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Depinning transition of a driven interface in the random-field Ising model
around the upper critical dimension

L. Roters* S. Libeck! and K. D. Usadél
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Univetsitatharstrasse 1, 47048 Duisburg, Germany
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We investigate the depinning transition for driven interfaces in the random-field Ising model for various
dimensions. We consider the order parameter as a function of the control par&inieteg field) and examine
the effect of thermal fluctuations. Although thermal fluctuations drive the system away from criticality, the
order parameter obeys a certain scaling law for sufficiently low temperatures and the corresponding exponents
are determined. Our results suggest that the so-called upper critical dimension of the depinning transition is five
and that the systems belongs to the universality class of the quenched Edward-Wilkinson equation.
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[. INTRODUCTION temperatures the order parameter can be described as a gen-
eralized homogenous functigal]
Driven interfaces in quenched disordered systems display
with increasing driving force a transition from a pinned in- v(h, T)=Ao(A"YPh,\~¥T), 2
terface to a moving interfacésee, e.g.[1] and references
therein. This so-called depinning transition is caused by asimilar to usual equilibrium second-order phase transitions.
competition of the driving force and the quenched disorderSettingh ~ =1 one recovers Eq1) for zero temperature.
The first one tends to move the interface whereas the latté€hoosing\ ~T=1 one gets for the interface velocity at the
one hinders the movement. Depinning transitions are oberitical field H
served in a large variety of physical problems, such as fluid
invasion in porous materia[€], depinning of charge density v(h=0T)~TY. ©)
waves[3,4], impurity pinning of flux line in type-Il super-
conductors[5], contact lineg6] as well as in field driven This power-law behavior was observed in two- and three-
ferromagnets, where the interface separates regions of opp#imensional simulations of the driven RFIM1,12 as well
site magnetizationg7]. as in charge density waves in computer simulations and
A well established model to investigate the depinningmean-field calculationfs4,13].
transition in disordered ferromagnets is the driven random- Furthermore, thermal fluctuations cause a creep motion of
field Ising model(RFIM) (see, for instance, Reff2,7-10). the interface for small driving fieldsH<H_) characterized
Here, the disorder induces some effective energy barrieley an Arrhenius-like behavior of the velocity. This creep
which suppress the interface motion. A magnetic drivingmotion was observed in experiments considering magnetic
field H reduces these energy barriers but they vanish only iflomain wall motion in thin films composed of Co and Pt
the driving field exceeds the critical valte,. The transition  layers[14], in renormalization group calculation5,16 re-
from the pinned to the moving interface can be described agarding the Edwards-Wilkinson equation with quenched dis-
a continuous phase transition and its velocitis interpreted ~ order, as well as in numerical simulations of the RAIM].

as the order parameter. Without thermal fluctuatichs: Q) In equilibrium physics a scaling ansatz according to Eq.
the field dependence of the velocity obeys the power-law2) usually describes the order parameter as a function of its
behavior control parameter and of its conjugated field. Although Eqg.

(2) can be applied to the depinning transition, i.e., the tem-
perature is a relevant scaling fielfljs not conjugated to the
order parameter. The conjugated field would support the in-
terface motion independent of its strength. But strong ther-
for h>0, where h denotes the reduced driving field  mal fluctuations destroy the interface instead to support the
=H/H.—1. interface motion. Therefore, one has to interpret the value of
The depinning transition is destroyed in the presence ofhe thermal exponent carefully. For instance, it is not clear
thermal fluctuations T>0) which may provide the energy whether the obtained values gfare a characteristic feature
needed to overcome local energy barriers. Although thermadf the whole universality class of the depinning transition or
fluctuations drive the system away from criticality the orderjust a characteristic feature of the particularly considered
parameter obeys certain scaling laws and for sufficiently [owRFIM. This point could be important for the interpretation of
experiments that naturally take place at finite temperatures.
In this paper we reinvestigate the interface dynamics of

v(h,T=0)~h? (1)

*Electronic address: lars@thp.uni.duisburg.de the driven RFIM and focus our attention to higher dimen-
"Electronic address: sven@thp.uni.duisburg.de sionsd=3. In particular, we consider the scaling behavior at
*Electronic address: usadel@thp.uni.duisburg.de the critical point and determine the exponegtsnd . Our
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results suggest that the so-called upper critical dimension of
the depinning transition of the driven RFIMd&=5. Above

this dimension the scaling behavior is characterized by the
mean-field exponents. We compare our results with those
obtained from a renormalization group approach of the
guenched Edward-WilkinsotQEW) equation that is ex-
pected to be in the same universality class as the driven
RFIM. A summary is given at the end.

