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Depinning transition of a driven interface in the random-field Ising model
around the upper critical dimension

L. Roters,* S. Lübeck,† and K. D. Usadel‡

Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t, Lotharstrasse 1, 47048 Duisburg, Germany
~Received 27 February 2002; published 28 August 2002!

We investigate the depinning transition for driven interfaces in the random-field Ising model for various
dimensions. We consider the order parameter as a function of the control parameter~driving field! and examine
the effect of thermal fluctuations. Although thermal fluctuations drive the system away from criticality, the
order parameter obeys a certain scaling law for sufficiently low temperatures and the corresponding exponents
are determined. Our results suggest that the so-called upper critical dimension of the depinning transition is five
and that the systems belongs to the universality class of the quenched Edward-Wilkinson equation.

DOI: 10.1103/PhysRevE.66.026127 PACS number~s!: 64.60.2i, 68.35.Rh, 75.10.Hk, 75.40.Mg
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I. INTRODUCTION

Driven interfaces in quenched disordered systems dis
with increasing driving force a transition from a pinned i
terface to a moving interface~see, e.g.,@1# and references
therein!. This so-called depinning transition is caused by
competition of the driving force and the quenched disord
The first one tends to move the interface whereas the la
one hinders the movement. Depinning transitions are
served in a large variety of physical problems, such as fl
invasion in porous materials@2#, depinning of charge densit
waves@3,4#, impurity pinning of flux line in type-II super-
conductors@5#, contact lines@6# as well as in field driven
ferromagnets, where the interface separates regions of o
site magnetizations@7#.

A well established model to investigate the depinni
transition in disordered ferromagnets is the driven rando
field Ising model~RFIM! ~see, for instance, Refs.@2,7–10#!.
Here, the disorder induces some effective energy barr
which suppress the interface motion. A magnetic drivi
field H reduces these energy barriers but they vanish on
the driving field exceeds the critical valueHc . The transition
from the pinned to the moving interface can be described
a continuous phase transition and its velocityv is interpreted
as the order parameter. Without thermal fluctuations (T50)
the field dependence of the velocity obeys the power-
behavior

v~h,T50!;hb ~1!

for h.0, where h denotes the reduced driving fieldh
5H/Hc21.

The depinning transition is destroyed in the presence
thermal fluctuations (T.0) which may provide the energ
needed to overcome local energy barriers. Although ther
fluctuations drive the system away from criticality the ord
parameter obeys certain scaling laws and for sufficiently
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temperatures the order parameter can be described as a
eralized homogenous function@11#

v~h,T!5l ṽ~l21/bh,l2cT!, ~2!

similar to usual equilibrium second-order phase transitio
Settingl21/b51 one recovers Eq.~1! for zero temperature
Choosingl2cT51 one gets for the interface velocity at th
critical field Hc

v~h50,T!;T1/c. ~3!

This power-law behavior was observed in two- and thr
dimensional simulations of the driven RFIM@11,12# as well
as in charge density waves in computer simulations
mean-field calculations@4,13#.

Furthermore, thermal fluctuations cause a creep motio
the interface for small driving fields (H!Hc) characterized
by an Arrhenius-like behavior of the velocity. This cree
motion was observed in experiments considering magn
domain wall motion in thin films composed of Co and
layers@14#, in renormalization group calculations@15,16# re-
garding the Edwards-Wilkinson equation with quenched d
order, as well as in numerical simulations of the RFIM@17#.

In equilibrium physics a scaling ansatz according to E
~2! usually describes the order parameter as a function o
control parameter and of its conjugated field. Although E
~2! can be applied to the depinning transition, i.e., the te
perature is a relevant scaling field,T is not conjugated to the
order parameter. The conjugated field would support the
terface motion independent of its strength. But strong th
mal fluctuations destroy the interface instead to support
interface motion. Therefore, one has to interpret the value
the thermal exponentc carefully. For instance, it is not clea
whether the obtained values ofc are a characteristic featur
of the whole universality class of the depinning transition
just a characteristic feature of the particularly conside
RFIM. This point could be important for the interpretation
experiments that naturally take place at finite temperatur

In this paper we reinvestigate the interface dynamics
the driven RFIM and focus our attention to higher dime
sionsd>3. In particular, we consider the scaling behavior
the critical point and determine the exponentsb andc. Our
©2002 The American Physical Society27-1
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results suggest that the so-called upper critical dimensio
the depinning transition of the driven RFIM isdc55. Above
this dimension the scaling behavior is characterized by
mean-field exponents. We compare our results with th
obtained from a renormalization group approach of
quenched Edward-Wilkinson~QEW! equation that is ex-
pected to be in the same universality class as the dr
RFIM. A summary is given at the end.

