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Granular superconductors and a sandpile model with intrinsic spatial randomness
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We present a model for investigation of self-organized criticality applicable to a real physical system: a
granular superconductor. The model demonstrates self-organized behavior even in circumstances when other
models do not.
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[. INTRODUCTION When the parameteY is large, the system has a large num-
ber of metastable states. This situation is similar to the one
The concept of self-organized criticalitpOC proposed for a self-organized system.
in 1987 by Bak, Tang, and Wiesenfe(TW) [1] is now Earlier, in Refs.[5—9], we studied theoretically and by
extensively used in various fields of science for explanatiorcomputer simulations the critical state in multijunction
of behavior of many-body systems. According to this con-SQUIDs. We found that under certain conditions the critical
cept, there are a number of giant dissipative dynamical sysstate of the system is self-organized. In the cases considered,
tems that are able to accumulate small external perturbationthe perturbations were generated by current injection or by a
Under their action, these systems naturally evolve into avarying external magnetic field. The avalanches manifest
critical state; the latter is a self-reproducing one and canhemselves as voltage pulses and the integrated avalanche
persist without fine tuning of external parameters. The criti-voltage plays a role of avalanche size. Therefore, the self-
cal state under consideration is an ensemble of metastabieganized criticality can display itself as a power-law behav-
states. During the evolution process, the critical system miior of probability density of integrated avalanche voltage.
grates from one metastable state to another by means of so- In addition, it was shown in Ref$5,6] that for a large
called “avalanches.” Avalanches may be of small or largevalue ofV, the system of differential equations describing the
size, but both of these are initiated by small external localynamics of SQUIDs can be substituted by the simplified
perturbations. Such a critical state is called a self-organizedystem of mapgalgorithm). In some cases, the obtained sys-
one, and the mathematical criterion of self-organization isems of maps have analogs among the earlier proposed sand-
the power-law behavior of probability density of avalanchepile models. For example, in the case of a two-dimensional
sizes. multijunction SQUID with an injection of current in a ran-
Despite the wide range of dynamical systems that behaveomly chosen junction, the system of maps coincides with an
like self-organized ones, the classical sandpile model and itslgorithm of an Abelian sandpile modg2] with junction
modification[1—-3] still remain the main objects for theoret- currents as “heights.” In a one-dimensional situation we ob-
ical investigations of self-organized criticality. The experi- tained an algorithm of a non-Abelian one-dimensional sand-
mental studies of this phenomenon were carried out on a reglile model[3]. In this case the currents play the role of pile
sandpile only{4]. Therefore, the problem of finding a useful slopes, and the magnetic field magnitudes are the heights of
physical system with self-organization, available for experi-the piles. It was also shown in Ref8&,9], that the properties
mental investigations of SOC, remains very real. It wasof simplified models of SQUIDs are equivalent to those of
shown in Refs[5-9] that some of the most appropriate ob- the original systems that are described by differential equa-
jects for this purpose are granular superconductors. tions. However, the physical properties of real granular su-
It is known that a granular superconductor is a set ofperconductors lying in the basis of our models provide a
superconducting grains jointed by Josephson junctions. Theumber of new interesting features that cannot be observed
interest in investigating magnetic properties of such systems classical sandpile model§-9].
increased greatly after the discovery of high-temperature su- In this paper we present a substantially modified model of
perconductivity(HTSC) because most HTSC materials werea multijunction SQUID—one-dimensional multijunction
initially realized as granular systems. In most of the theoretSQUID with random arrangement of junctions placed in an
ical paperd10-13, a granular superconductor is consideredincreasing magnetic field. The principal difference of this
as an ordered array of Josephson junctigmsnultijunction  system from previously studied models of SQUIDs is the
superconducting quantum interference dev8®UID)] that  random location of junctions. Such a situation is natural for
can be described by a system of differential equations foreal SQUIDs because the manufacturing of an ideally or-
gauge-invariant phase differences. dered Josephson junction array is a very difficult technical
It was found in Ref[13] that the granular system, like the problem.
lI-type hard superconductors, is able to reach the critical We also introduce the simplified model of the system un-
state, which is self-reproduced. The properties of an arisinger consideration, which is analogous to the sandpile model
critical state depend strongly on the main system parametevith random toppling rules.
V~j.a% ¢, (ais the grain sizej. is the intergranular criti- We study an original system described by differential
cal current density, and, is the magnetic flux quantum equations and a simplified model by computer simulation,
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) FIG. 1. The §,z) section of a one-dimensional disordered mul- whereH, is the magnetic field in théth cell (the cells are
tjunction SQUID. numbered by nearest left junctipid; is the magnetic flux in
theith cell, =2\ b; is the area of theth cell, \| is the
ondon penetration depth, ardis the junction size. The
agnetic flux for thath cell can be written as

