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Influence of the barrier shape on resonant activation
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The escape of a Brownian particle over a dichotomously fluctuating barrier is investigated for various shapes
of the barrier. The problem of resonant activation is revisited with the attention on the effect of the barrier
shape on optimal value of the mean escape time in the system. The characteristic features of resonant behavior
are analyzed for situations when the barrier switches either between different heights representing erection of
a barrier and formation of a well, respectively, or it proceeds through “on” and “off” positions.
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[. INTRODUCTION the process exhibits an extrem(i$19,1Q that is a signature
of resonant tuning of the system in response to the external
Nonequilibrium systems driven by noises are known tonoise.

display plentitude of noise-induced phenomghg]. Among In this paper we present numerical results for the mean
those, stochastic resonance is manifested when the resporfégt passage time over a fluctuating barrier for the model
of a nonlinear system to a signal is enhanced by the presen&¥stem with anarctan potential barrier subject to dichoto-
of noise. Another resonant phenomenon can be observed fétous fluctuations. Our model belongs to the class of “on-
thermally activated surmounting of a potential barjgf  off” models discussed in a seminal paper by Doering and
with a randomly fluctuating shape. For certain values ofGadoud3] and further analyzed by Bogaret al.[11]. Dis-
characteristic parameters of the noise, the transport over thictive characteristics of this model are that part of the time
barrier is facilitated, i.e., the mean escape time of a particléhe barrier is either switched off.e., it becomes flaf or the
exhibits a minimum as a function of the parameters of theswitching is performed between the barrier and a well, so
barrier fluctuations. Such a problem of thermally activatedthat the particle can essentially roll rather than climb during
escape within randomly fluctuating potentials occurs in ghese times.
wide variety of contexts with examples ranging from mo- Our major goal was to examine variability of the mean
lecular dissociation in strongly coupled chemical systp#ijs ~first passage time in parameter space, that is, to determine the
or the model dynamics of the dye lagé to selective ion  position of its minimum(cf. Fig. 1) and to study the depen-
pumps in biological membrang6]. In every case activation dence of depth and width of this minimum on the parameters
happens due to thermal fluctuations and after classical Kranflescribing the barrier shape and correlation time of the en-
ers theory[7] can be expressed by an Arrhenius dependencegironmental noise.
for the mean lifetime of the metastable stat®y In Sec. Il, a brief statement of the “archetypal” resonance
~exp(AG/ksT), whereAG stands for the activation energy. activation problem is presented. Section Il discusses solu-
The strong effect of the surrounding&environmental tions to the problem posed for ttagctan potential, pointing
noises”) can be readily understood since even small variaout special symmetry of this function that determines equal-
tions 6G in AG will greatly affect W provided 6G>kgT. ity of the mean first passage time for convex and concave
For a complex nonequilibrium system the potential experi-Slopes approximating between the triangular, piecewise-
enced by the Brownian particle cannot, in general, be relinear, and piecewise-constant forms of the potential. Nu-
garded as static but rather, as influenced by random fluctudnerical results are obtained and further analyzed to assess
tions whose characteristic time scale may be comparablBow sharp and persistent the resonant region of the mean
with the duration of the diffusion over the barrier. Randomfirst passage time can be as a function of the noise correla-
effects of the environment can thus be envisioned as barridion time and steepness of the potential slope. We conclude
alternating processé8] that can modulate the escape kinet- With some final remarks in Sec. IV.
ics in the system. If the barrier fluctuates extremely slowly,
the mean first passage tinlRIFPT) to the top of the barrier
is dominated by those realizations for which the barrier starts

in a higher position and thus becomes very long. The barrier \we have considered an overdamped Brownian parftidle
is then essentially quasistatic throughout the process. At thgyoving in a potential field between absorbing and reflecting
other extreme, in the case of rapidly fluctuating barrier, thehoundaries in the presence of noise that modulates the barrier