II. MODEL AND SIMULATIONS

We consider the depinning transition RFIM on cubic la
tices of linear sizeL in higher dimensions (d>3). The
Hamiltonian of the RFIM is given by

H52
J

2 (
^ i , j &

SiSj2H(
i

Si2(
i

hiSi , ~4!

where the first term characterizes the exchange interactio
neighboring spins (Si561). The sum is taken over all pair
of neighbored spins. The spins are coupled to a homogen
driving field H as well as to a quenched random fieldhi with
^hi&50 and^hihj&}d i j . The random field is assumed to b
uniformly distributed, i.e., the probabilityp that the random
field at sitei takes some valuehi is given by

p~hi !5H ~2D!21 for uhi u,D

0 otherwise.
~5!

Using antiperiodic boundary conditions an interface is
duced into the system which can be driven by the fieldH
~see, Ref.@11# for details!. A Glauber dynamics with random
sequential update and heat-bath transition probabilities is
plied to simulate the interface motion~see, for instance, Ref
@18#!.

A moving interface corresponds to a magnetizationM that
increases in timet ~given in Monte Carlo step per spin!. The
interface velocity, which is the basic quantity in our inves
gations, is obtained from the time dependence of the mag
tization v5^dM/dt& where ^•••& denotes an appropriat
disorder average. Starting with a flat interface we perform
a sufficient number of updates until the system reaches a
a transient regime the steady state which is characterize
a constant average interface velocity.

As pointed out in previous works@11,12# an appropriate
choice of the interface orientation is needed in order to
cover that the interface moves for arbitrarily small drivin
field in the absence of disorder. An appropriate choice is
consider the interface motion along the diagonal direction
a simple cubic lattice. Ford>3 an alternative is to examin
the interface motion along thez axis on a body-centere
cubic ~bcc! lattice. Since it is much more convenient
implement the latter case in higher dimensions we cons
in this work bcc lattices, the more as the lattice struct
usually does not affect the universal scaling behavior.
02612
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III. DÄ3

In the case of the three-dimensional RFIM, we consid
bcc lattices of linear sizeL<250. A snapshot of a moving
interface in the steady state is presented in Fig. 1. The
tained values of the interface velocities forT50 are plotted
in Fig. 2. As one can seev tends to zero in the vicinity of
H'1.36. Assuming that the scaling behavior of the interfa
motion is given by Eq.~1! one variesHc until one gets a
straight line in a log-log plot. Convincing results are o
tained forHc51.35760.001 and the corresponding curve
shown in the inset of Fig. 2. For lower and greater values
Hc we observe significant curvatures in the log-log plot~not
shown!. In this way we estimate the error bars in the det
mination of the critical field. A regression analysis yields t
value of the order parameter exponentb50.65360.026.
This value agrees withb50.6660.04 that was obtained
from a similar investigation@11# where the interface move

FIG. 1. Snapshot of a moving interface atT50 for L5128,
D51.7, andH51.37 in d53. In order to show the details we
stretched the interface in the vertical direction by a factor 15.

FIG. 2. Dependence of the interface velocityv on the driving
field H for a bcc and simple cubic~sc! lattice, respectively. The
inset showsv as a function of the reduced driving fieldh.The dash
dotted lines are fits according to Eq.~1!.
7-2
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along the diagonal direction of a simple cubic lattice~see
inset of Fig. 2!. Furthermore, both results are in agreem
with b50.6060.11 @9,10#, where ind53 the influence of
helicoidal boundary conditions in one direction and perio
ones in the other direction parallel to the interface was
vestigated on a simple cubic lattice.

