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Granular superconductors and a sandpile model with intrinsic spatial randomness
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We present a model for investigation of self-organized criticality applicable to a real physical system: a
granular superconductor. The model demonstrates self-organized behavior even in circumstances when other
models do not.
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I. INTRODUCTION

The concept of self-organized criticality~SOC! proposed
in 1987 by Bak, Tang, and Wiesenfeld~BTW! @1# is now
extensively used in various fields of science for explanat
of behavior of many-body systems. According to this co
cept, there are a number of giant dissipative dynamical s
tems that are able to accumulate small external perturbati
Under their action, these systems naturally evolve into
critical state; the latter is a self-reproducing one and
persist without fine tuning of external parameters. The cr
cal state under consideration is an ensemble of metas
states. During the evolution process, the critical system
grates from one metastable state to another by means o
called ‘‘avalanches.’’ Avalanches may be of small or lar
size, but both of these are initiated by small external lo
perturbations. Such a critical state is called a self-organi
one, and the mathematical criterion of self-organization
the power-law behavior of probability density of avalanc
sizes.

Despite the wide range of dynamical systems that beh
like self-organized ones, the classical sandpile model an
modification@1–3# still remain the main objects for theore
ical investigations of self-organized criticality. The expe
mental studies of this phenomenon were carried out on a
sandpile only@4#. Therefore, the problem of finding a usef
physical system with self-organization, available for expe
mental investigations of SOC, remains very real. It w
shown in Refs.@5–9# that some of the most appropriate o
jects for this purpose are granular superconductors.

It is known that a granular superconductor is a set
superconducting grains jointed by Josephson junctions.
interest in investigating magnetic properties of such syste
increased greatly after the discovery of high-temperature
perconductivity~HTSC! because most HTSC materials we
initially realized as granular systems. In most of the theo
ical papers@10–13#, a granular superconductor is consider
as an ordered array of Josephson junctions@a multijunction
superconducting quantum interference device~SQUID!# that
can be described by a system of differential equations
gauge-invariant phase differences.

It was found in Ref.@13# that the granular system, like th
II-type hard superconductors, is able to reach the crit
state, which is self-reproduced. The properties of an aris
critical state depend strongly on the main system param
V; j ca

3/f0 (a is the grain size,j c is the intergranular criti-
cal current density, andf0 is the magnetic flux quantum!.
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When the parameterV is large, the system has a large num
ber of metastable states. This situation is similar to the
for a self-organized system.

Earlier, in Refs.@5–9#, we studied theoretically and b
computer simulations the critical state in multijunctio
SQUIDs. We found that under certain conditions the critic
state of the system is self-organized. In the cases conside
the perturbations were generated by current injection or b
varying external magnetic field. The avalanches manif
themselves as voltage pulses and the integrated avala
voltage plays a role of avalanche size. Therefore, the s
organized criticality can display itself as a power-law beha
ior of probability density of integrated avalanche voltage.

In addition, it was shown in Refs.@5,6# that for a large
value ofV, the system of differential equations describing t
dynamics of SQUIDs can be substituted by the simplifi
system of maps~algorithm!. In some cases, the obtained sy
tems of maps have analogs among the earlier proposed s
pile models. For example, in the case of a two-dimensio
multijunction SQUID with an injection of current in a ran
domly chosen junction, the system of maps coincides with
algorithm of an Abelian sandpile model@2# with junction
currents as ‘‘heights.’’ In a one-dimensional situation we o
tained an algorithm of a non-Abelian one-dimensional sa
pile model@3#. In this case the currents play the role of pi
slopes, and the magnetic field magnitudes are the heigh
the piles. It was also shown in Refs.@8,9#, that the properties
of simplified models of SQUIDs are equivalent to those
the original systems that are described by differential eq
tions. However, the physical properties of real granular
perconductors lying in the basis of our models provide
number of new interesting features that cannot be obse
in classical sandpile models@5–9#.

In this paper we present a substantially modified mode
a multijunction SQUID—one-dimensional multijunctio
SQUID with random arrangement of junctions placed in
increasing magnetic field. The principal difference of th
system from previously studied models of SQUIDs is t
random location of junctions. Such a situation is natural
real SQUIDs because the manufacturing of an ideally
dered Josephson junction array is a very difficult techni
problem.

We also introduce the simplified model of the system u
der consideration, which is analogous to the sandpile mo
with random toppling rules.