mean first passage time is determined by the “average bafeight. The evolution of a state variabiét) is described in
rier.” For some particular correlation time of the barrier fluc- terms of the Langevin equation

tuations, it can happen however, that the mean kinetic rate of

Il. GENERIC MODEL SYSTEM
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FIG. 1. The resonant(y) line and its asymptotes at low and

high external noise frequencies.
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P(L,a. ,t)=0, €)
[VL(x)+Ta]P(x,a- ,t)[x—0=0. (4)
The initial condition
P(x,a,,00=P(x,a_,0)= %5(x) (5)

expresses equal choice to start with any of the two configu-
rations of the barrier. The quantity of interest is the mean first
passage time

0 L
T:f dtj [P(x,a, ,t)+P(x,a_,t)Jdx=7,(0)+7_(0)
0 0
(6)

with =, and r_ being MFPT for (+) and (—) configura-
tions, respectively. MFPTs, andr_ fulfill the set of back-
ward Kolmogorov equationi3,10]

1 dV.(x) d7.(X) d?7.(x)
— 5=y () F () T — 5 gy 0
(7)
with the boundary conditiongcf. Egs.(3) and(4)]
7L (X)]x=0=0, 7+(X)|x=L=0. (8)

Although the solution of Eq(7) is usually uniqug12], a
closed, “ready to use” analytical formula for can be ob-
tained only for the simplest cases of the potentiplscewise
linear and piecewise constanilore complex cases, such as
piecewise-parabolic potenti&l. result in an intricate form

Here £(t) is a Gaussian process with zero mean and correef a solution to Eq(7). Other situations require either use of

lation (&(t)&(s))=48(t—s) (i.e., the Gaussian white noise

arising from the heat bath of temperatdrg »(t) stands for
a Markovian dichotomouéot necessarily symmetjicioise

taking on one of two possible values. and prime means
differentiation overx. The correlation function of the di-

chotomous process satisfiesy(t) 7(t'))=e 2"t"VI(a,

—a_)?/4, wherey stands for the flipping frequency of the
barrier fluctuationgi.e., 1/(2vy) represents the characteristic

correlation time of the dichotomous nojs@&oth noises are
assumed to be statistically independent, (.&(t) 7(s))=0.

Equivalent to Eq(1) is a set of the Fokker-Planck equations
describing evolution of the probability density of finding the

particle at timet at a positionx, subject to the force
—VLi(x)=-V'(x)+a.g(x),

IP(X,a. ,t)= VL (X)+TdP(x,a~ ,t)— yP(x,a. ,t)
2

dimension

+vyP(x,a=,t).

In the above equations time has

approximation schemedl 3], perturbative approacf®], or
direct numerical evaluation methoffs4]. In order to exam-

ine MFPT for various potentials, a modified prograb]
applying general shooting methods has been used with part
of the mathematical software obtained from the Netlib li-
brary.

Ill. SOLUTION AND RESULTS

Fory=0 andV . (x)=V_(x)=V(x), Eq.(7) describes an
overdamped Brownian particle moving in an external static
potential[cf. Eq. (1) with #(t)=0]. In this situation a for-
mula for the MFPT reads

1L Y, vV
T(O—>L)=?f0dnexp( gl_n))f:ex;{—(?é))dg

L foL fOLeX p( V- vee

6(n—&dnds (9

of

[length|*/energy due to a friction constant that has been “ab-and does not depend on a constant part of a potential. An-
sorbed” in a time variable. We are assuming a reflectingother nontrivial property in this case is equality of times

boundary atx=0 and an absorbing boundary condition at

X=L,

7(U,0—-L)=7(V,0—L), (10
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true for any two potential¥/(x), U(x) that fulfill
UX)=H—-V(L—x) (12)
and are continuous functions mappif@,L]—[0,4]. The

difference
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VT

; __ m=1 fi=-1 ,/15 A

n=8§ [i=-B

) =32 fi=-32 |
1 ——n=1024 p=-1024 gl
a - F '

above property can be simply proven after noticing that the 1 / |
2 |

L (L
T(V’OHU—T(U,OHL){O fof(n,g)dndg (12
with
V -V U .y
1= LV VU066

0(n—§)

