from complete system of Eq
~10!, ~15!, and~16! is attained. ForR50.2,R* , the Floquet
mode associated with the controller becomes dominant in
regionK.Kop . In this case the analytical continuation pr
dicts correctly the second largest FE.

Again, as in the previous example, a simple analysis
parametric Eq.~20! allows us to construct the stability do
main in the (K,R) plane almost completely@Fig. 8~a!# and to
obtain the most important information on the optimal pro
erties of the delayed feedback controller@Fig. 8~b!#.

VI. CONCLUSIONS

In this paper, we have demonstrated how to utilize
relationship between the Floquet spectra of the system
trolled by proportional and time-delayed feedback in orde
obtain the main stability properties of the system control

FIG. 7. The same as in the Fig. 4 but for the Duffing oscillat
The values of the parameterR are ~a! 0, ~b! 0.1, ~c! 0.2, ~d! 0.4.
Open circles denote the second largest FE obtained from com
system of Eqs.~10!, ~15!, and~16!.
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by time-delayed feedback. Our consideration is restricted
low-dimensional systems whose unstable periodic or
originate from a period doubling bifurcation. These orb
flip their neighborhood during one turn so that the lead
Floquet exponent is placed on the boundary of the ‘‘Brillou
zone.’’ Knowing the dependence of this exponent on the c
trol gain for the proportional feedback control one can si
ply construct the relevant Floquet branch for the case
time-delayed feedback control. As a result the stability d
main of the orbit controlled by time-delayed feedback
well as optimal properties of the delayed feedback contro
can be evaluated without an explicit integration of tim
delay equations.

The proposed algorithm gives a better insight into h
the Floquet spectrum of periodic orbits controlled by tim
delayed feedback is formed. We believe that the ideas of
approach will be useful for further development of tim
delayed feedback control techniques and will stimulate
search for other modifications of the method in order to g
better performance.

Here no consideration has been given to the torsion-
periodic orbits. These orbits can be stabilized with the u
stable time-delayed feedback controller proposed recentl
Ref. @17#. Stability analysis of such systems can be p
formed in a similar manner as described in this paper. T
problem is currently under investigation and the results w
be published elsewhere.
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