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Universality and scaling study of the critical behavior of the two-dimensional Blume-Capel model
in short-time dynamics
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In this paper we study the short-time behavior of the Blume-Capel model at the tricritical point as well as
along the second order critical line. Dynamic and static exponents are estimated by exploring scaling relations
for the magnetization and its moments at an early stage of the dynamic evolution. Our estimates for the
dynamic exponents, at the tricritical point, are 2.215(2) andd=—0.532).
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[. INTRODUCTION nite size problems. In this limit, if we choose the scaling
factor b=t'2 [1,5,6 at the critical temperaturer&0), we
Numerical simulation in the short-time regime has be-obtain
come an important tool to study phase transitions and critical
phenomena. The reason is that universality and scaling be-
havior are already present in the dynamic systems since the
early stages of their evolutioi,2]. Moreover, this kind of
approach reveals the existence of a new and unsuspect&@m the scaling relatioril). The exponen® has been cal-
critical exponent. As shown by Janssatral.[1] on the basis culated for the two-dimensiona(2D) [5,7] and three-
of renormalization group theory, if the parameters are addimensional(3D) [7,8] Ising models, 2D three-state Potts
justed to their critical values but with initial configurations model[5], Ising model with next-nearest-neighbor interac-
characterized by nonequilibrium states, the time evolution ofions [9], and Ising model with a line of defec{d0]. In
quantities such as magnetization exhibits a polynomial beaddition, this short-time universal behavior was found in ir-
havior governed by an exponeét which is independent of reversible models with synchronod41] and continuous
the known set of static exponents and of the dynamical crititime dynamicg12]. In all of those cases, a positive value for
cal exponent. This new exponent characterizes the so called? has been found, indicating a surprising initial increase of
“critical initial slip,” the anomalous behavior of the magne- the magnetization in the short-time regimig, . <t<t;
tization when the system is quenched to the critical tempera~ ng/XO. This effect can be related to a “mean fiel@F)
tureT.. Working with systems without conserved quantities, behavior since the system presents small correlation length
model A in the terminology of Halperiet al. [3], Janssen in the beginning of the time evolution. Thus, when the sys-
et al. found a scaling form for the moments of the magneti-tem is quenched to the critical temperatilie it behaves as
zation, which sets soon after a microscopic time s€gle.  in an ordered state sinde,<TM [13].
Those relations have been confirmed in several numerical On the other hand, as shown by Janssen and Oeftitfig
experimentd4—6]. For thekth moment of the magnetiza- the hehavior of a thermodynamic system is more complex at
tion, this scaling form reads a tricritical point, where the corresponding exponénnay
3 3 3 attain negative values.
MUt 7,L,mg)=b~ "M (b, b7, b~ L, b*omy). At a tricritical point the magnetization shows a crossover
1) from the logarithmic behavioM (t) ~mg[In(t/te)] "2, (where
a is an universal exponenat short timestoztmic<t<mg4
to long-timet ™~ power law behavior with logarithmic cor-
rections,M (t) ~[t/In(t/t))]"** in three dimensions. This be-
havior can be stated in the generalized form

M (t,mg) ~mgt? 2

Here b is an arbitrary spatial scaling factadr,is the time
evolution, and 7 is the reduced temperaturer=(T
—T.)/T.. As usual, the exponent8 and v are the well-
known static exponents, arms the dynamic one. Equation
(1) depends on the initial magnetizatiom, and gives origin
to the new exponent,, the scaling dimension of the initial t |\
magnetization, related t6 by xo=z60+ B/ v. M(t)= mo['”(t/to)]a':wl((m) [|”(t/to)]am0)a
For a large lattice sizé and small initial magnetization 0 (3)
my, the system in its early stage presents small spatial and

temporal correlation lengths, which may eliminate usual fi- . I
P g y whereFy,(x)~1 or Fy,(x)~1/x, respectively, for vanishing