IIl. MODEL AND SIMULATIONS

We consider the depinning transition RFIM on cubic lat-
tices of linear sizeL in higher dimensions d=3). The
Hamiltonian of the RFIM is given by

FIG. 1. Snapshot of a moving interface B0 for L=128,
P A=1.7, andH=1.37 ind=3. In order to show the details we
stretched the interface in the vertical direction by a factor 15.
H=—5 SS-HY S-3 hsS, @ g

. D=3

where the first term characterizes the exchange interaction of In the case of the three-dimensional RFIM, we consider
neighboring spins$ = +1). The sum is taken over all pairs bcc lattices of linear siz& <250. A snapshot of a moving
of neighbored spins. The spins are coupled to a homogenoiigterface in the steady state is presented in Fig. 1. The ob-
driving field H as well as to a quenched random fig|dwith tained values of the interface velocities fb=0 are plotted
(h;)=0 and(h;h;)= &; . The random field is assumed to be in Fig. 2. As one can see tends. to zero in the vicinity of
uniformly distributed, i.e., the probability that the random H~1.36. Assuming that the scaling behavior of the interface
field at sitei takes some valuk; is given by motion is given by Eq(1) one variesH. until one gets a
straight line in a log-log plot. Convincing results are ob-
tained forH.=1.357+0.001 and the corresponding curve is
(2A)7t for  |h|<A shown in the inset of Fig. 2. For lower and greater values of
0 otherwise. 5 H. we observe significant curvatures in the log-log pludt
shown. In this way we estimate the error bars in the deter-
mination of the critical field. A regression analysis yields the
Using antiperiodic boundary conditions an interface is in-value of the order parameter exponedt0.653+0.026.
duced into the system which can be driven by the fidld This value agrees withB=0.66=0.04 that was obtained
(see, Ref[11] for detaily. A Glauber dynamics with random from a similar investigatio11] where the interface moves
sequential update and heat-bath transition probabilities is ap-

p(hi)=

plied to simulate the interface motideee, for instance, Ref. 0.5 : : : : :
[18)). OL=60 o bce
A moving interface corresponds to a magnetizatibthat oL=100 A
increases in timé (given in Monte Carlo step per spinThe 04  ©L=130 p,o T
interface velocity, which is the basic quantity in our investi- A L=250 £
gations, is obtained from the time dependence of the magne ® from [11] QA @ sC
tization v=(dM/dt) where(---) denotes an appropriate 0.3 o o 1
disorder average. Starting with a flat interface we performe¢ A=1.7 3 ./o
a sufficient number of updates until the system reaches afte Jul ./ 10 T T
a transient regime the steady state which is characterized t 0.2 r 4=3 Ad o Vv o Egc f 11
a constant average interface velocity. J& .‘ 10" | o ]
As pointed out in previous workfsl1,12] an appropriate o go,.%'“ ]
choice of the interface orientation is needed in order tore 0.1 i _2 v 14
cover that the interface moves for arbitrarily small driving B ' 4 10 10° 10'-2 10'-1 10°
field in the absence of disorder. An appropriate choice is tc é’ h

consider the interface motion along the diagonal direction o 0.0 : :

a simple cubic lattice. Fal=3 an alternative is to examine 13 14 15 16 1.7 18 1.9
the interface motion along the axis on a body-centered H