We study an original system described by different
equations and a simplified model by computer simulati
©2002 The American Physical Society28-1
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and show that the results for both cases coincide. We
that the intrinsic spatial randomness substitutes the exte
temporal one that is needed for the appearance of s
organized criticality in classical SOC models, and that w
introduced by external perturbations that were random
time. As a result, the self-organized critical state arises i
one-dimensional case and for deterministic perturbatio
The latter is especially important because in earlier mod
studied there is no self-organization in a one-dimensio
case@1#, or a special method of perturbations is required@3#
for self-organization to realize.

The paper is organized as follows. In Sec. II, the on
dimensional multijunction SQUID with random location o
junctions is considered in detail and the simplified model
our system is constructed. Section III is devoted to the an
sis of the algorithm describing the simplified model. In S
IV, we present the computer simulations results. In the c
clusion, we formulate the main results of the paper.

II. ONE-DIMENSIONAL MULTIJUNCTION SQUID
WITH RANDOM LOCATION OF JUNCTIONS

A one-dimensional multijunction SQUID under conside
ation can be imagined as two superconducting layers tha
infinitely long in they direction and are jointed by the Jo
sephson junctions~Fig. 1!. The junctions with sizel are
placed along thex axis, and the distance between thei th and
( i 11)th junctions is a random variablebi . The system is
placed into a slowly increasing magnetic fieldHext aligned
with the y axis. A similar system was considered earlier
Ref. @12#.

Following the resistive model of the Josephson junct
without thermal fluctuations, the current densityj i is written
as

j i5 j csinw i1
f0

2pr

]w i

]t
, ~1!

where j c is the critical current density,w i is the gauge-
invariant phase difference at thei th junction,r is the surface
resistivity of the junction, andf0 is the magnetic flux quan
tum.

The relation between current density for thei th junction
and for the magnetic fields in thei th and (i 21)th cells can
be expressed by Maxwell equation

FIG. 1. The (x,z) section of a one-dimensional disordered m
tijunction SQUID.
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4p j i5~Hi2Hi 21!
1

l
, i 52 . . .N21;

4p j 15~H12Hext!
1

l
;

4p j N5~Hext2HN21!
1

l
;

Hi5F i /Si ; ~2!

whereHi is the magnetic field in thei th cell ~the cells are
numbered by nearest left junction!, F i is the magnetic flux in
the i th cell, Si52lLbi is the area of thei th cell, lL is the
London penetration depth, andl is the junction size. The
magnetic flux for thei th cell can be written as

F i5
f0

2p
~w i 112w i !. ~3!

From Eqs.~2!, ~3! we have the following system of equa
tions for w i :

V sinw i1t
]w i

]t
5Ji~w i 112w i !1Ji 21~w i 212w i !,

iÞ1,N;

V sinw11t
]w1

]t
5J1~w22w1!22phext ;

V sinwN1t
]wN

]t
5JN21~wN212wN!12phext ;

V5
16p2allL j c

f0
; t5

8pallL

r
;

Ji5
a

bi
; hext5

2lLa

f0
Hext . ~4!

The properties of the system under consideration
strongly dependent on the main parameterV. When V@1,
each of the elements, and the system as a whole, have a
number of metastable states. It was shown earlier, in Ref.@5#,
that for V@1, phase differences demonstrate very spec
behavior. If the junction current densityj i exceeds the criti-
cal valuej c , then the phase changes slowly by the value 1V
during the long time periodT, then, subsequently, quickly
‘‘slides’’ by 2p. Hence, the phase differences can be
proximated by the following stepwise function:w i'2ppi
1(p/2), wherepi is an integer number. Now we can se
from Eq. ~3! that the cell magnetic flux can change only b
integer number of flux quanta. It was shown in Refs.@5–9#
that, in this case, the discrete timetk5kT can be introduced,
whereT is the time of slow changing of phases.

Since, during the time periodT, phasew i can change by
2p if and only if the current density exceeds the critic
value, we obtain
8-2
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w i~k11!2w i~k!52p~u@zi2zc#2u@2zi2zc# !,

zi5
8pallL

f0
j i5zcsinw i1t/2p

]w i

]t
,

zc5V/2p5
8pallL

f0
j c , ~5!

wherezi is the dimensionless junction current density.
As a result, we have, for the dimensionless cell magn

flux f i5F i /f0, the following system of maps:

f i~k11!5 f i~k!1~u@zi 112zc#2u@2zi 112zc# !

2~u@zi2zc#2u@2zi2zc# !, iÞ0,N;

f 0~k11!5 f 0~k!1Dhext ;

f N~k11!5 f N~k!1Dhext ;

Dhext5@hext~k11!2hext~k!#. ~6!

For dimensionless junction currentzi we have the analog
of Eq. ~2!:

zi5hi2hi 21 , iÞ1,N;

z15h12hext ;

zN5hext2hN21 ;

hi5
2lLa

f0
Hi5Ji f i , iÞ0,N;

h05 f 0 ; hN5 f N . ~7!