X
T

(13
vanishes for any pointg(q) and (p’,q’) such that p’,q")
is the image of p,q) in the reflection at the lingj=L— ¢,

f(p,q)=—"f(p".q"). (14

To capture the features of the mean first passage time as 3
function of the shape of the barrier and characteristic corre- <
lation time of the barrier fluctuations, we have studied the :

Brownian diffusion problem in tharctan potential fluctuat-
ing randomly between two configuratiok’s (x) andV _(x)

H . arctarfax/L + B)
arctarfa+ B) — arctari 8)

Vi(x)=

H_arctari 8)
~arctaria+ B)—arctang)

(19

g | T 3 _,_,.-'-"'"-H-FF- B
25 { f_,f’
i ﬂ'r.,f"f z=1 [i=-0.5
-] =B [i=-4
g e =102d =512

Bl

=1 [i=0
=8 fi=0
=32 p=0
iz=1024 [=0

2

I ’ T r T 5 T i T ' 1
.o 0.2 0.4 0.8 0.8 1.0
#L
FIG. 2. Potentials ofarctan type for: (A) B=—«a, (B)
B=—al2, and(C) B=0.

Numerical analysis reestablishes above discussed equality of
the MFPTs for potentials witlB=—«a and 8=0. It means
that for this set of parameters, the propgt®) observed for

Since switching between both configurations is modeled by &tatic potential is also recovered for dichotomously fluctuat-
Markovian two-state process, the potential experienced by &9 barriers
particle remains in a given configuration for an exponentially

distributed time, before flipping to the other state. The

m(U,y)=1(V,). 17

change in steepness and shift of the potential slope is con- ) ) )
trolled by parameters and 8. By using this particular form  Therefore, graphical presentation of the results relates arbi-
of the potential, we are able to modulate the steepness of tHEarily to the convex potentials only3=0), having in mind

slope when holding the same, constant value¥ ofx) at

the bottom of the potentidix=0,V..(0)=0] and at the top
[x=L,V.(L)=H.] of the barrier(see Fig. 2 Moreover, as
it is clearly seen from Eq(15), for =0 and 8= — «, the

potential satisfies the propertgl) with H=H_.,

V:(X)|B:0:H:_V:(L_X)lﬁ:—a- (16)

that the same relationshiffy) is observed for the concave
potentials with= — « (cf. Fig. 2.

Generally with increasing slope of the barrier, resonant
frequencies are shifted to higher values suggesting that more
energy has to be pumped into the system in order to facilitate
the escape of a Brownian particle over the fluctuating barrier.
The minimal(resonant values ofr increase witha for V.
==+V potential and decrease for potentials switching be-

Thus, under the same type of barrier flipping process, théween the “on-off” (V,=V,V_=0) positions, thus docu-

MFPT results are identical for the conveg0) and con-
cave (3= — a) potential slopes.

The standard numerical analy$i?,16 of the MFPT has
been performed for various forms of the potentit) with
the slope changing accordingly te=2', i=0, .. .,10, and
B=—a [Fig. 2A)], B=—«al2 [Fig. 2B)], and 8=0 [Fig.
2(C)]. The height of the potential barrigd.. has been
switching between either two symmetric valuels, = = 8T,
or “on” and “off” barrier positions, i.e.,H, =8T, H_=0.

menting a different character of resonant activation in these
two cases, as discussed by Bogun al. [11].

