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Langevin dynamics of the Coulomb frustrated ferromagnet: A mode-coupling analysis
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We study the Langevin dynamics of the soft-spin, continuum version of the Coulomb-frustrated Ising
ferromagnet. By using the dynamical mode-coupling approximation, supplemented by reasonable approxima-
tions for describing the equilibrium static correlation function, and the somewhat improved dynamical self-
consistent screening approximation, we find that the system displays a transition from an ergodic to a noner-
godic behavior. This transition is similar to that obtained in the idealized mode-coupling theory of glass-
forming liquids and in the mean-field generalized spin glasses with one-step replica symmetry breaking. The
significance of this result and the relation to the appearance of a complex free-energy landscape are also
discussed.
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[. INTRODUCTION approximation(SCSA) [13], for calculating the pair correla-
tion functions, Schmalian and Wolyné¢40] have derived

Models with a competition between a short-range orderthat the free-energy landscape of the Coulomb-frustrated
ing interaction and a long-range frustrating interaction havenodel becomes nontrivial below some temperatlipe at
been recently introduced to explain the slowing down of rewhich an exponentially large number of metastable states
laxation in supercooled liquids and the resulting glass tranappears; the associated configurational entropy decreases
sition [1]. The underlying picture is as follows: any given with further decrease of the temperature and vanishes at a
liguid possesses a locally preferred structure that is differenbwer temperaturd i [10,14,15.
than that of the actual crystalline phase, and this local ar- Motivated by these results giving evidence for fragile
rangement of the molecules in the liquid cannot propagate ajlass-forming behavior in Coulomb-frustrated models, we
long distances to tile the whole space and form an “ideahave studied the Langevin dynamics of the Coulomb-
crystal” because of ubiquitous frustration. It has been arguedrustrated ¢* scalar field theory within the mode-coupling
[1] that, for a weak enough frustration, this phenomenon caand related approximations. Mode-coupling approaches have
be described by effective interactions acting on very differenbeen widely used to study glass-forming liquid$,17], and
length scales: a short-range term describing the tendency tbe dynamical ergodicity-breaking singularity predicted to
extend the locally preferred structure and a long-rangepccur in the weakly supercooled liquid regions, albeit
Coulomb-like term describing the frustration-induced free-“avoided” in real systems, is taken by many as a canonical
energy cost associated with this spatial extension. Sucfeature of fragile glass-forming systems. It is therefore
Coulomb-frustrated systems have been shown, both by scalempting to investigate whether Coulomb-frustrated models
ing argumentg1,2] and by Monte Carlo simulatiof3], to  also display this feature.
display the generic features observed in fragile glass-forming The paper is organized as follows. We first present the
liquids, most notably the super-Arrhenius temperature demodel and summarize the equilibrium-phase behavior and
pendence of the relaxation time and the two-step, nonexpdhe results previously obtained by Schmalian and Wolynes.
nential decay of the correlation function. We also introduce the Langevin equation describing the re-

These Coulomb-frustrated models have also been used laxational dynamics of the system. In Sec. Ill, we derive the
quite different contexts to describe the formation of modu-evolution equations followed by the equilibrium time-
lated spatial patterns on mesoscopic length scales, such dspendent correlation function obtained within two resum-
lamellar and cubic phases in diblock copolymer mpits 6], mation schemes of perturbative expansions: the mode-
microemulsions in water-oil-surfactant mixtur¢g,8], or  coupling approximation and the dynamical SCSA. Section
stripe phases in high-temperature supercondu¢gjrdn all IV is devoted to the search for an ergodicity-breaking tran-
these cases, slow relaxation is usually observed, and it hastion. We find that such a phenomenon is indeed observed
been recently arguefllO] that high-temperature supercon- with the two approximations considered. We also show that
ductors could indeed form a “stripe glass” in which glassi- the dynamical singularity predicted by the dynamical SCSA
ness is self-generated, i.e., does not result from the presenceincides with the temperatufig, at which the replica analy-
of quenched disorder. The latter result has been obtainesis of Refs.[10,14 predicts the occurrence of an exponen-
through an investigation of the properties of the free-energyially large number of metastable states. In Sec. V, we present
landscape of the Coulomb-frustrateéd scalar field theory: the full numerical solution of the mode-coupling equations,
by using a thermodynamic approach combining the replicahereby obtaining the time-evolution of the equilibrium cor-
method proposed for the study of structural glagdds12  relation function; this latter is similar to that obtained in the
and a particular approximation, the self-consistent screeninglealized mode-coupling theory of supercooled liquid§]

1063-651X/2002/6@)/02612611)/$20.00 66 026126-1 ©2002 The American Physical Society



M. GROUSSON, V. KRAKOVIACK, G. TARJUS, AND P. VIOT PHYSICAL REVIEW B6, 026126 (2002

and in mean-field generalized spin-glass mofi&&-20. In ' T L L B
the last two sections, we address the question of sensitivity
of the results to the level and the details of the approximation
scheme and we give some concluding remarks.