cubic (bcg) lattice. Since it is much more convenient to  FIG. 2. Dependence of the interface veloaityon the driving
implement the latter case in higher dimensions we considefield H for a bce and simple cubi¢sd lattice, respectively. The
in this work bcc lattices, the more as the lattice structurenset shows as a function of the reduced driving fiehdThe dash
usually does not affect the universal scaling behavior. dotted lines are fits according to Ed).
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FIG. 3. Scaling plot of the interface velocity fdr=3. The data
are rescaled according to E¢(). The inset shows the unscaled FIG. 4. The interface velocity of the four-dimensional model at
velocities forT=0.025n with ne{1,2,3,4,6,8 (solid lineg in com- T=0. For sufficiently small fields the data obey a power law ac-
parision to theT=0 data from Fig. 2dashed ling cording to Eq(1) (dotted dashed lineFor the fit we use only those
data marked by filled symbols and we filktL,=1.258+0.05 and
along the diagonal direction of a simple cubic lattigme 8=0.8+0.06.
inset of Fig. 2. Furthermore, both results are in agreement

with =0.60+0.11[9,10], where ind=3 the influence of dimensional case one varies the exponents as well as the
helicoidal boundary conditions in one direction and periodiccritical field until one observes a data collapse. Good results
ones in the other direction parallel to the interface was ingre obtained forg=0.73+0.13, =1.72+0.27, and He
vestigated on a simple cubic lattice. =1.256+0.015. The corresponding data collapse is shown in

In order to determine the exponeiitwe simulated the Fig. 5 Again, the obtained values gf andH, confirm the
RFIM around the critical field for T=0.025n with above presented ana'ysis foe=0.

ne{1,2,3,4,6,8. The obtained curves are shown in the inset
of Fig. 3. According to Eq(2) the interface velocity scales as
V. D=5

_ Ty — 1By
v(h,D)=T"o(hT b ® In the case of the five-dimensional RFIM system sizes

from L=10 up toL =30 are simulated. Analyzing the inter-
face motion afT=0 we observe that the velocity-field de-
pendence cannot be described by a pure power law, i.e.,

Plottingv (h,T) T~ " as a function oh T~ #¥ one variess,

¢, and H; until one gets a data collapse of the different
curves. Convincing data collapses are observe@3fe0.63
+0.06 =2.33+0.2, andH:=1.360+0.01 and the corre-
sponding curves are shown in Fig. 3. The obtained values o I
the order parameter exponent and of the critical field agree d=4
within the error bars with the values of tHe=0 analysis. 10° 2
Furthermore, our results are in agreement with similar inves- E
tigations on a simple cubic latticeBE0.63+0.07 and
=2.38+0.2, see Ref[11]).

2
IV. D=4 W 100
-

In order to determine the order parameter exponent of the
four-dimensional driven RFIM we measured the interface
velocity for bcc lattices of linear sizds<140. The obtained
data forT=0 are shown in a log-log plot in Fig. 4. After a 107 ¢

-2.0 0.0 2.0 4.0

. . . LS B
transient regime that displays a finite curvature we observe [ T
an asymptotic power-law behavior for sufficiently small : : : :
driving field H. A regression analysis yield8=0.8+0.06 -3.0 0.0 h:;;(.)uw 6.0 9.0
andH .= 1.258+0.002.
To determine the exponent we simulated the RFIM in FIG. 5. Scaling plot of the interface velocity faf=4 and

the vicinity of the critical field forT=0.025n where again d=6, respectively(see insét The data are rescaled according to
ne{1,2,3,4,6,8 was choosen. Similar to the three- Eq.(6).
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FIG. 7. The rescaled interface velocity as a function of the driv-

FIG. 6. The effective exponenf3.; as function of Irh for vari- ing field ford=5. In order to display the logarithmic corrections we
ous dimensions. The figure shows that the five-dimensional expglot (v/h)® vs —In h [see Eq(8)]. The solid line corresponds to
nent does not display a saturation as the exponent of the lowehe expected asymptotic scaling behavior lfier 0 [corresponding
dimensions do. The data of the six-dimensional model indicate thato Inh—(—)] according to Eq(9).
the expected saturation valyag=1 is reached significantly faster
as compared td=5 (see text The values of the two-dimensional where B denotes an unknown correction exponent. It is
system are obtained from R¢f2]. worth to mention that in contrast to the values of the critical

exponents below the upper critical dimension the above scal-
Eg. (1) fails. In Fig. 6 we plotted the logarithmic derivation ing behavior [Eq. (8)] does not rely on approximation

of the velocity-field dependence, schemes likes or 1/ expansion$22]. Within the renormal-
ization group(RG) theory it is an exact result in the limit
glnu h—0 (see, e.g[19,23 and references therein for RG inves-
,Beff=m, (7)  tigations and 24,25 for measurements

