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Influence of the barrier shape on resonant activation
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~Received 8 January 2002; revised manuscript received 29 April 2002; published 28 August 2002!

The escape of a Brownian particle over a dichotomously fluctuating barrier is investigated for various shapes
of the barrier. The problem of resonant activation is revisited with the attention on the effect of the barrier
shape on optimal value of the mean escape time in the system. The characteristic features of resonant behavior
are analyzed for situations when the barrier switches either between different heights representing erection of
a barrier and formation of a well, respectively, or it proceeds through ‘‘on’’ and ‘‘off’’ positions.
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I. INTRODUCTION

Nonequilibrium systems driven by noises are known
display plentitude of noise-induced phenomena@1,2#. Among
those, stochastic resonance is manifested when the resp
of a nonlinear system to a signal is enhanced by the pres
of noise. Another resonant phenomenon can be observe
thermally activated surmounting of a potential barrier@3#
with a randomly fluctuating shape. For certain values
characteristic parameters of the noise, the transport ove
barrier is facilitated, i.e., the mean escape time of a part
exhibits a minimum as a function of the parameters of
barrier fluctuations. Such a problem of thermally activa
escape within randomly fluctuating potentials occurs in
wide variety of contexts with examples ranging from m
lecular dissociation in strongly coupled chemical systems@4#
or the model dynamics of the dye laser@5# to selective ion
pumps in biological membranes@6#. In every case activation
happens due to thermal fluctuations and after classical Kr
ers theory@7# can be expressed by an Arrhenius depende
for the mean lifetime of the metastable state,W
;exp(DG/kBT), whereDG stands for the activation energ
The strong effect of the surroundings~‘‘environmental
noises’’! can be readily understood since even small va
tions dG in DG will greatly affect W provideddG.kBT.
For a complex nonequilibrium system the potential expe
enced by the Brownian particle cannot, in general, be
garded as static but rather, as influenced by random fluc
tions whose characteristic time scale may be compar
with the duration of the diffusion over the barrier. Rando
effects of the environment can thus be envisioned as ba
alternating processes@8# that can modulate the escape kine
ics in the system. If the barrier fluctuates extremely slow
the mean first passage time~MFPT! to the top of the barrier
is dominated by those realizations for which the barrier st
in a higher position and thus becomes very long. The bar
is then essentially quasistatic throughout the process. At
other extreme, in the case of rapidly fluctuating barrier,
mean first passage time is determined by the ‘‘average
rier.’’ For some particular correlation time of the barrier flu
tuations, it can happen however, that the mean kinetic rat
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the process exhibits an extremum@3,9,10# that is a signature
of resonant tuning of the system in response to the exte
noise.

In this paper we present numerical results for the me
first passage time over a fluctuating barrier for the mo
system with anarctan potential barrier subject to dichoto
mous fluctuations. Our model belongs to the class of ‘‘o
off’’ models discussed in a seminal paper by Doering a
Gadoua@3# and further analyzed by Bogun˜á et al. @11#. Dis-
tinctive characteristics of this model are that part of the ti
the barrier is either switched off~i.e., it becomes flat!, or the
switching is performed between the barrier and a well,
that the particle can essentially roll rather than climb dur
these times.

Our major goal was to examine variability of the me
first passage time in parameter space, that is, to determin
position of its minimum~cf. Fig. 1! and to study the depen
dence of depth and width of this minimum on the paramet
describing the barrier shape and correlation time of the
vironmental noise.

In Sec. II, a brief statement of the ‘‘archetypal’’ resonan
activation problem is presented. Section III discusses s
tions to the problem posed for thearctan potential, pointing
out special symmetry of this function that determines equ
ity of the mean first passage time for convex and conc
slopes approximating between the triangular, piecew
linear, and piecewise-constant forms of the potential. N
merical results are obtained and further analyzed to as
how sharp and persistent the resonant region of the m
first passage time can be as a function of the noise corr
tion time and steepness of the potential slope. We concl
with some final remarks in Sec. IV.