In order to determine the exponentc we simulated the
RFIM around the critical field for T50.025n with
nP$1,2,3,4,6,8%. The obtained curves are shown in the ins
of Fig. 3. According to Eq.~2! the interface velocity scales a

v~h,T!5T1/cṽ~hT21/bc,1!. ~6!

Plottingv(h,T)T21/c as a function ofhT21/bc one variesb,
c, and Hc until one gets a data collapse of the differe
curves. Convincing data collapses are observed forb50.63
60.06 c52.3360.2, andHC51.36060.01 and the corre-
sponding curves are shown in Fig. 3. The obtained value
the order parameter exponent and of the critical field ag
within the error bars with the values of theT50 analysis.
Furthermore, our results are in agreement with similar inv
tigations on a simple cubic lattice (b50.6360.07 and
c52.3860.2, see Ref.@11#!.

IV. DÄ4

In order to determine the order parameter exponent of
four-dimensional driven RFIM we measured the interfa
velocity for bcc lattices of linear sizesL<140. The obtained
data forT50 are shown in a log-log plot in Fig. 4. After
transient regime that displays a finite curvature we obse
an asymptotic power-law behavior for sufficiently sm
driving field H. A regression analysis yieldsb50.860.06
andHc51.25860.002.

To determine the exponentc we simulated the RFIM in
the vicinity of the critical field forT50.025n where again
nP$1,2,3,4,6,8% was choosen. Similar to the three

FIG. 3. Scaling plot of the interface velocity ford53. The data
are rescaled according to Eq.~6!. The inset shows the unscale
velocities forT50.025n with nP$1,2,3,4,6,8% ~solid lines! in com-
parision to theT50 data from Fig. 2~dashed line!.
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dimensional case one varies the exponents as well as
critical field until one observes a data collapse. Good res
are obtained forb50.7360.13, c51.7260.27, and Hc
51.25660.015. The corresponding data collapse is shown
Fig. 5. Again, the obtained values ofb andHc confirm the
above presented analysis forT50.

V. DÄ5

In the case of the five-dimensional RFIM system siz
from L510 up toL530 are simulated. Analyzing the inte
face motion atT50 we observe that the velocity-field de
pendence cannot be described by a pure power law,

FIG. 4. The interface velocity of the four-dimensional model
T50. For sufficiently small fields the data obey a power law a
cording to Eq.~1! ~dotted dashed line!. For the fit we use only those
data marked by filled symbols and we findHc51.25860.05 and
b50.860.06.

FIG. 5. Scaling plot of the interface velocity ford54 and
d56, respectively~see inset!. The data are rescaled according
Eq. ~6!.
7-3
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Eq. ~1! fails. In Fig. 6 we plotted the logarithmic derivatio
of the velocity-field dependence,

beff5
] ln v
] ln h

, ~7!

which can be interpreted as an effective exponent. If
asymptotic scaling behavior obeys Eq.~1! the logarithmic
derivative tends to the value ofb for H→Hc . This behavior
is observed in the case of the three- and four-dimensio
system~see Fig. 6!. For d55 the logarithmic derivative dis
plays no saturation forH→Hc , i.e., the scaling behavior o
the five-dimensional RFIM cannot be described by a sim
power-law behavior.

Significant corrections to the usual scaling behavior@Eq.
~1!# occur, for instance, at the upper critical dimensionaldc
where the scaling behavior is governed by the mean-fi
exponents modified by logarithmic corrections. The scal
behavior arounddc is well understood within the renorma
ization group theory~see, for instance Refs.@19–21#!. For
d.dc the stable fix point of the corresponding renormaliz
tion equations is usually a trivial fix point with classic
mean-field exponents. This trivial fix point is unstable f
d,dc and a different stable fix point exists with nonclassic
exponents. These exponents can be estimated by ane expan-
sion, for instance. Ford5dc both fix points are identical and
marginally stable. In this case the asymptotic form of t
thermodynamic functions is given by the mean-field~MF!
power-law behavior modified by logarithmic correction
e.g.,

v~h,T50!;hbMFu ln huB, ~8!