Il. MODEL

We consider the field-theoretical version of the three- o
dimensional Coulomb-frustrated Ising ferromagnet defined
by the Hamiltonian

1
Higl=5 d3x[ [V 30012 +rod?(x) + §¢4<x>]

J d3x J d3x r¢(x)¢(x ) 1) e I A ]
V([ d3 Q FIG. 1. Temperaturerg)-frustration Q%) equilibrium phase
_ 24 . . . A .
=5 (2m)° 0 kz o diagram in the self-consistent Hartree approximation. The full line
m denotes the fluctuation-induced first-order transition to modulated

phases; below this line, the paramagnetic phase exists in a meta-
stable state. The coupling constanis set equal to 1.

+uV d3k1f d3k2J’ d3ksg
(2m)®) (2m)°) (2m)°

5 Brazovskii for a related mode[22]. Within the self-

X bk, Py PraP kg kg @ consistent Hartree approximation, the equilibriugwon-

] . ) nected correlation function
where ¢(x) is a real scalar field ¢,, the associated

k-Fourier component V is the volumeyu is a strictly posi- VC(K)=(_ ) —{(D_1){ D) (4)
tive coupling constant) is the frustration parameter, and all
momentum integrations are performed up to a cufgfi.e., is obtained via a self-consistent equation; for instance, in the

|[kK|<A; rgis atemperature-dependent mass that is proporparamagnetic phase whefé,)=0, this equation is
tional to the deviation',l'—TSvM,:, from the mean-field tran-

sition temperature of the unfrustrate@ € 0) model. NP , Q d’q
The equilibrium partition function is C(k)=ro+k+ E+3u (27)30(@' ®)
:f Dpe HAIT (3  The renormalized mass=ro+ 3ufd3qg/(27)3C(q), is then
' given by
In what follows, we take\ =1, andT is set equal to 1 in Eq. d3q 1
(3) so that the whole temperature dependence is contained in r=ro+ 3UJ’ 3 . (6)
ro. We are interested in the weak-frustration region for which (2m) + a2+ g

r

Q<l1. e
In the absence of frustratior=0), the model defined

by Egs.(1)—(3) reduces to the usua* theory. It undergoes Sincek?+ Q/k? is minimum for nonzero wave vectors with
a second-order transition at a finite temperatﬂrﬁeto a modulus k,=Q4 a value characterizing the incipient
broken-symmetry phase characterized by a nonzero value ofiodulated order, one easily checks thainly goes to zero
(br=0), Where() denotes an equilibrium average. Fr ~ whenr,— —o. This means that the paramagnetic phase is
>0, an ordered phase withb,_q)# 0 is forbidden, but the (metastable at all finite “temperatures,” its spinodal being
system can still undergo a phase transition at a temperatudepressed to,— —o. The Hartree approximation allows
Too(Q) to a phase with long-range modulated order. Thisone to calculate the free energy of the paramagnetic phase
transition has been studied by Monte Carlo simulation for theand that of the phase with modulated order. One then obtains
case of the Coulomb-frustrated Ising ferromagnet on a cubithe temperaturego(Q) of the first-order transition at the
lattice[21] and via the self-consistent Hartree approximationpoint at which the two free energies are equal. The details are
for a Hamiltonian similar to Eq(1) describing microphase given in Appendix A and the resulting phase diagram is
separation in diblock copolymer melt§]: it has then been shown in Fig. 1.
shown that, whereas the mean-field theory predicts a second- In their recent work, Schmalian and Wolyngk0] have
order transition, the fluctuations change the order of the tranapplied the thermodynamic approach of nonrandom glass-
sition and induce a first-order transition. Such a fluctuationforming systems developed by id&rd and Parigi12] to the
induced first-order transition was first discussed byCoulomb-frustrated model. The basic idea, originally moti-
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vated by the behavior of a class of mean-field generalized The perturbative expansion 6f(k,t,t’) andG(k,t,t") in
spin glasses such g@sspin and Potts glass¢$8,19, is that  powers ofu is more conveniently expressed by introducing
glassiness arises because of the occurrence of an exponéhe zeroth-order correlation and response functions,
tially large number of metastable states. This occurrence, and L
the associated emergence of a nonzero complexity or con- , ,
figurational entropy, can be more conveniently studied within Co(k,t,t)= mexr{,u(k)(t—t )1, (11)
the replica formalism[11]. Approximations are of course
necessary to solve the corresponding many-body problem Go(k,t,t")=exg w(k)(t—t")], (12
and obtain all relevant correlation functions. Schmalian and
Wolynes have shown that within the SCEEZ], an approxi- where
mation that goes beyond the Hartree result in that it explic-
itly includes more diagrams of the perturbative expansion )
[23], there is a temperatur€, at which an exponentially m(k)=ro+k+ 2 (13
large number of metastable states emerges, as signaled by a
nonzero conf_igurational entropy. The configurational entropy,ng the two kernel® (k,t,t') andD(k,t,t') defined through
Qecreases with further decay pf the temperature and it vana standard Dyson equations,
ishes at a temperatufB at which the system undergoes a
random first-order transition to an “ideal glasgl0]. t ¢