and show that the results for both cases coincide. We fin
that the intrinsic spatial randomness substitutes the extern
temporal one that is needed for the appearance of selt-
organized criticality in classical SOC models, and that was do

introduced by external perturbations that were random in Pi=5_(¢ir1~ i) )
time. As a result, the self-organized critical state arises in a

one-dimensional case and for deterministic perturbations. prom Eqs(2), (3) we have the following system of equa-
The latter is especially important because in earlier modelgons for ¢, :

studied there is no self-organization in a one-dimensional

case[1], or a special method of perturbations is requirgtl ) I

for self-organization to realize. Vsingi+ 17— =Ji(@i+1~ @) +i-a(@i-1— ¢i),
The paper is organized as follows. In Sec. Il, the one-

dimensional multijunction SQUID with random location of i#1N:

junctions is considered in detail and the simplified model of

our system is constructed. Section Il is devoted to the analy- e

sis of the algorithm describing the simplified model. In Sec. Vsing,+ 77=J1(¢2—cp1)—2whext;

IV, we present the computer simulations results. In the con-

clusion, we formulate the main results of the paper. P
. N

Vsingy+ T =In-1(en-17¢on) + 27Ny

Il. ONE-DIMENSIONAL MULTIJUNCTION SQUID

WITH RANDOM LOCATION OF JUNCTIONS y 16772al)\ch graln,
= —; T= "

A one-dimensional multijunction SQUID under consider- oo p
ation can be imagined as two superconducting layers that are

infinitely long in they direction and are jointed by the Jo- a 2\ a

sephson junctiongFig. 1). The junctions with sizd are =y hext:THext- (4)
placed along the& axis, and the distance between tlte and ' 0

(i+1)th junctions is a random variablg . The system is The properties of the system under consideration are

placed into a slowly increasing magnetic figtl,; aligned  strongly dependent on the main parameteMWhenV>1,

with the y axis. A similar system was considered earlier ineach of the elements, and the system as a whole, have a large

Ref. [12]. number of metastable states. It was shown earlier, in[Bgf.
Following the resistive model of the Josephson junctionthat for V>1, phase differences demonstrate very specific

without thermal fluctuations, the current dengityis written  behavior. If the junction current densify exceeds the criti-

as cal valuej ., then the phase changes slowly by the valué 1/
during the long time period’, then, subsequently, quickly
ji=]csin -+ﬂ% 1) “slides” by 2. Hence, the phase differences can be ap-
JiZleSINe 27p It proximated by the following stepwise functioky;~2p;

+(m/2), wherep; is an integer number. Now we can see
where . is the critical current densityp; is the gauge- from Eq.(3) that the cell magnetic flux can change only by
invariant phase difference at theh junction,p is the surface integer number of flux quanta. It was shown in Réfs-9|
resistivity of the junction, and, is the magnetic flux quan- that, in this case, the discrete time=kT can be introduced,

tum. whereT is the time of slow changing of phases.

The relation between current density for thb junction Since, during the time period@, phaseg; can change by
and for the magnetic fields in thi¢h and (—1)th cells can 24 if and only if the current density exceeds the critical
be expressed by Maxwell equation value, we obtain
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ei(k+1)—pi(k)=2m(0[z;—z.]— 6] —z;— 2.]), z, as a pile slope. However, an analog of the pile height is not
f; but the dimensionless magnetic field (7). Since h;

8mal\ . ) Jo; =J;f;, the algorithm(8) for this variable can be written as
zi= ) Ji=zcsmgoi+r/2777,
0 perturbation rules:hg=hy=hex— Nexet ANt
87Ta|)\|_ ) )
z.=V/2m7= ) je» (5 toppling rules:
0
wherez is the dimensionless junction current density. if 2>z, then hi—hi—Jj,
As a result, we have, for the dimensionless cell magnetic
flux f;=®;/¢q, the following system of maps: hi—1—=hi—1+Ji_1;
fitk+1)=f,(K)+(0[z 11— 21— 60 —Z+1—2Z]) if z<-z,, then h;—h;+J;,
—(0[zi—z]—60[—z—2]), i1#0N; hi 1—hi 1~ J 1. 9)