FIG. 6. The effective exponentsbeff as function of lnh for vari-
ous dimensions. The figure shows that the five-dimensional ex
nent does not display a saturation as the exponent of the lo
dimensions do. The data of the six-dimensional model indicate
the expected saturation valuebeff51 is reached significantly faste
as compared tod55 ~see text!. The values of the two-dimensiona
system are obtained from Ref.@12#.
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where B denotes an unknown correction exponent. It
worth to mention that in contrast to the values of the critic
exponents below the upper critical dimension the above s
ing behavior @Eq. ~8!# does not rely on approximation
schemes likee or 1/n expansions@22#. Within the renormal-
ization group~RG! theory it is an exact result in the limi
h→0 ~see, e.g.@19,23# and references therein for RG inve
tigations and@24,25# for measurements!.

The valuebMF51 is reported for depinning transition
@1,26,27#. Thus we analyzev(h)/h as a function ofu ln hu and
note again that Eq.~8! describes only the leading order of th
scaling behavior, i.e., we expect that the asymptotic beha
of interface velocity obeys

@v~h!/h#1/B5const u ln hu. ~9!

Therefore, we varied in our analysis the logarithmic corre
tion exponentB and the critical fieldHc until we get this
expected asymptotic behavior. The best results are obta
for B50.4060.09 andHc51.1423560.001 and the corre-
sponding scaling plot is shown in Fig. 7.

Similar to theT50 scaling behavior one has to modif
for T.0 the scaling ansatz since no data collapse could
obtained by plotting the data according to Eq.~2!. Motivated
by recently performed investigations of the scaling behav
of an absorbing phase transition around the upper crit
dimension@28# we assume that the scaling behavior of t
order parameter obeys in leading order

v~h,T!5T1/cMFu ln Tusṽ~x,1!, ~10!

where the scaling argumentx is given in leading order by

x5hT21/bMFcMFu ln Tut ~11!

with bMF51. In our analysis we use the valuecMF51.49
obtained from the analysis of the six-dimensional RFIM~see

o-
er
at

FIG. 7. The rescaled interface velocity as a function of the dr
ing field ford55. In order to display the logarithmic corrections w
plot (v/h)1/B vs 2 ln h @see Eq.~8!#. The solid line corresponds to
the expected asymptotic scaling behavior forh→0 @corresponding
to ln h→(2`)# according to Eq.~9!.
7-4
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DEPINNING TRANSITION OF A DRIVEN INTERFACE . . . PHYSICAL REVIEW E 66, 026127 ~2002!
the following section!. Therefore, we have to vary the exp
nentss andt in order to observe a data collapse accord
to Eqs. ~10! and ~11!. Convincing results are obtained fo
s50.2260.16, t50.1960.12 The corresponding data co
lapse is shown in Fig. 8.

VI. DÄ6

Above the upper critical dimension the scaling behavio
characterized by the mean-field exponents, i.e., in lead
order the interface velocity is given by

v~h,T50!;h. ~12!

In Fig. 9 we plot the velocity as a function of the drivin
field H obtained from simulations of system sizesL<14. As
one can see the velocity does not display the expected li
behavior. It seems that a linear behavior is only given
small velocities, i.e., our data do not display the pu
asymptotic behavior@Eq. ~12!#. This is confirmed by the be
havior of the effective exponent@Eq.~7!# that increases fas
for h→0 but the actual saturation tob51 does not take
place for the considered values ofh ~see Fig. 6!. To observe
the asymptotic behavior one has to perform simulatio
closer to the critical pointHc which requires to simulate
larger system sizes.Unfortunately, the limited CPU pow
makes this impossible.