In the present work, we focus on the dynamics of the C(k,tt'):J’ dtlj dtzG(k,t,t1)[26(t1—tp)
Coulomb-frustrated model defined by Ed). The starting 0 0

point is the Langevin equation +D(k,ty,t)]1G(k,t' 1), (14)
I(t) _ S{HI(D]/V} o) @) , ’ t 4
ot 5¢7k(t) Mk G(k,t,t ):Go(k,t,t )+ Jt’dtlJt’ dtzGo(k,t,tl)
that describes the purely relaxational dynamics of the sys- X3 (K, ty,t2)G(K t,t). (15)

tem; 7, (t) is a gaussian thermal noise withy,(t))=0 and ) , ) .
(D) mer (1)) =2T 8(k+k') 8(t—t'). Equation(7) can be The diagrammatic representation of the perturbative ex-
explicitly written as pansion and a detailed derivation of the mode-coupling ap-

proximation can be found in Ref19]; the only difference
with the cases considered in REf9] is the presence of the

3 3
Ihi(V) :_(r0+kz+9 ¢k—UJ ks j d’kz frustration termQ/k? in the expression ofx(k), and we
ot k? (2m)3) (2m)3 merely sketch here the main steps of the derivation.
The mode-coupling approximation amounts to expanding
X i, Pry Pk, T (D). (8) the kerneldD (k,t,t") and2 (k,t,t") to second order i and

] ) ) ) ~ replacing the barézeroth-order functions Cy(k,t,t") and
Solving this set of coupled nonlinear dynamical equationsg(k,t,t’) that appear in the resulting expressions by their

is a daunting task, and virtually all available approximationsyenormalized counterpart€(k,t,t') and G(k,t,t’). This
amount to performing some self-consistent resummation ofgads to[19]

perturbative expansions, e.g., expansions in powers of the

coupling constanti or of the inverse of the number of com- d3k, d3k,

ponents of the field, &/, for an O(n) model. In what fol- D(k,t,t’)zGuzf sj 3 C(ky,t,t")

lows, we shall consider two such self-consistent resumma- (2m)°) (2m)

tion schemes, the mode-coupling approximation and the X C(Ko t t)VC(K—K:—Ko t.t’ 16

dynamical SCSA24]. (k2. t,t)Ck—ky —kp, L,t"),  (16)
) dk, [ d3k,

l1Il. DYNAMICAL SELF-CONSISTENT APPROXIMATIONS S(k,t,t")=18u f—f C(kq,t,t")

(2m)®) (2m)®

To introduce the mode-coupling approximation, we first ) )
define the time-dependent correlation funct®fk,t,t’) and XC(ka, t,t")G(k—k;—ka,t,t"). (17

the associated response functiGfk,t,t’): ) ) ) )
P a ) At the same timeuw (k) is renormalized to include the

S(k+Kk)C(K, ") ={ bi(t) by (1), (9) so-called tadpole diagrams, which replaces B@) by an
expression similar to that obtained within the static Hartree
Ii() 1 approximation.
/ "— k _ - , In this work, we are interested by the dynamical proper-
AkTK)G(k, L") <¢977k,(t’)> 2T<¢k(t)77k'(t ) ties of the systenat equilibrium therefore, the fluctuation-
(10)  dissipation theorem and the time-translation invariance ap-
ply, which reduces the dependence upon the two titaesd
As in the preceding section, we SBt 1 in the following. t’ to the mere dependence on the differehed’ and gives
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dC(k,t)
G(k,t)=—0(1) g
and
dD(k,t)
2(k,t)=—0(1) o

where0 (t) is the Heaviside step functidr®(t) is equal to
0 for t<0 and to 1 pourt>0]. Applying the operator
Gy, M(k)=[ u(k)+dlat] to both sides of Eq(15) yields

IG(K,1)
ot

which, when combined with the time derivative of EG8),

aG(k,t) JC(k,t) #*C(k,t)
a __5(0( P Ve
gives
dC(k,t)
= )1

=6(t) — n(K)G(k,t)+ jotdt’E(k,t—t’)G(k,t’),

PHYSICAL REVIEW B6, 026126 (2002

ek _ —C(k,t=0)"1C(k,t)
ot
t aC(k,t")
—Jodt’D(k,t—t’)—, (26)
with
dik, [ d%k,
K,t)=6u? —=C(K
Dll,t)=6u J(zw)J 2mez ta?
X C(Ky,t)C(k—k;—Ky,t). 27

Except for the absence of the inertial terdC(k,t)/dt?,
in the purely relaxational dynamics associated with the
Langevin equation and the cubic dependence of the memory
kernelD(k,t) on the correlation functio€(k,t), the above
equations are similar to the mode-coupling equations used to
describe the time-dependent density fluctuations in super-
cooled liquidg[16]; they are also analogous to those derived
for the mean-field spin glass with four-spin interactions
[19,20.

The necessary input for solving the self-consistent Egs.
(26) and(27) is the knowledge of the equilibrium static cor-
relation functionC(k,t=0). Treating the statics and the dy-
namics of the system on an equal footing, as for instance

Fort>0, the equation for the response function thus readsy,ne in the above derivation, leads to considering a mode-

IG(K,1)
ot

with the initial conditionG(k,t=0")=1. By Laplace trans-
forming Egs.(18), (19), and(23) and using the initial condi-
tion (9C(k,t)/dt);—o=—G(k,t=0")=—1, one finally ob-

tains

1=[zC(k,z) +C(k,t=0)][ w(k)—iz
—zD(k,z)—D(k,t=0)],

=—u(k)G(k,t)+ Jotdt’E(k,t—t’)G(k,t’)

coupling approximation for the static correlation function,
C(k,t=0)=[u(k)—D(k,t=0)]"1. However, we shall
rather introduce more flexibility in the mode-coupling
schemda flexibility that goes with the many ways to imple-
ment the self-consistency at the second order of the pertur-
bative expansionby allowing C(k,t=0) to be computed
with several approximations, such as the Hartree approxima-
tion and the SCSA, that aie priori better behaved than the
mode-coupling approximation as far as the static properties
are concerned.