II. GENERIC MODEL SYSTEM

We have considered an overdamped Brownian particle@7#
moving in a potential field between absorbing and reflect
boundaries in the presence of noise that modulates the ba
height. The evolution of a state variablex(t) is described in
terms of the Langevin equation

dx

dt
52V8~x!1A2Tj~ t !1g~x!h~ t !52V68 ~x!1A2Tj~ t !.

~1!
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Here j(t) is a Gaussian process with zero mean and co
lation ^j(t)j(s)&5d(t2s) ~i.e., the Gaussian white nois
arising from the heat bath of temperatureT), h(t) stands for
a Markovian dichotomous~not necessarily symmetric! noise
taking on one of two possible valuesa6 and prime means
differentiation overx. The correlation function of the di
chotomous process satisfieŝh(t)h(t8)&5e22gut2t8u(a1

2a2)2/4, whereg stands for the flipping frequency of th
barrier fluctuations~i.e., 1/(2g) represents the characterist
correlation time of the dichotomous noise!. Both noises are
assumed to be statistically independent, i.e.,^j(t)h(s)&50.
Equivalent to Eq.~1! is a set of the Fokker-Planck equatio
describing evolution of the probability density of finding th
particle at time t at a positionx, subject to the force
2V68 (x)52V8(x)1a6g(x),

] tP~x,a6 ,t !5]x@V68 ~x!1T]x#P~x,a6 ,t !2gP~x,a6 ,t !

1gP~x,a7 ,t !. ~2!

In the above equations time has dimension
@ length#2/energy due to a friction constant that has been ‘‘a
sorbed’’ in a time variable. We are assuming a reflect
boundary atx50 and an absorbing boundary condition
x5L,

FIG. 1. The resonantt(g) line and its asymptotes at low an
high external noise frequencies.
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P~L,a6 ,t !50, ~3!

@V68 ~x!1T]x#P~x,a6 ,t !ux5050. ~4!

The initial condition

P~x,a1,0!5P~x,a2,0!5
1

2
d~x! ~5!

expresses equal choice to start with any of the two confi
rations of the barrier. The quantity of interest is the mean fi
passage time

t5E
0

`

dtE
0

L

@P~x,a1 ,t !1P~x,a2 ,t !#dx5t1~0!1t2~0!

~6!

with t1 and t2 being MFPT for (1) and (2) configura-
tions, respectively. MFPTst1 andt2 fulfill the set of back-
ward Kolmogorov equations@8,10#

2
1

2
52gt6~x!1gt7~x!2

dV6~x!

dx

dt6~x!

dx
1T

d2t6~x!

dx2

~7!

with the boundary conditions@cf. Eqs.~3! and ~4!#

t68 ~x!ux5050, t6~x!ux5L50. ~8!

Although the solution of Eq.~7! is usually unique@12#, a
closed, ‘‘ready to use’’ analytical formula fort can be ob-
tained only for the simplest cases of the potentials~piecewise
linear and piecewise constant!. More complex cases, such a
piecewise-parabolic potentialV6 result in an intricate form
of a solution to Eq.~7!. Other situations require either use
approximation schemes@13#, perturbative approach@9#, or
direct numerical evaluation methods@14#. In order to exam-
ine MFPT for various potentials, a modified program@15#
applying general shooting methods has been used with
of the mathematical software obtained from the Netlib
brary.

III. SOLUTION AND RESULTS

For g50 andV1(x)5V2(x)5V(x), Eq.~7! describes an
overdamped Brownian particle moving in an external sta
potential @cf. Eq. ~1! with h(t)[0#. In this situation a for-
mula for the MFPT reads

t~0→L !5
1

TE0

L

dh expS V~h!

T D E
0

h
expS 2

V~j!

T Ddj

5
1

TE0

LE
0

L

expS V~h!2V~j!

T D u~h2j!dhdj ~9!

and does not depend on a constant part of a potential.
other nontrivial property in this case is equality of times

t~U,0→L !5t~V,0→L !, ~10!
3-2
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true for any two potentialsV(x), U(x) that fulfill

U~x!5H2V~L2x! ~11!

and are continuous functions mapping@0,L#→@0,H#. The
above property can be simply proven after noticing that
difference

t~V,0→L !2t~U,0→L !5E
0

LE
0

L

f ~h,j!dhdj ~12!

with

f ~h,j!5FexpS V~h!2V~j!