An alternative is to take the curvature of the functi
v(h) into consideration and to assume that the leading c
rections to the asymptotic behavior are of the form

v~h,T50!5v1h1v2h21O~h3!, ~13!

which recovers Eq.~12! for h→0. Fitting our data to this
ansatz we getHc51.153760.003, v150.2937, andv25
20.1188. The corresponding curve fits the simulation d
quite well as one can see from Fig. 9. In the inset of Fig
we plottedv(h)/h as a function of the reduced driving fiel

FIG. 8. The scaling plot of the interface velocityv for the five-
dimensional model, i.e., at the upper critical dimension. The d
are rescaled according to Eqs.~10! and ~11! using c51.49, b
51, s50.22, andt50.19.
02612
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h. According to the above ansatz@Eq. ~13!# one gets a linear
behavior, i.e., the deviations from the pure mean-field beh
ior @Eq. ~12!# can really be described as quadratic corre
tions. Thus we get that our numerical data are consistent w
the assumption that the six-dimensional RFIM depinn
transition is characterized by the mean-field expon
bMF51.

Again we consider how thermal fluctuations affect t
scaling behavior and analyze interface velocities obtaine
different temperaturesT50.025n with nP$1,2,3,4,6,8%.
Similar to the situation below the upper critical dimensi
we assume that the scaling behavior of the interface velo
is given by Eq.~2! where the exponents are given by mea
field values. A convincing data collapse is obtained forcMF
51.4960.15 andHC51.15360.02 and is plotted in the in-
set of Fig. 5.

VII. DISCUSSION

A well established realization of interface pinning in
disordered media is the so-called QEW equation of mot
that was intensively investigated in the last deca
@7,15,16,26,27,29#. It is argued that the QEW equation a
well as the driven RFIM are characterized by the same c
cal exponents, i.e., both models belong to the same uni
sality class @7,9#. Renormalization group analyses of th
quenched QEW equation@26,27# predict, in accordance with
Ref. @7#, dc55 and allow to estimate the critical exponen
using ane expansion. A recently performed two-loop reno
malization approach yields@27#

bQEW512
1

9
e20.040 123e21O~e3! ~14!

ta
FIG. 9. The interface velocity as a function of the driving fie

for the six-dimensional model. The dashed line corresponds to
according to Eq.~13!. The inset displaysv(h)/h as a function of the
reduced driving fieldh. The resulting linear behavior confirms tha
the deviations from the mean-field behavior can be described
quadratic corrections.
7-5
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wheree denotes the distance from the upper critical dime
sion, i.e.,e552d ~unfortunately, no error bars can be es
mated from ane expansion!. The corresponding values o
the exponents as a function of the dimension are plotte
Fig. 10. The numerically determined exponentsb of the
driven RFIM ~listed in Table I! are in a fair agreement with
the values of thee expansion.

For the QEW equation the temperature exponentc is not
known. Therefore, a direct comparison with the obtained v
ues of the driven RFIM is not possible.

VIII. CONCLUSIONS

We studied numerically a field driven interface in th
RFIM and determined the order parameter exponentb as

FIG. 10. The critical exponentsb and c as a function of the
dimension. The solid line corresponds to the values of ane expan-
sion @Eq. ~14!#.
d

v.

02612
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well as the temperature exponentc. Below the upper critical
dimensiondc55 the critical exponents depend on the dime
sion and the values of the exponents correspond to those
two-loop renormalization group approach of the Edwar
Wilkinson equation@27#. This suggest that the depinnin
transition of the RFIM model is in the universality class
the quenched Edward-Wilkinson equation. At the upper cr
cal dimensiondc55 the scaling behavior is affected by log
rithmical corrections. Above the upper critical dimension w
observe that the scaling behavior is characterized in lead
order by the corresponding mean-field exponents.

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs
meinschaft via GRK 277Struktur und dynamik heterogene
Systeme~University of Duisburg! and SFB 491Magnetische
Heteroschichten: Struktur und elektronischer Transp
~Duisburg/Bochum!.

TABLE I. The critical exponentsb ~obtained from simulations
at T50 andT.0, respectively! andc of the depinning transition
of the RFIM for different dimensions. The values of the tw
dimensional model are obtained from Ref.@12#. The critical behav-
ior at the upper critical dimensiondc is additionally affected by
logarithmic corrections.

d bT50 bT.0 c

2 0.3560.04 0.3360.02 5.0060.3
3 0.65360.026 0.6360.06 2.3360.2
4 0.8060.06 0.7360.13 1.7260.27
dc55 1 1 1.49
6 1 1 1.4960.15
a
,
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