fo(k+1)=To(k)+Ahey; We see that the algorithr®) is similar to the one for a
_ ) one-dimensional sandpill]. However, since our model
Ikt D=1k + ARey; takes into account the main peculiarities of behavior of a real
_ _ physical system, it differs significantly from the modé].
Ahex=[Nexi(k+1) = hex(K)]. ® First, we see from Eqg4), (6) and from algorithms that
For dimensionless junction currentwe have the analog the system is perturbed by external magnetic fi¢ld;. This
of Eq. (2): means that perturbations are applied not to a randomly cho-
sen cell[1] but to the boundaries of the system, i.e., it is
zi=h;—h;_q, i#1N; deterministic.
Next, the increasing magnetic field induces both positive
Zy=h;—hgy; and negative currents in real SQUIDs, and there are two
critical current values for real superconductors. As a result,
Zy=hey—hn_1; we have the seconghegative critical value forzin Eq. (6).
Besides, our system is under the closed boundary conditions.
2\ a . _ This means that the total system current is conserved. Such a
hi:TOHiz‘]ifi 170N system was considered in detail earlig}. It was found that
the closed boundary conditions do not prevent the appear-
ho=fo; hy=fy. (7) ance of self-organization because the positive and negative
currents can annihilate each other. Thus, in this case the an-
The system of maps just obtained in E(, (7) serves as nihilation process effectively replaces the current outflow
ground for a sandpile model with intrinsic spatial random-that takes place in an open system.

ness. Finally, the main difference is that the coefficiedtsare
random, whereas in Refl] J;, were equal to unity. The
lll. THE SANDPILE MODEL WITH INTRINSIC SPATIAL introduction of randond; leads to nonconservation of a total
RANDOMNESS magnetic field or variabla==!=)"h; . It is seen from Eq.

We can rewrite the system of maps for dimensionless ) MR+ hi—a=hithy 1 #Ji1=J;. I~
fluxesf; (6) as an algorithm, usually used to describe a self- Th|s fact naturally arses from physical prmuplgs that re-
| o quire only the conservation of total magnetic flux in the sys-
organized system model: tem. This requirement is accomplished. As we see from Eq.
(8), only one flux quantum migrates from one cell to another,
but due to the differences in cell areas the magnetic field in
toppling rules: cells changes by different values. It is also seen that there are
integer quantities of flux quanta in each cell. This situation is
if z>z., then f—f—1, natural forv>1. _
Since such a situation is unusual for sandpile models, we
fi_g—fi 1 consider its interpretation in detail. First, the system under
consideration is not an array of sites as in the sandpile
if z<-z., then f,—f+1; model, but a set of cells with different areas.
Second, in terms of sandpile models, in our case the
fi_1—fi_1—1. (8) amount of sand that is transferred from one cell to another is
not equal to one grain. Such an amount, when toppled from
This algorithm is an analog of the one for a one-the (i +1)th cell to theith cell, is distributed uniformly at the
dimensional sandpile mod¢l] with dimensionless current whole cell area and increases the heighby J; . If the same

perturbation rules: fo=fy=hgyr—heyxit Ahgyy;
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FIG. 2. The sand toppling in the sandpile model with intrinsic . . . . .
spatial randomness. Some amount of sand topples frorthhezell 0 20 40 60 | 80 100 120
with sizeb; to the (+ 1)th cell with sizeb;, ;. The heights of the
cells change by different values because of differences of cell sizes 350
but the equalityb;J;=b;, 1J; 1 holds.

300

amount of sand topples to célt- 1 with a different area, by 250

the same means, it increases the cell helight by J;, 4. It

is obvious thatJ;,;#J;, due to the differences in cell 200

squares. This situation is clearly illustrated in Fig. 2. £ 150
Thus, in this section we construct the mo¢®l which we

call asandpile model with intrinsic spatial randomness 100
In conclusion, we note that the “intrinsic randomness” 50

can be introduced for our system by random distribution of

current critical valueg. or z.. However, such randomness 0

does not lead to self-organization. 0 20 40 60 80 100 120

|
FIG. 3. Distribution ofz; and h; in the sandpile model with
We studied the original syste() and obtained a sandpile intrinsic spatial randomness with dispersion from 1 to 1.5.
model(9) with system sizé\ =129 by computer simulations.
For the systent4) we use the Euler integration scheme with the positive and negative subsystems are similar to the height
dt=0.01, V=40, andr=1. For the algorithm9) we take distributions in the BTW model. The junction with=65
z.=6.33. We evaluate our systems in the same way usuallplays the role of an open boundary for each of the sub-

IV. COMPUTER SIMULATION RESULTS

used for an SOC system. systems. An avalanche arising after the perturbation leads the
(1) Before starting we fix the set of random valugs  system to the next metastable state. The structure of the state
which are unchanged during the simulation process. remains the same but the valueshpfandz, change slightly.
(2) Starting from the state in whick;=0 or z;=h;=0, In the case of the original systed) we have the same
we perturb the system by increasing the external figlgby  situation.
unity, that is,hgy—hey+ 1. For every avalanche in the critical state for the sandpile

(3) After the perturbation the system is allowed to relax tomodel (9), we calculate the quantity that is an analog of the
the next metastable state. We assume that the system reachetsl amount of topplinggan avalanche size in the sandpile
the metastable state #<z. or (de;/dt)<10 ' for every  mode):
site. During the relaxation process the valuéhgf; does not

change. 1 k=ken N
(4) When the dynamics stop and the system reaches the Wh=+ X {0z -z}, (10
; . . M k=R, i=M+2
next metastable state, we perturb it again repeating steps 3 "
and 4.