and large arguments. Below three dimensions it reduces to
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Here 6 is the exponent related to the tricritical point of the 247 ' ' ' ' e
relaxation process at early times which is expected to assume 2.2 PARAMAGNETIC J
negative values. = 207 PHASE
In this paper, we perform short-time Monte CatMC) B 181 ]
simulations to explore the critical dynamics of the 2D 161 ]
. S 1.4 ]
Blume-Capel model. We evaluate the dynamic exponénts 15] ]
andz, as well as the static exponent&ndg at the tricritical 101 ORDERED PHASE ]
point. To the best of our knowledge, this is the first time it is 08 .
done numerically. We also estimate the dynamic exponents 06 TP®
along the second order critical line. We observe a clear trend 0.4 ]
toward the values of and @ for the corresponding 2D Ising g'g' P
values when the crystal field becomes large and negative, “ . . . . —
indicating dynamic universality along the critical line in the 8 5 AD/J-Q 0 2

limit D— — o,
In the following section we present the model and its  F|G. 1. Phase diagram of the Blume-Capel model. The dashed

phase diagram. Section IIl contains the main scaling relacurve is a first-order transition line and the solid curve is a second
tions and describes our short-time MC simulations. Resultgrder one. These curves are connected by a tricritical H@iR}.

are presented for critical points on the second-order transifhe marked pointsX ,®) correspond to the simulated values.
tion line. In Sec. IV, we explore the short-time dynamics at

the tricr!tical point. Section V contains a brief outlook and gje scaling combined with conformal invariank29] per-
concluding remarks. mitted to observe a smooth transition between Ising-like and
tricritical behavior. In finite systems, Ising-like behavior is

Il. THE MODEL reached only whenD— —o. In that limit g/(2—1/v)
—0.125, the exact value for the Ising model. In our short-
time simulations the same kind of Ising-like behavior is ob-
served for the dynamic exponerzand # as we move along
the critical line.

The Blume-Capel15] (BC) model is a spin-1 model
which has been used to describe the behavioftdé-*He
mixtures along the\ line and near the critical mixing point.
Apart from its practical interest, the BC model has intrinsic
interest since it is the simplest generalization of the Ising

model (s=1/2) exhibiting a rich phase diagram with first IIl. NONEQUILIBRIUM SHORT-TIME DYNAMICS

and second-order transition lines as well as a tricritical point. AT A CRITICAL POINT

Tricritical points appear ifHe-*He mixtures such that when . , , . )

a small fraction of3He is added to*He. a critical line ter- In short-time MC simulations critical slowing down can

minates at a concentration dfe approximately at 0.67. The be neglected because spatial and time correlation lengths are
BC model, or its well known generalization, the Blume- small in the early stages of evolution. (_)n Fhe other hanq,_yve
Emery-Griffiths model[16,17, was studied by mean-field need to deal with several samples with independent initial
approximation, real space renormalization group SCheme%onflgu_ratlons since thelsystems are far from equilibrium. In
[18], Monte Carlo renormalization group approddi®], and fact, this approach requires calculation of the avekr)(ager
finite-size scaling combined with conformal invariaj@@—  Samples of the magnetization and of its momerE (1),

22]. The Hamiltonian of the two-dimensional model is
k

, (6)

Nsg

1 L
M) = y
H=—J%}> 55+D3, S, (5) M= N 2 (21 Si(0)

where (i,j) indicates nearest neighbors & lattices and where S;j(t) denotes the spii of the jth sample at theth
S={-1,0,1}. The parameted is the exchange coupling MC sweep. HeréNg denotes the number of samples drft
constant and is the crystal field. We show its phase dia- js the volume of the system. This kind of simulation is per-
gram in Fig. 1. Table | lists point®/J on the second order formedNj times to obtain our final estimates as a function of

critical line and at the tricritical point where we have per- t. In this paper, the dynamic evolution of the Sp{r&} is
formed our simulations. Those pOintS in Table | were Ob'|oca| and updated by the heat-bath a|gorithm_

tained from[23] and from a private communicatiof22].
Table | also contains our results for the corresponding critical S
and tricritical exponents. A. The critical initial slip