For V.= =V barriers asymptotic values of MFPT &t
—oo do not change with the steepness: they remain the same
(Figs. 3 and #and equal td_?%/(2T), as predicted by ana-
lytical results for piecewise-linear and piecewise-constant
potentials[3,17,11. However, they alter for the “on-off”
potentials (cf. Figs. 5 and § displaying increase for
B=—al2 and decrease fg8=0 (same for concave poten-
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FIG. 3. 7() as a function of barrier fluctuation rate farctan FIG. 5. 7(¥) as a function of barrier fluctuation rate farctan
potentials withH , =8T, H_=—8T, and 8= — /2. potentials withH , =8T, H_=0, andB=— a/2.

tials 8= —a). The resonant lin¢Fig. 1) of the 7(y) depen-  easier fine tuning of the system to resonant conditions in this
dence displays different features with zero and nonzero shi¢ase by switching frequency of the barrier. The effect is also
B- In particular, forg=0 the relative depths of minima mea- reproducible for=0, although in this case the relative
sured from either the asymptotic value aty=0 (ho), or  depth of MFPT minimum decreases, causing observable
from the 7 asymptote ay— (h..) decrease with increasing “flattening” of the resonant line.
a (cf. Figs. 4 and  For nonzerg3= — «/2 and both poten- The functional dependencg y) has a typical character in
tials, V.=*V or V,=V,V_=0, the relative deptty in-  all cases discussed in this work. In agreement with theoreti-
creases withr, as documented in Fig. 7 where the distancecal considerationg3,13,17,18,19—2 the asymptotic values
between the lines lag 7( o) T/L?] and logd 7(ymin) T/L?]  7(y,) and7(y..) for large and small correlation times of the
is shown to increase with this parameter. At the same condbarrier noise are recovered with a minimum located in be-
tions, the depth of the resonant lime, measured from the tween these two. For all the slopes of barriers this character-
asymptote aty— decreases foW.=*V potentials and istic behavior of the MFPT remains similar although the
increases for the “on-off” potentialy/ | =V,V_=0. These weakening of the effect, i.e., shift of the resonant;, to
findings are summarized in Figs. 7 and 8 where logarithmitigher values and shallowing of the resonant line are ob-
values ofymin, 7(¥min), 7(70), andz(y..) for the all arctan-  served with increasing steepness of the barrier. The effect of
type potentials are plotted versus varying slope parameter attenuation is stronger fov..= =V potentials with bothg
Moreover, as can be easily seen in Figs. 5 and 6, the=— /2 or =0 (8= —«). The resonant line flattens and
resonant widthl'/2 measured a../2 (cf. Fig. 1) increases slowly disappears with increasing (i.e., with increasing
significantly for the “on-off” potentials with increasing steepness of the barrier slop@he result is documented in
value of the slope parameter. It is thus suggestive of an Figs. 7 (upper panéland 8, where the noticeable conver-
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FIG. 4. 7(y) as a function of barrier fluctuation rate farctan FIG. 6. 7(y) as a function of barrier fluctuation rate farctan
potentials withH , =8T, H_=—8T, and3=0 (8= —«). potentials withH , =8T, H_=0, andB=0 (8= —«).
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FIG. 7. Location of minima, minimal, and asymptotic values of
the MFPT for arctantype potentials withB=—«a/2. Lines have
been drawn to guide the eye.

FIG. 8. Location of minima, minimal, and asymptotic values of
the MFPT forarctantype potentials with3=0 (8= —«). Lines
have been drawn to guide the eye.

gence between the valuegy,;,) andr(y..) is observed for Brownian particle escapes over either the small or the large

a=1024. Numerical estimates of MFPTs for the alternatingP@rier at all times. In consequence of the latter, barrier
potential (.= *8T) yield 7(ymi)~0.3 and7(y,)~0.5  Crossing events and barrier fluctuations are two independent

for «=8,8= —4 leading toh,.~0.2. This value drops by an stochastic process¢$7,23,24 with the mean exit time de-

order of magnitude toh,.~0.01 for @=10248=—512, creasing monotonically from~ 7, for y< 711 to 7~ r_ for

which corresponds to by two order of magnitude highery=> 1. The qualitative behavior of is then identical with

steepness of the slope estimated as the derivative of the pti€ behavior of the exit time in so-called kinetic moddlg—

tential at pointx=L/2. Thus, the result suggests a fairly ro- 19,23,23 that explicitly include the escapes over both high

bust character of the resonant activation that disappears, bafd low barriers at a rat¢/.. =exp(—H-./T) and transitions

only for the limiting step-function potentials. An apparent between the two configurations of the potential. As it has

persistence of the phenomenon fér =8T,V_=0, andB been discussed by Bier and Astumig22], the kinetic de-