The system of maps just obtained in Eqs.~6!, ~7! serves as
ground for a sandpile model with intrinsic spatial rando
ness.

III. THE SANDPILE MODEL WITH INTRINSIC SPATIAL
RANDOMNESS

We can rewrite the system of maps for dimensionl
fluxes f i ~6! as an algorithm, usually used to describe a s
organized system model:

perturbation rules: f 05 f N5hext→hext1Dhext ;

toppling rules:

if zi.zc , then f i→ f i21,

f i 21→ f i 2111;

if zi,2zc , then f i→ f i11;

f i 21→ f i 2121. ~8!

This algorithm is an analog of the one for a on
dimensional sandpile model@1# with dimensionless curren
02612
ic

-

s
f-

zi as a pile slope. However, an analog of the pile height is
f i but the dimensionless magnetic fieldhi ~7!. Since hi
5Ji f i , the algorithm~8! for this variable can be written as

perturbation rules:h05hN5hext→hext1Dhext ;

toppling rules:

if zi.zc , then hi→hi2Ji ,

hi 21→hi 211Ji 21 ;

if zi,2zc , then hi→hi1Ji ,

hi 21→hi 212Ji 21 . ~9!

We see that the algorithm~9! is similar to the one for a
one-dimensional sandpile@1#. However, since our mode
takes into account the main peculiarities of behavior of a r
physical system, it differs significantly from the model@1#.

First, we see from Eqs.~4!, ~6! and from algorithms that
the system is perturbed by external magnetic fieldHext . This
means that perturbations are applied not to a randomly c
sen cell@1# but to the boundaries of the system, i.e., it
deterministic.

Next, the increasing magnetic field induces both posit
and negative currents in real SQUIDs, and there are
critical current values for real superconductors. As a res
we have the second~negative! critical value forz in Eq. ~6!.
Besides, our system is under the closed boundary conditi
This means that the total system current is conserved. Su
system was considered in detail earlier@8#. It was found that
the closed boundary conditions do not prevent the app
ance of self-organization because the positive and nega
currents can annihilate each other. Thus, in this case the
nihilation process effectively replaces the current outfl
that takes place in an open system.

Finally, the main difference is that the coefficientsJi are
random, whereas in Ref.@1# Ji were equal to unity. The
introduction of randomJi leads to nonconservation of a tot
magnetic field or variableh5( i 51

i 5N21hi . It is seen from Eq.
~9! that hi1hi 21→hi1hi 211Ji 212Ji .

This fact naturally arises from physical principles that r
quire only the conservation of total magnetic flux in the sy
tem. This requirement is accomplished. As we see from
~8!, only one flux quantum migrates from one cell to anoth
but due to the differences in cell areas the magnetic field
cells changes by different values. It is also seen that there
integer quantities of flux quanta in each cell. This situation
natural forV@1.

Since such a situation is unusual for sandpile models,
consider its interpretation in detail. First, the system un
consideration is not an array of sites as in the sand
model, but a set of cells with different areas.

Second, in terms of sandpile models, in our case
amount of sand that is transferred from one cell to anothe
not equal to one grain. Such an amount, when toppled fr
the (i 11)th cell to thei th cell, is distributed uniformly at the
whole cell area and increases the heighthi by Ji . If the same
8-3
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amount of sand topples to celli 11 with a different area, by
the same means, it increases the cell heighthi 11 by Ji 11. It
is obvious thatJi 11ÞJi , due to the differences in ce
squares. This situation is clearly illustrated in Fig. 2.

Thus, in this section we construct the model~9! which we
call a sandpile model with intrinsic spatial randomness.

In conclusion, we note that the ‘‘intrinsic randomnes
can be introduced for our system by random distribution
current critical valuesj c or zc . However, such randomnes
does not lead to self-organization.

IV. COMPUTER SIMULATION RESULTS

We studied the original system~4! and obtained a sandpil
model~9! with system sizeN5129 by computer simulations
For the system~4! we use the Euler integration scheme w
dt50.01, V540, andt51. For the algorithm~9! we take
zc56.33. We evaluate our systems in the same way usu
used for an SOC system.

~1! Before starting we fix the set of random valuesJi ,
which are unchanged during the simulation process.

~2! Starting from the state in whichw i50 or zi5hi50,
we perturb the system by increasing the external fieldhext by
unity, that is,hext→hext11.

~3! After the perturbation the system is allowed to relax
the next metastable state. We assume that the system re
the metastable state ifzi,zc or (dw i /dt),1027 for every
site. During the relaxation process the value ofhext does not
change.