The valueBye=1 is reported for depinning transitions

[1,26,27. Thus we analyze (h)/h as a function ofln h| and
which can be interpreted as an effective exponent. If theiote again that Eq8) describes only the leading order of the
asymptotic scaling behavior obeys E@) the logarithmic  scaling behavior, i.e., we expect that the asymptotic behavior
derivative tends to the value @f for H—H. This behavior of interface velocity obeys
is observed in the case of the three- and four-dimensional
system(see Fig. 6. Ford=5 the logarithmic derivative dis- [v(h)/h]¥B=const |Inh|. 9
plays no saturation foH—H_, i.e., the scaling behavior of o ) o
the five-dimensional RFIM cannot be described by a simplel herefore, we varied in our analysis the logarithmic correc-
power-law behavior. tion exponentB and the critical fieldH, until we get this

Significant corrections to the usual scaling behayx. expected asymptotic behavior. The best results are obtained
(1)] occur, for instance, at the upper critical dimensiogal for B=0.40+0.09 andH=1.14235-0.001 and the corre-
where the scaling behavior is governed by the mean-fiel§Ponding scaling plot is shown in Fig. 7. _
exponents modified by logarithmic corrections. The scaling Similar to theT=0 scaling behavior one has to modify
behavior aroundi, is well understood within the renormal- for T>0 the scaling ansatz since no data collapse could be
ization group theorysee, for instance Ref§19—21)). For ~ obtained by plotting the data according to E2). Motivated
d>d, the stable fix point of the corresponding renormaliza-by recently performed investigations of the scaling behavior
tion equations is usually a trivial fix point with classical Of an absorbing phase transition around the upper critical
mean-field exponents. This trivial fix point is unstable for dimension[28] we assume that the scaling behavior of the
d<d, and a different stable fix point exists with nonclassicalOrder parameter obeys in leading order
exponents. These exponents can be estimated layeapan- 1/ -
sion, for instance. Foi =d_, both fix points are identical and v(h,T)=TYMInT|v(x,), (10)
marginally stable. In this case the asymptotic form of the . L . .
thermodynamic functions is given by the mean-fiéhdF) where the scaling argumentis given in leading order by
gogver-law behavior modified by logarithmic corrections, x=hT‘1’ﬁMF‘/’MF|InT|T (11)

with Bue=1. In our analysis we use the valug,-=1.49
v(h, T=0)~hAvFInh|E, (8)  obtained from the analysis of the six-dimensional RREde
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FIG. 8. The scaling plot of the interface velocityfor the five- FIG. 9. The interface velocity as a function of the driving field

dimensional model, i.e., at the upper critical dimension. The datdor the six-dimensional model. The dashed line corresponds to a fit

are rescaled according to Egd.0) and (11) using ¢=1.49, B according to Eq(13). The inset displays(h)/h as a function of the

=1, 0=0.22, andr=0.19. reduced driving fielch. The resulting linear behavior confirms that
the deviations from the mean-field behavior can be described by

the following section Therefore, we have to vary the expo- quadratic corrections.

nentso and 7 in order to observe a data collapse according

to Egs. (10) and (11). Convincing results are obtained for 1 According to the above ansdigq. (13)] one gets a linear

0=0.22+0.16, 7=0.19+0.12 The corresponding data col- hehavior, i.e., the deviations from the pure mean-field behav-

lapse is shown in Fig. 8. ior [Eq. (12)] can really be described as quadratic correc-
tions. Thus we get that our numerical data are consistent with
VI. D=6 the assumption that the six-dimensional RFIM depinning

Above the upper critical dimension the scaling behavior istransmon Is characterized by the mean-field exponent

characterized by the mean-field exponents, i.e., in leadin
order the interface velocity is given by

mr=1.

Again we consider how thermal fluctuations affect the

scaling behavior and analyze interface velocities obtained at
v(h,T=0)~h. (12)  different temperaturesT=0.025n with ne{1,2,3,4,6,8.