As in the case of the original system, as in the simplifiedWhere M =(N—1){2, Kon 1S the initial moment of thenth
8¥alanche, and,, is the final moment of thath avalanche.

model case, after the transition process the system reach .
the critical state. This state is an ensemble of metastable According to Eq(5), for the systent4) we have an analo-

states in which the variables or z7'=zsin ¢(te,) (ten is the gous quantity:

final moment of thenth avalanchgare positive and closed to & N

a positive current critical value in the right part of the sys- __10 ) o

tem, and negative and closed to a negative critical value in U= 2aM i:%+2 Lei(ten) = ilton) ] @
the left one. One of the large number of metastable states for

the sandpile modéD) for scatter ofJ; from 1 to 1.5 is shown wheret,, andt,, are beginning and final moments of thh
in Fig. 3. We see from Fig.(B) that the distributions offi; in avalanche.
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10f, 0,30} b probability density becomes more and more different from
s osf S p(‘?g g 025 W) the case of identical;, although the peak aty/®, is still
3 osf LRI | 5 g‘fg: © PP seen[Fig. 4(c)]. This peak disappears for the dispersion in
g oaf S oo the range of 1-1.4, and the probability density becomes a
& o2} < 005 power function with an exponent close to unffyig. 4(d)].
0,0 32;‘8 gy 32:52 32:54 0,00 e s T_herefqre, the_ s.e_lf-organllganon arises in the systems _wllth_out
woW ) wo,W dispersion of initial conditions and under fully deterministic
, 10 perturbation.
1x10 L F d
% 1x10° 2f
2 0° o p V. CONCLUSIONS
S 110t s PW) -
e I o pue) The main results of the paper can be formulated as fol-
X r
g ! , lows.
1 10y w100 1 10y, w100 We present our model of a self-organized system, using as

a ground a real physical system: one-dimensional multijunc-
FIG. 4. Probability densitiep(u/ o) and p(W) for different  tion SQUID with random location of junctions placed in in-

dispersions of interjunction distances) All J; are the same and creasing magnetic field. This model demonstrates the self-
equal to 1.(b) J; are scattered from 1 to 1.0(c) J; are scattered organized behavior in cases where there is no self-
from 1 to 1.2, straight line has a slope=—1.62. (d) J; are scat-  grganization in earlier proposed models. An intrinsic spatial
tered from 1 to 1.4, straight line has slope- —1.2. randomness introduced into the model allows us to obtain
. . . self-organization(1) in a one-dimensional case, a(@ un-
Note that these quantities have a clear physical meaning.,, fully deterministic perturbation.
Itis an integral voItage of thg positive part of the SYStem  Thegse results are important for experimental investigation
during the avalanche time. This fact was discussed in detajls so¢ pecause granular superconductors are convenient ob-
in [5-9]. jects for experiments. The external conditions considered in

We consider our systems for some setdjakith different o, naner are the simplest ones for experimental realization.
scatter. For every; set we calculate the probability densities Therefore, we can conclude that the self-organized criti-

p(W) and p(u/ o). The resulting dependencies are showncajity can be experimentally observed in granular supercon-

in Fig. 4. From this figure we see that the results for theq,,ciors as a power-law behavior of probability density of
sandpile model with intrinsic randomne$8) and for the voltage.

original system(4) coincide.

Figure 4a) shows the probability densities for the case
where allJ; are equal to unity, i.e., the situation is analogous
to that considered ifil]. In this case, no self-organization is ~ We are grateful to M. A. Pustovoit for valuable remarks.
observed in either system and only a single metastable stafhis work was supported by the Russian Foundation for Ba-
occurs, to which the system returns after every perturbatiorsic Research{Project Nos. 02-02-16979 and 02-02-06587
All avalanches have the same sig~32.5, and the prob- the Scientific Council of the “Superconductivity” direction
ability density has the form of & function. Figure 4b) of the program “Topical Directions in Physics of Condensed
illustrates the case where tllevalues are randomly chosen Media” (Project No. 96021 “Profile}, and the state pro-
in the interval from 1 to 1.01. One can see from Figh)4hat = grams “Investigations of Collective and Quantum Effects in
the avalanches in the systems have different sizes, but theyondensed Matter” and “Quantum Macrophysics.” N.S.
are appreciably fewer in number than the number of avawould like to thank the Science Support Foundati@rant
lanches of sizeW,. As the dispersion ofl; increases, the for Talented Young Researchgrs
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