We remark that along the critical line, this model presents  The evolution of thekth moment of magnetization in the
a critical behavior similar to that of the Ising model. How- jnitial stage of the dynamic relaxation can be obtained from

ever, exactly at the tricritical point the exponents changezq. (1) for large lattice sized at 7=0 with b=t This
abruptly. They are given by the dimensions of the irreducibleyiekjS

representations of Virasoro algebf24,25 with central
charge (conformal anomaly numbprc=7/10 [21]. Finite- M®(t,mg) =t *Fr2M (1 t*0/Zmy). (7)
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TABLE |. Critical parameters and exponents for the 2D Blume-Capel model.

D/J kgT/J 0 z z

1/v v B

[Eq.(8)] [Eq.(12] [Eq.(16)] [Egs.(17) and(12)] [Egs.(17) and(16)] [Eq.(14)]

Critical points

0 1.6950 0.19@) 2.162) 2.1062) 0.992) 0.972) 0.1342)
-3 2.0855 0.19%) 2.141) 2.1282) 1.001) 0.991) 0.1252)
-5 21855 0.18%B) 2.151) 2.1392) 1.003) 0.993) 0.1254)

Tricritical point

1.9655 0.610 —0.53(2) 2.212) 2.2152) 1.862) 1.8646) 0.04532)

By expanding the corresponding first moment equation for Another method has been recently proposed by Tante

smallm,, we obtain Eq(2) under the condition that®’?m,
is sufficiently small, which sets a time scate~m, 2o
[1,4,6] where that phenomena can be observed.

In Fig. 2(a) we present our results for the exponehat
the critical pointkgT./J=1.6950 andD./J=0, for lattice
sizeL =280 and five different initial magnetizatioms,. Our
estimates for eacli= 6(my) were obtained fronNg=5 in-
dependent bins witiNg=10000, fort up to 100 sweeps.
Figure Zb) illustrates the determination af for my=0.02

de Oliveira[27] to evaluated. It avoids the sharp preparation

of samples with defined and nonzero magnetization and the
delicate numerical extrapolatiomy—0. The method is
based on the time correlation function of the total magneti-
zation,

1 Ld pd
C<t)=—d<2 > S(t)sj<0)>. ®)
LY \i=1j)=1

from a log-log plot of the magnetization versus time. Thegarting from random initial configurations the above corre-

linear fitting in Fig. Za) gives #=0.193(2)(not presented in
Table ) with goodness of fif26] Q=0.72.
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FIG. 2. (a) Exponentd in function of initial magnetizationm,
for square lattices witlh. = 80. The straight line is a least-square fit
to the data(b) Time evolution of the magnetization fér=80 and
my=0.02.

lation behaves a€(t)~t’, which permits us to obtain the
exponentd from a log-log plot ofC(t) versust. We obtained
0=0.194(3) forkgT./J=1.6950 and./J=0 choosing the
time interval[ 20—15Q in which the value ofQ (Q=0.99)
was highest. This value is in complete agreement with our
above estimate of the exponefitand it is consistent within
error bars with previous results for the 2D Ising model. In
Table | we also present results férat other points of the
critical line.

B. Dynamic critical exponent z

The observables in short-time analysis are described by
different scaling relations according to the initial magnetiza-
tions. In particular, the second momeéwt?)(t,L) in Eq. (6),

M<2>=i<L2 sz> +iLE (SS) ©)
L2d 1 ! L2d iz 17

with my=0 behaves ak ~ since in the short-time evolution
the spatial correlation length is very small when compared
with the lattice size.. Thus, one arrives 4b6,6]

M (2)(t,|_) :t—ZB/VZ M (2)(1,t_1/ZL)~t(d_2B/V)/Z. (10)

This equation can be used to determine relations involving
the static critical exponents and the dynamic exporent
[6,28]. However, a way to evaluate independently the expo-
nentzis through the time-dependent fourth-order Binder cu-
mulant at the critical temperature€0),

M@(t,L,mg)
3[M@(t,L,mg)]?’