A somewhat refined resummation scheme is provided by
the dynamical SCSAAs mentioned in Ref(23], it consists
in using ann-component vector fieldp, resumming self-
consistently all the diagrams of ordemlih the largen ex-

where C(k,z)=i[;dte?'C(k,t), and a similar expression pansion, and, eventually, for the problem considered here,
holds forf)(k,z)_ Going back to the time dependence leadssettingn equal to 1) Details on the derivation of the approxi-

to
dC(k,t)
=) =D(kt=0)IC(k,t)
ft dC(k,t")
— | dt'D(k,t—t") ———
0 at’

with the initial condition C(k,t=0)=[u(k)—D(k,t

=0)]? that follows from Eqs(22) and(25).

The mode-coupling approximation finally results in the
following self-consistent equation for the time-dependent

correlation function at equilibrium:

mate equation for the time-dependent correlation function
C(k,t) can be found in Refd.19,25. A convenient way to
proceed is to introduce a complex auxiliary fietdx) such
that the partition function, Eq(3), can be rewritten a&
=[[D¢pDoe ¢l (hereT=1) with

1
Hg.01= 5 | XY 600 1+106700— 000
+2u0(x) ¢%(x)}

Q[ o[ s, 0B
+87Tf d xf d>x —|x—x’| . (28
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The field o(x) is such that{o(x))=u/2(¢$?(x)) and its  correlation functionC(k,t—=); as a result, in the smat-
connected  pair  correlation  function C,(x.X")  |imit, C(k,z)~—C(k,t—x)/z and D(k,z)~—D(kt

=(o(X)o(x'))c is equal to —)/z, which when inserted into Eq33) leads to
Cy(XX') = — B(x—X") + U2 $2(x) $2(x")) Clk t)
— (20N FAXN]. (29 Dkt =)= R t=0)(C(k.t=0)— C(K.t )"

34
One can then apply to the dynamics of the coupled fields 39
o(x) and ¢(x) a treatment similar to that sketched above. The kernelD(k,t—=) is obtained from Eq(27) for the
Defining the equilibrium time-dependent correlation functionmode-coupling approximation and from Ed80)—(32) for
C,(k,t) via 8(k+k")C,(k,t)=(o(t) oy (0))., the associ- the dynamical SCSA.
ated kernelD,(k,t) obtained through the Dyson equation Consider first the equation resulting from the mode-
(see abovg and similar functions for the response proper-coupling approximation,
ties, one can perform a mode-coupling approximation to the

coupled dynamical equations for the field$x) and ¢(x). Clk,t—)
This leads to Eq(26) with D(k,t) now given by[25] C(k,t=0)—C(k,t—x)
D(k,t)=2uJ dp C,(p,t)C(k—p,1); (30) =6u2C(k,t=0)f ks f il C(ky,t—e0)
(2m)?3 7 (2m)3) (2m)®
the auxiliary-field correlation functio€,(k,t) is the solu- X C(kp,t—=2)C(k—k;—kp,t—). (39

tion of the equation .
a Note that this actually represents a set of coupled equa-

dC,(K,t) . tions for the variouk modes. The necessary input for solv-
i~ Colkt=0)""Chlk,t) ing this equation is the knowledge of the equilibrium static

correlation functionC(k,t=0) (see discussion aboneWe

t aC,(k,t") consider here two standard approximatiofi$:the Hartree

—J’ dt'Dy(k,t—t')———— (31)  approximation, already presented in E(®.and(6), and(ii)

0 at the SCSA, described in the previous section and leading to
i d%q C(k-q0)
(27)® 1+ull(q)’

5 C_l(k,O)Z,u,(k)‘f‘ZUf (36)

d°q
Dg(k,t)=—uf(277)3C(q,t)C(k—q,t). (32)

where

These equations are supplemented by the initial conditions

C(k,t=0)=[u(k)—D(k,t=0)]"! and C,(k,t=0)=—[1 3

,u(k)=ro+k2+%+uf a C(q,0) (37

—D,(k,t=0)]"* which are easily shown to be identical to (2m)°
the equilibrium, static SCSA equations first derived by Bray
[13]. and
IV. TRANSITION FROM ERGODIC B d3q
TO NONERGODIC BEHAVIOR I(k)= (277)3C(q,0)C(k—q,0). (38)

It is well known that mode-coupling and related approxi- ) .
mations, when applied to glass-forming systems, may lead th°t€ that if one neglects the terall(q) in Eq. (36), one
a dynamical singularity16,19. The latter corresponds to a €COVers the Hartree approximation. _
transition from an ergodic to a nonergodic behavior and is N Poth cases, only the paramagnetic phegg) =0, is
not associated with any thermodynamic equilibrium transi-considered. From now on, we take=1 (recall that all mo-
tion. For searching for such a singularity in the above equaMentum integrations are cut off at=1).