T D2expS U~h!2U~j!

T D G
3

u~h2j!

T
~13!

vanishes for any points (p,q) and (p8,q8) such that (p8,q8)
is the image of (p,q) in the reflection at the lineh5L2j,

f ~p,q!52 f ~p8,q8!. ~14!

To capture the features of the mean first passage time
function of the shape of the barrier and characteristic co
lation time of the barrier fluctuations, we have studied
Brownian diffusion problem in thearctan potential fluctuat-
ing randomly between two configurationsV1(x) andV2(x)

V6~x!5
H6arctan~ax/L1b!

arctan~a1b!2arctan~b!

2
H6arctan~b!

arctan~a1b!2arctan~b!
. ~15!

Since switching between both configurations is modeled b
Markovian two-state process, the potential experienced b
particle remains in a given configuration for an exponentia
distributed time, before flipping to the other state. T
change in steepness and shift of the potential slope is
trolled by parametersa andb. By using this particular form
of the potential, we are able to modulate the steepness o
slope when holding the same, constant values ofV6(x) at
the bottom of the potential@x50,V6(0)50# and at the top
@x5L,V6(L)5H6# of the barrier~see Fig. 2!. Moreover, as
it is clearly seen from Eq.~15!, for b50 andb52a, the
potential satisfies the property~11! with H5H6 ,

V6~x!ub505H62V6~L2x!ub52a . ~16!

Thus, under the same type of barrier flipping process,
MFPT results are identical for the convex (b50) and con-
cave (b52a) potential slopes.

The standard numerical analysis@12,16# of the MFPT has
been performed for various forms of the potential~15! with
the slope changing accordingly toa52i , i 50, . . .,10, and
b52a @Fig. 2~A!#, b52a/2 @Fig. 2~B!#, and b50 @Fig.
2~C!#. The height of the potential barrierH6 has been
switching between either two symmetric values,H6568T,
or ‘‘on’’ and ‘‘off’’ barrier positions, i.e.,H158T, H250.
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Numerical analysis reestablishes above discussed equali
the MFPTs for potentials withb52a and b50. It means
that for this set of parameters, the property~10! observed for
static potential is also recovered for dichotomously fluctu
ing barriers

t~U,g!5t~V,g!. ~17!

Therefore, graphical presentation of the results relates a
trarily to the convex potentials only (b50), having in mind
that the same relationshipt(g) is observed for the concav
potentials withb52a ~cf. Fig. 2!.

Generally with increasing slope of the barrier, reson
frequencies are shifted to higher values suggesting that m
energy has to be pumped into the system in order to facili
the escape of a Brownian particle over the fluctuating barr
The minimal~resonant! values oft increase witha for V6

56V potential and decrease for potentials switching b
tween the ‘‘on-off’’ (V15V,V250) positions, thus docu-
menting a different character of resonant activation in th
two cases, as discussed by Bogun˜á et al. @11#.

For V656V barriers asymptotic values of MFPT atg
→` do not change with the steepness: they remain the s
~Figs. 3 and 4! and equal toL2/(2T), as predicted by ana
lytical results for piecewise-linear and piecewise-const
potentials@3,17,11#. However, they alter for the ‘‘on-off’’
potentials ~cf. Figs. 5 and 6! displaying increase for
b52a/2 and decrease forb50 ~same for concave poten

FIG. 2. Potentials ofarctan type for: ~A! b52a, ~B!
b52a/2, and~C! b50.
3-3
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tials b52a). The resonant line~Fig. 1! of the t(g) depen-
dence displays different features with zero and nonzero s
b. In particular, forb50 the relative depths of minima mea
sured from either the asymptotict value atg50 (h0), or
from thet asymptote atg→` (h`) decrease with increasin
a ~cf. Figs. 4 and 6!. For nonzerob52a/2 and both poten-
tials, V656V or V15V,V250, the relative depthh0 in-
creases witha, as documented in Fig. 7 where the distan
between the lines log10@t(g0)T/L2# and log10@t(gmin)T/L2#
is shown to increase with this parameter. At the same co
tions, the depth of the resonant lineh` measured from the
asymptote atg→` decreases forV656V potentials and
increases for the ‘‘on-off’’ potentialsV15V,V250. These
findings are summarized in Figs. 7 and 8 where logarithm
values ofgmin , t(gmin), t(g0), andt(g`) for the all arctan-
type potentials are plotted versus varying slope parametea.