U4(t,|_,mo):1 (11)

which obeys the equation
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o FIG. 4. Time evolution ofF,(t) for L=160 with mixed initial
FIG. 3. CumulantdJ,(t,L) for L=10, 20, 40, and 80 for initial  ¢ongitions[Eq. (16)].
magnetizatiormy=0. The open circles on the lines show the cu-
mulants for lattice sizek/2 rescaled in time wittz obtained from )
Eqg. (13 M(t,L)
@19 Ua(t,L)

“MGLE (19

U,(t,L,mg)=U4(b~%,b~ 1L, b*omy). 12 _ ,
a 0) =Vl o) (12 which should take the simple fortd (t,L—%)~t¥% The

_ _ advantage of this procedure is that curves for different lat-
If we setm,=0, we eliminate the dependence on the expojces Jie on the same straight line in a log-log plot without

nentx, and the exponert can be evaluated through scaling 4y rescaling in time. However, this technique has not been
collapses of the generalized cumulant for different latticeg;,ccessful in at least two well known models: the two-
sizes[4,29]. To match the Binder cumulant$,(t;,L1) and  gimensionaig=3 Potts mode[6] and the Ising model with
Uy(tz, L) obtained from two time series for lattice siZes  hree spin interactions in just one directifit0]. The reason
andLp, with b=L,/L; (L>>L,), we interpolate the series fqr the above disagreement may be related to the behavior of
U4(t,L,) to obtainU,(b™?,L,). Next, we define the func- Eq.(9) whenmy= 1. We have proposd®3] that this scaling
tion form t%Z could indeed be obtained working with the ratio
F,=M@/M? with different initial conditions for each mo-
1 ment since we know the behavior of the second moment of
Xi(2)= r— > [Ua(b7%t,L;)—U4(t,Ly)]% (13  the magnetization when samples are initially disordered
LR (my=0) and also the time dependence of the magnetization
when samples are initially orderedng=1). Therefore, we
where the best estimate farcorresponds to the one which obtain a mixed function
minimizes x?(z).

In Fig. 3 we show the scaling collapses of the Binder M@(t,L)[m =0
cumulants for the following pairs of latticesL(,L,) Fo(t)= —————~t%2. (16)
—~(10,20,(20,40), and (40,80) aksT./J=1.6950, and [M(tL) 1 my=1

D./J=0. From the largest pair of lattices we obtained . . .
=2.16(2) in the time intervgl50—100Q. Our error estimate A '02"09 plot with er_ror.bars for the_ C”.t'cal point
is based on different collapses obtained frdfg=5 inde- kBTC/‘]_l'G%O, andD,/J=0 is presented |n.F|g. 4 for
pendent bins for each lattice size. =160. We obtained=2.106(2) withQ=0.99 in the range
Another universal behavior of the dynamic relaxation pro-.30—20d, which does not agree with the value obtained

cess also described by E@) can be obtained with the initial 70M EQ- (12). However, as we move away from the tricriti-
condition my=1 [30—32. This condition is related to an- C& Point, the values ot obtained(Table ) with Eq. (16)

other fixed point in the context of renormalization group ap-SNoW @ clear_trend toward the expected value of the dynamic
proach. Thus, starting from an initial ordered state one ob&XPonentz[z=2.156(2) of the 2D Ising mode33]. On the

tains a power law decay of the magnetization at the criticaPthe’ hand, the values obtained from the cumulant in Eq.
temperature, (12) remain essentially the same along the entire critical line.