tions, it is convenient to Laplace transform E86), which Other approximations will be discussed in Sec. VI.
We have solved the set of coupled equations, (Bf), by

gIves an iterative method. We find that with the above two approxi-
R —C(k,t=0) mations, the mode-coupling approach does lead to an
C(k,z)= . (33 ergodicity-breaking transition for the Coulomb-frustrated
. 1 model. When decreasing the temperature, i.e., the bare mass
C(k,t=0)(i+D(k,2)) ro, One reaches a point at whi€(k,t—o0) discontinuously

jumps to a nonzero value. The transition temperature in-
An ergodicity-breaking transition is associated with the ap-creases as frustration decreases; it seems to reach continu-
pearance of a nonzero value of the long-time limit of theously, whenQ— 0, the (equilibrium) critical temperature of
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T T I T ! T T T
— (@)
1 200
] N
- I
- <
T
1 ; 100
. S
0 0.1 0.2 0.3 04 0.5
Q1/4 0
FIG. 2. Ergodicity-breaking transition in thg-(Q*% diagram.
Dotted line: mode-coupling approximation with the static Hartree
approximation; dashed line: mode-coupling approximation with the
static SCSA; full line: dynamical SCSA.
the unfrustrated system, i.e., of the standai theory in 200
either the Hartree approximation or the SCSA. This behavior .
is illustrated in Fig. 2. One observes a discrepancy between ﬁ
the results obtained with the two different approximati¢ins =
and(ii) for C(k,t=0), but it stays within reasonable bounds: o
the relative difference is about 20% or less. As can be seen 5”?
from Fig. 3, the two approximations predict very similar cor- el
relation functions, both at equilibriumt€0) and in the non- o
ergodic statet(—) when the temperature is &ir just be-
low) the dynamical transition. Roughly speaking, the latter
takes place when the maximum of the equilibrium correla-
tion function C(k,t=0), a maximum that occurs folk| N .
=k,,=QY* reaches a giverQ-dependent value: this is il- 0 0.15 03 045 06
lustrated forQ=0.1 in Fig. 4 where the dynamical transition k

occurs when maXC(k,0)}=40. As the maximum increases ) _ _ _
whenQ decreases slightly more rapidly with the SCSA than FIG. 3. Correlation functiol©(k,t) att=0 (full line) and in the
t—o limit (dashed lingin the dynamical mode-coupling approxi-

with the Hartree approximation, the former predicts a some-"_ "~ ™ . ) e )
what higher transition temperature than the latter: see Fig. 4nat|on just below the ergodicity-breaking transition for two differ-

Note that the fact that the ergodicity-breaking transition ise-nt .Values of the frustratio@: (3) static Hartree approximatiofh)

. . A static SCSA.
driven by the maximum of thk-dependent equilibrium cor-
relation function is well established in the context of mode-states occur in the Schmalian-Wolynes treatment. Below this
coupling approachdd 6]. As illustrated in Fig. 5, the transi- temperature, ergodicity is broken: the fluctuation-dissipation
tion takes place at the same temperature fok afiodes. theorem and the time-translation invariance no longer apply,

The transition from ergodic to nonerogodic dynamical be-and Eqgs.(26)—(30) should be generalized to describe the
havior can also be studied within the dynamical SCSA. Theevolution of two-time correlation and response functions and
corresponding equations to be solved are given above and the associated aging behav[d9].
Appendix B. A dynamical transition is indeed found, and the  Finally, it is instructive to compare the location of the
frustration dependence of the transition temperature is showmode-coupling-like dynamical transition with that of the
in Fig. 2. The predicted transition line is not much different equilibrium, thermodynamic transition discussed in Sec. II.
from those obtained with the above mode-coupling approxiThe dynamical transition occurs at a temperature that is
mations. We show in Appendix B that the expressions for théower than the critical temperature of the unfrustrated sys-
correlation functionC(k,t) for t=0 and t—«~ derived tem, a temperature that was shown in the Monte Carlo study
within the dynamical SCSA when ergodicity is broken areof Ref.[3] to mark the onset of fragile glass-forming behav-
identical to those obtained in Reff10,14 by using the ior; it seems to occur at a temperature close to that of the
purely thermodynamic analysis based on the replica formalfluctuation-induced first-order transition from the paramag-
ism and the static SCSA. As a result, the dynamical SCShAetic to the modulated phases. This is illustrated in Fig. 6
predicts that the dynamics loses ergodicity precisely at thevhere we display the first-order transition obtained within
point at which an exponentially large number of metastablehe Hartree approximatiofsee Sec. Il and Fig.)land the
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FIG. 4. Maximum of the static correlation function
max{C(k,t)} versus temperaturer{) for t=0 (full line) andt FIG. 6. Ergodicity-breaking transition(dynamical mode-
—¢ (dashed lingin the dynamic mode-coupling approximation for ¢oypling approximation with static Hartree approximatiofull
a frustrationQ=0.1. The left curves correspond to the static Har- ¢rve, and fluctuation-induced first-order transitigtatic Hartree
tree approximation and the right curves to the static SCSA. Theypproximation, dashed curve, in the,— Q% diagram.
jump in max{C(k,t—x)} signals the transition from an ergodic
_(high temperatuneto anongrgodicﬁlow tempe_ratur}abehavior. The place in thesupercoolecparamagnetic‘liquid” ) regime, a
inset shows the normalized nonergodicity factor pi&Xk.t  regime that appears because of the first-order nature of the
— )}/ max{C(k,t=0)} versusro. transition to the modulated phases and that can be described
by the Hartree approximation. As discussed in Sec. Il, the
paramagnetic phase (metg-stable at all finite temperatures
Awithin this approximation, and the equilibrium correlation
Oﬁgngth is therefore finite in all of the region where the dy-

namics are studied.