Similar to the situation below the upper critical dimension

In Fig. 9 we plot the velocity as a function of the driving we assume that the scaling behavior of the interface velocity

field H obtained from simulations of system sizes 14. As  is given by Eq.(2) where the exponents are given by mean-

one can see the velocity does not display the expected linedield values. A convincing data collapse is obtained fgj-

behavior. It seems that a linear behavior is only given for=1.49+0.15 andH-=1.153+0.02 and is plotted in the in-

small velocities, i.e., our data do not display the pureset of Fig. 5.

asymptotic behaviofEqg. (12)]. This is confirmed by the be-

havior of the effective exponefiEq.(7)] that increases fast

for h—0 but the actual saturation t8=1 does not take VII. DISCUSSION

place for the considered valueslofsee Fig. 6. To observe

the asymptotic behavior one has to perform simulation

closer to the critical poinH; which requires to simulate

larger system sizes.Unfortunately, the limited CPU powe

makes this impossible. well as the driven RFIM are characterized by the same criti-

An alternative is to take the curvature of the function cal exponents. i.e.. both models belond to the same univer-
v(h) into consideration and to assume that the leading €O it ?:Iass[? ’9]' Iienormalization rog analvses of the
rections to the asymptotic behavior are of the form Y v group y

guenched QEW equatid26,27] predict, in accordance with

v(h,T=0)=0v,h+v,h?+0(h3), (13)  Ref.[7], d;=5 and allow to estimate the critical exponents
using ane expansion. A recently performed two-loop renor-

which recovers Eq(12) for h—0. Fitting our data to this malization approach yield27]

ansatz we geH.=1.1537-0.003, v;=0.2937, andv,=

—0.1188. The corresponding curve fits the simulation data

quite well as one can see from Fig. 9. In the inset of Fig. 9 Bogw=1

we plottedv (h)/h as a function of the reduced driving field QEW

s A well established realization of interface pinning in a
disordered media is the so-called QEW equation of motion
IIhat was intensively investigated in the last decade
[7,15,16,26,27,2P It is argued that the QEW equation as

1
- §e—o.04o 123°+0(€%) (14)
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' ' ' ' ' TABLE I. The critical exponent® (obtained from simulations
1.0 | — RG[27] at T=0 andT>0, respectively and ¢ of the depinning transition
Dfrom [12] of the RFIM for different dimensions. The values of the two-
dimensional model are obtained from Rgf2]. The critical behav-
08 . ior at the upper critical dimensiod,. is additionally affected by
. . . logarithmic corrections.
- 06 11 d Br=o Br=0 ¥
] 2 0.35+0.04 0.33:0.02 5.06:0.3
04 1 1 3 0.653+0.026 0.63-0.06 2.330.2
4 0.80+0.06 0.73:0.13 1.72-0.27
0z | [ JPa— d.=5 1 1 1.49
T S 6 1 1 1.49-0.15
2 3 4 d 6
d
0.0 . . . . .
2 3 4 d, 6
d well as the temperature exponeftBelow the upper critical

dimensiond.=5 the critical exponents depend on the dimen-
sion and the values of the exponents correspond to those of a
two-loop renormalization group approach of the Edwards-
Wilkinson equation[27]. This suggest that the depinning

wheree denotes the distance from the upper critical dimen_transmon of the RFIM model is in the universality class of

sion, i.e..e=5—d (unfortunately, no error bars can be esti- the quenched Edward-Wilkinson equation. At the upper criti-
matéd fr,om ane expansion Thé corresponding values of c_al d|.menS|0rdCf5 the scaling behavior |f5.affec.ted by. loga-
the exponents as a function of the dimension are plotted ilrllthmlcal corrections. Above the upper critical dimension we
Fig. 10. The numerically determined exponemsof the observe that the scaling behavior is characterized in leading
driven RFIM (listed in Table ) are in a fair agreement with ©rder by the corresponding mean-field exponents.
the values of the expansion.

For the QEW equation the temperature exponkig not
known. Therefore, a direct comparison with the obtained val- ACKNOWLEDGMENTS
ues of the driven RFIM is not possible.

FIG. 10. The critical exponent8 and ¢ as a function of the
dimension. The solid line corresponds to the values o€ axpan-
sion[Eq. (14)].
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