M (t)~t_ﬁ/"z, (14) C. Static exponents and universality class

The exponent Xz can be obtained by differentiating

when we choosé “t=1 in the limit of L— . Taking into INM(t,7,mp) with respect to the temperature 8,

account this relation, another method has been propdged

) ; ' dlnM(t,7,L)
to estimate the dynamic exponentThis approach uses the — 0 ~tlhz a7
second order cumulant a7 =0
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k T/T=0.610
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=
—
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. - . 0604— ; . . .
- 1 2 3 4 5 6 7 0.02 0.04 0.06 0.08 0.10
Int 1’1’10
FIG. 5. 'I_'ir_n_e eVOlutiO_n O_f the derivative,In M(t,7)|— for FIG. 6. Exponen® in function of initial magnetizations, for
L =160 and initial magnetizatiomy=1. L =80 at the tricritical point. The straight line is a least-square fit to
the data.

if we consider the scaling relation for the magnetization

when the initial state of samples is ordered,& 1) [29]. Lo , ) )
Our results forz were obtained through finite differences ©f fit @=0.75. The corresponding study with the time corre-

at T,= & with 6=0.001. They rely orNg=5 independent lation funptionC(t_) in !Eq. (8) also gives#= —0.53(2) With
bins with Ng=5000 samples each far=160. The time in- Q=0.99 in the time interva[ 20—8(Q. Data are shown in
terval [80—20Q corresponds to the range where the good-F'g- 7.
ness of fit parameter attains its highest val@=0.99). We have checked further this value fércalculating the
In Fig. 5 we show the log-log behavior of the derivative SPin-spin autocorrelation function
a,nM(t) at kgT./J=1.6950 andD./J=0. In Table | we
present our final estimates ofil/The sixth column is ob-
tained with the estimates afrom Eq. (12) (data in fourth 1 (dz-0)
column, while the seventh column corresponds to estimates At)= I Z Si(0)Si(1) ) ~t : (19
for v with values ofz from Eg. (16) (data in fifth column.
Since we have already collected estimates #far[Eq.

(17)], it is straightforward to obtain estimates f@rfollow- Our data analysis as a function bisee Fig. 8 gives d/z

ing Eq. (14). Our estimates of3 are presented in the last ~ . a e :
column. Our values in Table | can be compared with theo-thz;g;ﬁgz(i?éﬁtgr?%z%p_tgg%&% ﬁo;sg())’occ()jcl)n;\?r?nltezlrllf
retical predictions for an Ising-like critical point (2# 1,8 ’ S ples.

—1/8) we take in advance our estimates fopresented below, this
' result leads to#=—0.55(2) or tof=—0.5546), respec-
tively, for z=2.21(2) andz=2.2152), corroborating our
IV. RESULTS FROM SHORT-TIME DYNAMICS independent estimate f at the tricritical point.
AT THE TRICRITICAL POINT The generalization of the dynamic scaling relation for the
kth moment of the magnetization at a tricritical point can be

From the results presented in Refé] and[14] we can A
d\_/rltten as[34]

describe the time dependence of the first moment of the ma
netization for the 2D Blume-Capel model as

, 08 . . . . .
mot y tm|c<t<t|, _1‘0_ -
MO~ ez <<t (18 42 K_T/J - 0.610
£ 4] D/I =1.9655
for an initial small magnetizatiom,, where 6>0 (6<0) O
identifies a critical(tricritical) point. Heret, stands for the k= 181 ]
time before the system has reached thermal equilibrium. 1.8+ ]
We also included in Table | our estimates faz, 1/v and 2.0 .
B at the tricritical pointkgT;/J=0.610, andD,/J=1.9655, 25] ]
for lattice sizelL =80. o4 i
In Fig. 6 we show the values df for five different initial _2'6
magnetizationsn, at the tricritical point. Our estimates for : - - - - -
each (mg) were obtained fromNg=20 independent bins 20 25 30 lnafs 40 45
with Ng=10 000 samples, forup to 80 sweeps. The least-
square fit to data in Fig. 6 gives= —0.53(2) with goodness FIG. 7. Time correlation functio€(t) at the tricritical point.
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45 - - - - - The evaluation of static exponentsand 8 at the tricriti-
5.0 cal point follows the same procedure as applied on the criti-
554 k, T/ =0.610 cal line. Estimates exhibited in Table | are in good agreement
= 50l with results provided by conformal invarian¢g21,24 1/v
< 45 DIF=1.9655 =9/5 andg=1/24.
£ o] 1 Next, in order to study the influence of the local dynamics
_7'5_ ] on the values of the exponents we recall the simulations with
' Glauber dynamics performed by Bonfif84]. Our estimate
801 ] of B/vz obtained from the decay of the magnetizatistart-
851 ] ing from initially ordered stateis 0.0381(1) with the heat-
9.01 1 bath dynamics, whereas the value quoted by Bonfim who
20 25 80 35 40 45 50 used Glauber update is 0.03767(73), reinforcing the dy-