dynamical transition obtained within the mode-coupling ap-
proximation supplemented by the static Hartree approxim
tion (as discussed above, the other predictions are quite cl
to this lattey.

Actually at smallQ’s the dynamical transition appears
even below the temperature of the equilibrium first-order

transition: in such a case, the dynamical transition takes V. EVOLUTION WITH TIME OF THE

CORRELATION FUNCTION

' ' ' ' ' ' We have also solved the full set of coupled equations

ol — Ck, | describing the time evolution of the equilibrium correlation
"ggzmax_*é’g) function C(k,t) in the mode-coupling approximation, Egs.
L (26)—(27). (The algorithm is described in Ref6,27.) For

the input quantityC(k,t=0), we have used the Hartree ap-
- .. proximation. The results are shown in Fig. 7 for the time-
ﬁ RN dependent correlation function at a momentlm,~kn
& S =QY* that corresponds to the maximum value of the func-
o Nag tion; curves for the frustration paramet@r=0.1 and several
temperaturedi.e., several values of the bare mag3 are
shown. One observes a behavior typical of the mode-
coupling equations with a so-call@&dtype transitiof16] as
those used to describe glass-forming liquid$é] and those
describing the dynamics of a class of mean-field generalized
spin glasse$19].

At high temperature, the correlation function decays in
0 one step, but as temperature is lowered a second relaxation

FIG. 5. Correlation functiol©(k,t=) versus temperatureq) ~ SteP appears, that becomes slower and slower so that a pla-
for Q=0.1 and three different momenta corresponding to the t€au develops between the two relaxation steps. When tem-
maximum of the function K, full line), a higher value K., ~ Perature is further decreased, one reaches a point at which
+0.05, dashed lineand a lower value K,.,—0.05, dotted ling the slow (“ a”) relaxation time diverges. The correlation
The results are obtained for the dynamical mode-coupling approxifunction no longer decays to zero, but stays at the plateau
mation supplemented by the static SCSA. Note that the jumps occuralue. Below this point, ergodicity is broken and the mode-
at the same temperature. coupling equations derived under the condition of equilib-
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FIG. 7. Time dependence of the correlation functe¢k,t) 15
for Q=0.1 as predicted by the mode-coupling approximation
(supplemented by the static Hartree approximati@urves from
left to right correspond to decreasing temperaturgs: — 1.05,
—1.06,—-1.065,—-1.068,—1.070,—1.071,—-1.071 35,—1.071 55,
—1.07165,-1.0717,—-1.07173,—-1.071734,-1.071 7379, and 10
—1.071 738. The dynamical transition isrgt=—1.0717379 ... .

(b)

rium (with the fluctuation-dissipation theorem and the time-
translation invariangeare no longer valid.

In the vicinity of the dynamical transition, various scaling
laws are observed, and the sldgiva” ) relaxation time di-
verges as a power law,

loglo(‘ca)

L L L LS 7

T(Q,T)~(T=T¢) 7, (39 b P IR RPN TR B
6 4 2 0

where the exponeny=1.85-1.89 is weakly dependent on log, (1,1,

the frustration parameter, provide@d>0. (For Q=0, the o
system shows standard critical slowing down witfiT) FIG. 8. Temperature dependence of theelaxation timer,,
~(T—T.) %, wherez is the dynamical exponent andthe  obtained from the dynamical mode-coupling predictigrith the
(statig correlation length exponef28].) For illustration, we ~ Static Hartree approximatiorfor the time-dependent correlation
have plotted the logarithm of the-relaxation time versus function C(Kmax.0). 7, is defined as the time at whioB(Kpmax.t)

temperature , for two different frustrations in Fig. 8. =0.1. Two frustrations,Q=0.1 and Q=0.001, are shown(a)
log,o( 7,) versus—ry; the left and right curves correspond @

=0.1 andQ=0.001, respectively(b) log;¢(7,) versus logqrg
VI. SENSITIVITY OF THE RESULTS TO THE —ro.(Q)], wherer o.(Q) is the ergodicity-breaking transition point.
APPROXIMATION SCHEME