Moreover, as can be easily seen in Figs. 5 and 6,
resonant widthG/2 measured ath`/2 ~cf. Fig. 1! increases
significantly for the ‘‘on-off’’ potentials with increasing
value of the slope parametera. It is thus suggestive of an

FIG. 3. t(g) as a function of barrier fluctuation rate forarctan
potentials withH158T, H2528T, andb52a/2.

FIG. 4. t(g) as a function of barrier fluctuation rate forarctan
potentials withH158T, H2528T, andb50 (b52a).
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easier fine tuning of the system to resonant conditions in
case by switching frequency of the barrier. The effect is a
reproducible forb50, although in this case the relativ
depth of MFPT minimum decreases, causing observa
‘‘flattening’’ of the resonant line.

The functional dependencet(g) has a typical character in
all cases discussed in this work. In agreement with theor
cal considerations@3,13,17,18,19–21#, the asymptotic values
t(g0) andt(g`) for large and small correlation times of th
barrier noise are recovered with a minimum located in
tween these two. For all the slopes of barriers this charac
istic behavior of the MFPT remains similar although t
weakening of the effect, i.e., shift of the resonantgmin to
higher values and shallowing of the resonant line are
served with increasing steepness of the barrier. The effec
attenuation is stronger forV656V potentials with bothb
52a/2 or b50 (b52a). The resonant line flattens an
slowly disappears with increasinga ~i.e., with increasing
steepness of the barrier slope!. The result is documented in
Figs. 7 ~upper panel! and 8, where the noticeable conve

FIG. 5. t(g) as a function of barrier fluctuation rate forarctan
potentials withH158T, H250, andb52a/2.

FIG. 6. t(g) as a function of barrier fluctuation rate forarctan
potentials withH158T, H250, andb50 (b52a).
3-4
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gence between the valuest(gmin) andt(g`) is observed for
a51024. Numerical estimates of MFPTs for the alternat
potential (V6568T) yield t(gmin)'0.3 andt(g`)'0.5
for a58,b524 leading toh`'0.2. This value drops by an
order of magnitude toh`'0.01 for a51024,b52512,
which corresponds to by two order of magnitude high
steepness of the slope estimated as the derivative of the
tential at pointx5L/2. Thus, the result suggests a fairly r
bust character of the resonant activation that disappears
only for the limiting step-function potentials. An appare
persistence of the phenomenon forV158T,V250, andb
52a/2 ~Figs. 5 and 7, lower panel! is due to a different
scenario of the barrier passage. In this particular case
increasinga produces a wall atx5L/2, which has to be
passed by a Brownian particle before being eventually
sorbed atx5L. The particle experiences then a nonzero
terministic force at this point, only.

Potentials of thearctan-type@Eq. ~15! and Fig. 2# produce
barriers approximating between triangular and rectang
shapes mostly used for analytical studies of the resonan
tivation effect@3,22,17,11#. Although the resonant phenom
enon has been detected and analytically proven as a ge
property in the case of dichotomously switching piecewi
linear potentials@3,17#, it has been shown@17# not to occur
in the case of piecewise-constant potentials, when

FIG. 7. Location of minima, minimal, and asymptotic values
the MFPT for arctan-type potentials withb52a/2. Lines have
been drawn to guide the eye.
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Brownian particle escapes over either the small or the la
barrier at all times. In consequence of the latter, bar
crossing events and barrier fluctuations are two indepen
stochastic processes@17,23,24# with the mean exit time de-
creasing monotonically fromt't1 for g,t1