Int namic universality also for tricritical behavior.

FIG. 8. Autocorrelation functiod\(t) at the tricritical point.

V. CONCLUSIONS

M®(t, 7,g,L,mp)
—KG. /v _ ) o We have performed short-time Monte Carlo simulations
=b~ KA "M (b7, bt 7, b%/"g,b™ L, b*omy). to evaluate dynamic and static exponents at critical and tric-
(20) ritical points of the spin-1 Blume-Capel model.
According to analytical predictions by Janssen and Oerd-
It differs from the critical case by the scaling fietdthat ing, a negative value for the new expon@éntas obtained at
measures the deviation from the transition line at the tricriti-the tricritical point. In order to confirm that prediction we
cal point. The quantityp; is known as the crossover expo- calculatedd by three different techniquesi) directly, by
nent. At tricriticality t=g=0. following the power law behavioM (t)=myt? when the
We show in Fig. 9 scaling collapses of the cumulantsamples are sharply prepared with a small initial magnetiza-
U,(t,L) at the tricritical point, quite different than the scal- tjon my; (i) studying the time correlation of the magnetiza-
ing collapses at a critical poiriFig. 3). Our estimate based tjon C(t) which also evolves in time liké?, andiii) calcu-
on Eq.(12) leads toz=2.21(2) obtained from the pair of |ating the autocorrelation functioA(t) which decays like
largest lattice sizek =40 and 80. The value is the same for {~(d/z=6) \yhered=2 in the present case aads the dynami-
time intervals[10,100Q and[200,100Q. Another estimate ca| critical exponent at the tricritical point. All of our esti-
for the dynamic exponent, based on E@6) gives z  mates forg, at the tricritical point, are in the range 0.57
=2.215(2) obtained from a larger latticé £ 160) in the < p<—0.51. The dynamic exponentvas also calculated by
time interval[ 30,200, with Q=0.71. We do not show the jfferent techniques: first by collapsing the fourth-order
log-log plot of F5(t) in this case because it is quite similar to Binder cumulantU, for several pairs of lattices, and second
Fig. 4. We had to restrict the time interval, when compared,y following the ratioF ,(t) which explores scaling laws for
with the U, calculation, in order to obtain acceptable valuesthe moments of the magnetization under mixed initial condi-
for Q. Here, in contrast to the different estimateszdfourth  tions, Both methods lead essentially to the same value (2.21)
and fifth column at the critical points listed in Table I, both byt the error bar in the second case is ten times smaller than

methods lead to the same estimate Zor that obtained by the Binder cumulant. The valuezofias
used to obtain the static exponeisand v, in good agree-
0.6+ L =10 1 ment with exact values provided by conformal invariance.
0.4 L =201 Dynamic exponents were also calculated along the
02 ] second-order critical line. Estimates férandz are in good
I o0 k,T/A=0610 ] agreement with the results for the 2D Ising model, indicating
~ o] D/T=19655 | that universality stays valid in the dynamic level. However, it
d:'«? 43'4 ! is worthwhile to mention that the recently proposed tech-
o N L=40 7 nique[33] based on mixed initial conditions is more sensi-
087 L=80 1 tive to crossover effects than fourth-order Binder cumulant.
0.8 .
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