We have already mentiondgee Ref[24]) that enough of kn_own, and was recall_ec_i above, .that the I_o_catipn, or even the
the nonlinearities of the original dynamical equation or of the€Xistence of an ergodicity-breaking transition is sensitive to
equations in replica space must be kept in any approximaté'e amplitude of the peak in the equilibriufstatio correla-
treatment in order to find nontrivial phenomena such as erfion functionC(k,t=0). We have seen that the Hartree and
godicity breaking and the appearance of an exponentiall)?CSA. give slightly different, but compaublle, results_,. If one
large number of metastable states. For this reason, the diSes instead a somewhat less renormalized version of the
namical as well as the replica-space Hartree approximation3CSA with (k) in Eq. (37) now defined with the Hartree
are unable to generate such phenomena. One must therefé¥ad not the full correlation function, i.e.,
consider improved resummation schemes such as the mode-
coupling approximation and the SC$29]. Q

The additional point we would like to make here is that pu(k)=ro+k*+ —2+UJ
even in the mode-coupling approximation, the results are k
somewhat dependent upon the supplementary approximation
that is made to describe the static properties of the system different behavior is obtained. As shown in Fig. 9, the
entering as an input in the dynamical equation. It is wellmaximum of the static correlation function appears to satu-

o]

d’qg 1
(27r)3 w(aA)’

(40)
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nonergodic behavior, similar to that obtained in the idealized
mode-coupling theory of glass-forming liquid$6] and in

the mean-field generalized spin-glasses with one-step replica
symmetry breaking18,19. This transition occurs in the
paramagnetic phase, either in the stable or the metastable
region. It is related to the emergence of an exponentially

7t=°°)

max

= large number of metastable states found by a purely static
“ replica approach: the system loses ergodicity because it gets
ﬁ trapped in free-energy minima separated from each other by
§ infinite barriers. This whole description, as can be inferred
22 from the very nature of the approximations that amount to
© partial resummations of perturbative expansions, has a mean-

field character: thermally activated processes are completely
ignored. The predicted singularity is “avoided” in the true
dynamics of the system and it remains to be seen, e.g., in
computer simulations of Coulomb-frustrated models, what
To signatures may still be observed in the time evolution of the
) ) _ correlation function. As for describing the activated pro-
e o o N el cesses, fher, nonperturbative approaches, such a5 he phe-
. 0 : L nomenological frustration-limited domairi] and entropic-
dynamical mode-coupling approximation. The value of the frustra-droplet pictureg31], must be used
tion is Q=0.1. The two upper curves correspond to the static Har- ’ '
tree approximation that predicts an ergodicity-breaking transition.
The lower curve that saturates at low temperatures corresponds to APPENDIX A: FLUCTUATION-INDUCED
the less renormalized version of the SCE&. (40)]: no dynamical FIRST-ORDER TRANSITION
transition is observed in this case.

In this appendix, we calculate the temperature of the equi-
0Iibrium transition between the paramagnetic phase and
Bhases with spatially modulated order within the self-
consistent Hartree approximation. The derivation given be-

low closely follows Brazovskii's original treatmep22].

The starting point is the Hamiltonian in Eq2) aug-
mented by the introduction of spatially varying external
fieldsh, that are linearly coupled to the scalar field. As a
q C(q,t=0) result, ¢, is now the sum of an average componem,
(2m)3 ' =(¢y), and a fluctuation/n,.= ¢,—m, . The self-consistent

Hartree approximation is then equivalent to a gaussian varia-
—D(k,t=0), 4D tional approximation for the fluctuations. The resulting equa-
tion of state reads

rate, as one lowers the temperature, to a value that is t
small to trigger a breaking of ergodicity.

Finally, considering the static analog of the mode-
coupling approximation to compute(k,t=0) [see Eq(25)
and below}, i.e.,

d3
C Yk, t=0)=ro+ k2+%+3uf

whereD (k,t=0) is given by Eq(27) leads to a situation in

which the limit of stability (spinodal of the paramagnetic Q d3k d3k
- | _ 2, % 1 2
phase is reached at a finite temperature, before the occur- he=|ro+k“+ 5 mk+uf —:J 3
rence of an ergodicity-breaking transition. k (2m)*J) (2m)

The validity of these various approximations should of X[y, My, +3C(Kg, K2) IMi—i, —k,» (A1)

course be checked by performing a computer simulation of
the model. However, one can tentatively conclude from th%/vhere the
above exercise that despite the formal similarity between the:
dynamics and the statics that comes from using the Martin-

connected correlation functiorC(k, k")
(¢ncthy ) is obtained self-consistently by solving

Siggia-Rose functional formalisi30], different levels of ap- Q
proximation may be required to describe the dynamical andc~(k,k’)=| ro+k2>+ — | s(k+k’)
the static properties of the Coulomb-frustrated model. k?
d3q
VIl. CONCLUSION +3uf ?[mqu+k,_q+ C(q.k+k'—q)]
We have studied the Langevin dynamics of the soft-spin, (2m)
continuum version of the Coulomb-frustrated Ising ferro- (A2)

magnet. By using the dynamical mode-coupling approxima- . . .
tion, coupled with reasonable approximations for describing}ogether with the inversion formula

the equilibrium static correlation function, and the dynamical 4

self-consistent screening approximation, we have found that f q CL(k,q)C(q,k')=8(k" —K). (A3)
the system’s dynamics display a transition from ergodic to (2m)°

026126-9
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In the paramagnetic phase whenfglls, and thereforenk.’s, AF(ro) between the modulatedn(#0) and the paramag-
are equal to zero, EqeA2) and(A3) reduce to Eq(S) with netic (Fﬁ:O) phases at a given temperatugefrom the fol-
C(k,k")=C(k) 5(k+k"). lowing expression:

In the vicinity of the transition between paramagnetic and
modulated phases and for small enough frustra@f@Q
<1), the modulated order is one-dimensional and character- AF= dm —=2f dm'h(m’), (A9)
ized by a wave vectok,, with |k, =kn,=QY* It is then 0
sufficient to consider _

wherehp, is given by Eq.(A8). One can change the integra-
he=R(8(k—K.)+ 8(k+k)) (A4)  tion variable fromm’ to r’ with r’(m’) solution of Eq.
(A7). After some algebra, EqA9) can be recast as

and _ )
rm o~ [ F'+rg 12 3u k
5 uAF= | dr| ——+2QY2+— | dk———
m=m(S(k— k) + S(K+Kp)). (A5) r(m=0) 2 472 , Q
r+k=+ E
In this region, the fluctuations of wave vecthrwith |K|
=k, are dominant, and BrazovsKi22] has shown that the u k?
effect of the off-diagonal terms withk#k’ could be ne- X 5+Pf dk AR (A10)
glected in the correlation function. As a result, r'+k2+ =
k
O(k+Kk") - ) ) . )
Ckk')y=——, (AB) wherer (m=0) is the solution of Eq(A7) with m=0, i.e., of
Fkee Eq. (6), andr(m) and m are solutions of the two coupled
2

equations, Eq(A7) and  +2Q%?—3u|m|?)=0. By solving
Eq. (A10) numerically for several values @<1 (and for
where the renormalized mass in a phase characterized hy=1), we have found that the sign AfF changes at a finite

Egs.(A4),(A5), is given by value ofr that marks the first order transition between para-
magnetic and modulated phases. The result is shown in Fig.
d3k 1 1. The transition being second-order in the mean-field ap-

r=ro+ 3UJ (2m)° 0 +[my|? proximation, it is then driven first order by the fluctuations.

+k%+ =
k2 APPENDIX B: ERGODICITY BREAKING IN THE
DYNAMICAL SCSA
d3k 1 ~
=rot 3UJ 3 +6ulm|?. (A7) One can see from Eq&30)—(32) that ergodicity breaking
(27) r+ K2+ 9 requires that botiC(k,t) andC,(k,t), and as a consequence
k? D(k,t) and D,(k,t), go to nonzero values in the limit

—o, From EQ.(34) one obtains

By introducing Egs.(A4)—(A7) in Eq. (A1) and recalling D(k.t 1C(K.0)
— 00 ,

thatk,,= Q%4 one obtains the following equation of state: _
m C(k,t—x) 17Dk i-»)CKO)’ (B1)
3
h=|[ ro+2QY2+ BUJ' ak ! +3ulm2 | m A similar expression can be derived for,(k,t—) by first
(2m)3 Q Laplace transforming Eq31),

+k3+ =

2
X & (kz)= —C,(k,0) B>
=(r+2Q1/2—3u|ﬁ|2)Fn. (A8) o—( Z)= 1 ) (B2

In the Hartree approximation, and below some temperature, ColkO(i+D,(k,2))

there is a coexistence of the paramagnetic phase and the q by Iooklng for the dominant behawor in the snmll-
modulated phase. In zero fieli€0), the former is charac- limit,  C,(k,2)~—C, (k,t—x)/z, D, (k,z)~—D,(kt

terized bym=0 and the latter bym#0, wherem is the —»)/z; one finally gets
solution of +2QY?—~3u|m|?)=0. The transition point, ,
which is then associated with a first-order transition, is ob- =D (k,t—»)C,(k,0)

. . . C,(k,t—w)= .
tained as the temperature at which the free-energies of the 1-D (k,t—=)C,(k,0)
two phases are equal. Following BrazovdiP], it is con-
venient to calculate directly the free-energy differenceBy introducing the time-dependent polarization

(B3)
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C(q,t)C(k—q,1),

3
i (B4)
)

H(k,t)zf >

3

one can express the memory keriel(k,t) given in Eqg.
(32) as

D (k,t)=—ull(k,t), (B5)

so that thet=0 andt—o values ofC_(k,t) [given below
Eqg. (32) and in Eq.(B3), respectively can be written as

C,(k,0= 1+ ull(K.0)’

(B6)

PHYSICAL REVIEW E 66, 026126 (2002

—uTl(k,t—)C,(k,0)2
1+ ull(k,t—%)C(k,0) "

Cyk,t—mo)= (B7)

Recalling thatC(k,0)=[x(k)—D(k,0)]"! with u(k)
=ro+tk2+Q/k?+ufd3qg/(27)3C(q,0), and thatD(k,t) is
given by Eq.(27), one obtains with Eq¢B1), (B5), and(B6)

a closed set of equations that determines the nonergodicity
parameterC(k,t—o). If one changes the notations from
C(k,0) andC(k,t—) to G(k) and F(k), from —D(k,0)

and —D(k,t—») to 3 (k) and ,(k), from —uC(k,0) and
—uC,(k,t—=) to Dg(k) andDx(k), one can easily check
that the above equations are identical to those obtained in
Refs. [10,14 with the replica formalism and the static
SCSA.
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