21 to t't2 for
g.t2

21 . The qualitative behavior oft is then identical with
the behavior of the exit time in so-called kinetic models@17–
19,23,25# that explicitly include the escapes over both hi
and low barriers at a rateW65exp(2H6 /T) and transitions
between the two configurations of the potential. As it h
been discussed by Bier and Astumian@22#, the kinetic de-
scription assumes an instantaneous adiabatic adjustmen
accordingly leads to the set of equations for the populati
p6 of particles that feel the potentialV6 and have not yet
escaped over the barrier

d

dt
p6~ t !52W6p62gp61gp7 . ~18!

The decay of the survival probabilityp(t)5p1(t)1p2(t)
is then determined by an average MFPT,

t[T̃52E
0

`

t
dp~ t !

dt
dt5

2g1~W11W2!/2

W1W21~W11W2!g
,

~19!

FIG. 8. Location of minima, minimal, and asymptotic values
the MFPT for arctan-type potentials withb50 (b52a). Lines
have been drawn to guide the eye.
3-5
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which for slow barrier fluctuations (g50) approaches the
average of the MFPT for the alternative configurations and
the fast fluctuation limit (g→` but respectingg!Ts

21 ,
whereTs

21 stands for the frequency of the escape attem
@13,19,24#! coincides with the reciprocal of the average ra
over the fluctuating barrier. For fluctuating rectangular p
tentials with a barrier placed atx5L/2, the closed expres
sions for the mean escape time@17# for g50 andg→` read

t~g0!
T

L2
5

1

2 Ft11t2

2 G , ~20!

t~g`!
T

L2
5

1

2 F11
t1t221

21t11t2
G ~21!

and are perfectly reproduced in numerical MFPT studies
the V656V potential with parametersa51024,b52a/2
approximating a steplike functionu(x2L/2). However, in
the case of the ‘‘on-off’’ potentialV158T,V250 and the
same set of parametersa, b, numericalt value for g→`
differs from the Eq.~21! by four order of magnitude~cf.
Figs. 7 and 5! displaying a persistent resonant activation va
ishing slowly at much steeper barriers which eventua
reach the limit of an infinite tangent atx5L/2. Similarly to
the former results@17#, in the limiting case of a piecewise
constant potential, the mean exit time approachest't1 for
.
g

nd

y
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g,t1
21 andt't2 for g.t2

21 displaying an inverse propor
tionality to the rate of the barrier fluctuations for intermed
ate rates.

IV. SUMMARY

In the foregoing sections we have considered the th
mally activated process that occurs in a system coupled t
external noise source. The external stochastic process i
sponsible for fluctuations of the potential barrier, which h
been modeled by anarctan function of varying slope. As
expected based on previous theoretical studies@3,13#, the
phenomenon of resonant activation occurs typically in
system under broad circumstances of varying shape of
potential barrier and qualities of barrier fluctuations. In ge
eral, with increasing barrier steepness the resonance phe
enon becomes less ‘‘sharp’’ with the flat region of flippin
frequencies around the resonant one. The time scale of
resonant activation process is fairly insensitive to the pot
tial parameters except in the case of the ‘‘on-off’’ potentia
when broadening of the MFPT resonant line occurs sugg
ing most efficient tuning of the system to the resonance c
ditions.
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@11# M. Boguñá et al., Phys. Rev. E57, 3990~1998!.
@12# R. M. M. Mattheij and J. Molenaar,Ordinary Differential

Equations in Theory and Practice~Wiley, Chichester, 1996!.
@13# P. Reimann, R. Bartussek, and P. Ha¨nggi, Chem. Phys.235, 11
y
~1998!.

@14# L. Gammaitoniet al., Rev. Mod. Phys.70, 223 ~1998!.
@15# R. M. M. Mattheij and G. W. M. Staarink,MUS.F Program for

Solving General Two Point Boundary Problems~http://
www.netlib.org!.

@16# W. H. Presset al., Numerical Recipes in Fortran 77. The Art o
Scientific Computing~Cambridge University Press, Cam
bridge, 1992!.
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