~4! When the dynamics stop and the system reaches
next metastable state, we perturb it again repeating ste
and 4.

As in the case of the original system, as in the simplifi
model case, after the transition process the system rea
the critical state. This state is an ensemble of metast
states in which the variableszi or zi

st5zcsinw(ten) (ten is the
final moment of thenth avalanche! are positive and closed t
a positive current critical value in the right part of the sy
tem, and negative and closed to a negative critical valu
the left one. One of the large number of metastable states
the sandpile model~9! for scatter ofJi from 1 to 1.5 is shown
in Fig. 3. We see from Fig. 3~b! that the distributions ofhi in

FIG. 2. The sand toppling in the sandpile model with intrins
spatial randomness. Some amount of sand topples from thei th cell
with sizebi to the (i 11)th cell with sizebi 11. The heights of the
cells change by different values because of differences of cell s
but the equalitybiJi5bi 11Ji 11 holds.
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the positive and negative subsystems are similar to the he
distributions in the BTW model. The junction withi 565
plays the role of an open boundary for each of the s
systems. An avalanche arising after the perturbation leads
system to the next metastable state. The structure of the
remains the same but the values ofhi andzi change slightly.
In the case of the original system~4! we have the same
situation.

For every avalanche in the critical state for the sandp
model ~9!, we calculate the quantity that is an analog of t
total amount of topplings~an avalanche size in the sandpi
model!:

Wn5
1

M (
k5kbn

k5ken

(
i 5M12

N

$u@zi~k!2zc~k!#%, ~10!

where M5(N21)/2, kbn is the initial moment of thenth
avalanche, andken is the final moment of thenth avalanche.

According to Eq.~5!, for the system~4! we have an analo-
gous quantity:

un5
f0

2pM (
i 5M12

N

@w i~ ten!2w i~ tbn!#, ~11!

wheretbn andten are beginning and final moments of thenth
avalanche.

s,

FIG. 3. Distribution ofzi and hi in the sandpile model with
intrinsic spatial randomness withJi dispersion from 1 to 1.5.
8-4
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Note that these quantities have a clear physical mean
It is an integral voltage of the positive part of the syste
during the avalanche time. This fact was discussed in de
in @5–9#.

We consider our systems for some sets ofJi with different
scatter. For everyJi set we calculate the probability densitie
r(W) and r(u/f0). The resulting dependencies are sho
in Fig. 4. From this figure we see that the results for
sandpile model with intrinsic randomness~9! and for the
original system~4! coincide.

Figure 4~a! shows the probability densities for the ca
where allJi are equal to unity, i.e., the situation is analogo
to that considered in@1#. In this case, no self-organization
observed in either system and only a single metastable
occurs, to which the system returns after every perturbat
All avalanches have the same sizeW0'32.5, and the prob-
ability density has the form of ad function. Figure 4~b!
illustrates the case where theJi values are randomly chose
in the interval from 1 to 1.01. One can see from Fig. 4~b! that
the avalanches in the systems have different sizes, but
are appreciably fewer in number than the number of a
lanches of sizeW0. As the dispersion ofJi increases, the

FIG. 4. Probability densitiesr(u/f0) and r(W) for different
dispersions of interjunction distances.~a! All Ji are the same and
equal to 1.~b! Ji are scattered from 1 to 1.01.~c! Ji are scattered
from 1 to 1.2, straight line has a slopea521.62. ~d! Ji are scat-
tered from 1 to 1.4, straight line has slopea521.2.
. A

ys

o
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probability density becomes more and more different fro
the case of identicalJi , although the peak atu0 /F0 is still
seen@Fig. 4~c!#. This peak disappears for the dispersion
the range of 1–1.4, and the probability density become
power function with an exponent close to unity@Fig. 4~d!#.
Therefore, the self-organization arises in the systems with
dispersion of initial conditions and under fully determinist
perturbation.

V. CONCLUSIONS

The main results of the paper can be formulated as
lows.

We present our model of a self-organized system, usin
a ground a real physical system: one-dimensional multiju
tion SQUID with random location of junctions placed in in
creasing magnetic field. This model demonstrates the s
organized behavior in cases where there is no s
organization in earlier proposed models. An intrinsic spa
randomness introduced into the model allows us to ob
self-organization~1! in a one-dimensional case, and~2! un-
der fully deterministic perturbation.

These results are important for experimental investigat
of SOC because granular superconductors are convenien
jects for experiments. The external conditions considered
our paper are the simplest ones for experimental realizat

Therefore, we can conclude that the self-organized c
cality can be experimentally observed in granular superc
ductors as a power-law behavior of probability density
voltage.
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