=—al2 (Figs. 5 and 7, lower panels due to a different scription assumes an instantaneous adiabatic adjustment and

scenario of the barrier passage. In this particular case, a#ccordingly leads to the set of equations for the populations

increasinga produces a wall ak=L/2, which has to be . Of particles that feel the potentid. and have not yet

passed by a Brownian particle before being eventually abescaped over the barrier

sorbed ax=L. The particle experiences then a nonzero de-

terministic force at this point, only. - — _ B
Potentials of tharctantype[Eq. (15) and Fig. 4 produce qr (V= T Weme myme oy

barriers approximating between triangular and rectangular

shapes mostly used for analytical studies of the resonant adhe decay of the survival probability (t) = ., (t) + 7_(t)

tivation effect[3,22,17,11 Although the resonant phenom- is then determined by an average MFPT,

enon has been detected and analytically proven as a generic

property in the case of dichotomously switching piecewise- =T=— fwtd”(t) dt= 2y+(W, +W_)/2

linear potentialg3,17], it has been showfl7] not to occur o dt W, W_+(W, +W_)y’

in the case of piecewise-constant potentials, when the

(18

(19
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which for slow barrier fluctuationsy=0) approaches the y<r7,!andr~r_ for y>7_! displaying an inverse propor-
average of the MFPT for the alternative configurations and inionality to the rate of the barrier fluctuations for intermedi-
the fast fluctuation limit §—oo but respectingy<Tg L ate rates.
whereTg ! stands for the frequency of the escape attempts
[13,19,29) coincides with the reciprocal of the average rate
over the fluctuating barrier. For fluctuating rectangular po- |n the foregoing sections we have considered the ther-
tentials with a barrier placed at=L/2, the closed expres- mally activated process that occurs in a system coupled to an
sions for the mean escape tifif&’] for y=0 andy—« read  external noise source. The external stochastic process is re-
sponsible for fluctuations of the potential barrier, which has

IV. SUMMARY

T 1{r.+71_ been modeled by aarctan function of varying slope. As
7( 70)§=§ —2 (20 expected based on previous theoretical stu@®&3], the
phenomenon of resonant activation occurs typically in the
system under broad circumstances of varying shape of the
(. )1: =l P Te7-—1 21) potential barrier and qualities of barrier fluctuations. In gen-
L2 2 2+ 7, +7_ eral, with increasing barrier steepness the resonance phenom-

enon becomes less “sharp” with the flat region of flipping
and are perfectly reproduced in numerical MFPT studies irfrequencies around the resonant one. The time scale of the
the V. = =V potential with parametera=1024,3=—«a/2  resonant activation process is fairly insensitive to the poten-

approximating a steplike functiofi(x—L/2). However, in tial parameters except in the case of the ‘_‘on-off” potentials,
the case of the “on-off” potentiaV, =8T,V_=0 and the when broadening of the MFPT resonant line occurs suggest-

same set of parameters 3, numericalr value for y—so in_g most efficient tuning of the system to the resonance con-
differs from the Eq.(21) by four order of magnitudécf. ditions.
Figs. 7 and bdisplaying a persistent resonant activation van-

ishing slowly at much steeper barriers which eventually
reach the limit of an infinite tangent at&=L/2. Similarly to This work has been partially supported by the Research
the former result$17], in the limiting case of a piecewise- Grant 1999-2002 from the Marian Smoluchowski Institute of
constant potential, the mean exit time approaches, for Physics.
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