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Nonequilibrium stochastic processes: Time dependence of entropy flux and entropy production

Bidhan Chandra Bag*
Department of Chemistry, Visva-Bharati, Santiniketan 731 235, India

~Received 20 March 2002; published 28 August 2002!

Based on the Fokker-Planck and the entropy balance equations we have studied the relaxation of a dissipa-
tive dynamical system driven by external Ornstein-Uhlenbeck noise processes in the absence and presence of
nonequilibrium constraint in terms of the thermodynamically inspired quantities such as entropy flux and
entropy production. The interplay of nonequilibrium constraint, dissipation, and noise reveals some interesting
extremal nature in the time dependence of entropy flux and entropy production.
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I. INTRODUCTION

Understanding of the nature of nonequilibrium and eq
librium states of a dynamical system in presence of s
roundings is always an intriguing issue of physics. Entrop
an important quantity in this regard in thermodynami
While in the traditional classical thermodynamics, the s
cific nature of a stochastic process is irrelevant, this may p
an important role for establishing the connection between
phase space of a dynamical system and the related the
dynamically inspired quantities such as entropy producti
flux, and Onsagar coefficients, etc. Recently a numbe
authors@1–11# have explored the relationship in conside
able detail.

The aim of the present paper is to enquire into this c
nection about the imprints of color@12#, white, and cross-
correlated noise processes@13,14# on time dependence o
entropy, entropy production, and entropy flux using a c
nection between the information entropy and the probab
distribution function of the phase-space variables for therm
dynamically open systems. Based on a Fokker-Planck
scription of stochastic processes and the entropy bala
equation we first consider here the relaxation of a dissipa
dynamical system in presence of the noise processes
steady state from a given nonequilibrium state in terms
thermodynamically inspired quantities. For additive wh
noise we compare our results in the equilibrium state w
the standard results for the closed systems. We also enq
how the system relaxes if the system is thrown away fr
the aforesaid steady state by a nonequilibrium constrain
understand how the entropy flux and the entropy produc
pass through minima with time in the latter case and how
two relaxation processes for different noise properties dif

The outline of the paper is as follows: In Sec. II we ca
culate the entropy flux and the entropy production for
simple dissipative dynamical system in the nonequilibriu
state for different noise processes. The paper is conclude
the Sec. III.

*Email address: pcbcb@yahoo.com
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II. THE FOKKER-PLANCK DESCRIPTION, TIME
DEPENDENCE OF ENTROPY FLUX AND PRODUCTION

OF NOISE-DRIVEN DYNAMICAL SYSTEMS

A. Relaxation of the noise-driven dynamical system
to the steady state

1. Ornstein-Uhlenbeck noise process

We consider the dynamics of a dissipative dynamical s
tem driven by the external Ornstein-Uhlenbeck noise proc
in the phase space. The relevant Langevin equation of
tion can be written as

Ẋ52gX1h, ~1!

whereg is the damping constant. The termh in Eq. ~1! is the
external Ornstein-Uhlenbeck noise whose two time corre
tion is given by

^h~ t !h~ t8!&5
D

t
expS 2

ut2t8u
t D . ~2!

D is the noise strength andt corresponds to the correlatio
time of color noise process. The time evolution ofh can be
conveniently expressed in terms of the Gaussian white n
processz(t) as

ḣ52
h

t
1

AD

t
z, ~3!

^z~ t !z~ t8!&52ed~ t2t8!,

and

^z&50,

where the parametere is used to identify the noise strength
Now treatingh as a phase-space variable on the sa

footing as X we can write Fokker-Planck equation in th
extended phase space@12# as

]r~X1 ,X2 ,t !

]t
5g

]X1r

]X1
2X2

]r

]X1
1

1

t

]X2r

]X2
1e

D

t2

]2r

]X2
2

,

~4!
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whereX1 ,X2 refer toX andh in Eq. ~1! andr(X1 ,X2 ,t) is
the extended phase-space probability distribution functio

Now making use of the transformation

U5aX11X2 , ~5!

the Fokker-Planck Eq.~4! can be written as

]r~U,t !

]t
52

]Fr

]U
1eDs

]2r

]U2
, ~6!

where

F52lU, ~7!

lU5gaX12aX21
X2

t
, ~8!

and

Ds5
D

t 2
. ~9!

Here a and l are constants to be determined. Using E
~5! in Eq. ~8! and comparing the coefficients ofX1 and X2
we find

l5g and a5
12gt

t
. ~10!

We are now in a position to define entropy flux and e
tropy production using Eq.~6!. In the microscopic picture the
Shannon form of the entropy is connected to the continu
probability distributionr as

S52E r~U,t !ln r~U,t !dU. ~11!

The time evolution equation for entropy then can be w
ten as

dS

dt
52E dUF2

]Fr

]U
1eDs

]2r

]U2G ln r. ~12!

Putting the usual boundary conditions into the result
partial integration of the right-hand side of the above E
~12!, one obtains the following form of information entrop
balance:

dS

dt
5E r

]F

]U
dU1eDsE 1

r S ]r

]U D 2

dU. ~13!

Equation~13! implies that the first term has no defini
sign while the second term is positive definitely sinceDs is
always positive. Then one can identify the first and the s
ond terms as entropy fluxṠF and entropy productionṠP ,
respectively:

ṠF5E r
]F

]U
dU, ~14!
02612
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f
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c-

ṠP5eDsE 1

r S ]r

]U D 2

dU. ~15!

To find the explicit time dependence of these quantit
we then search for the Green’s function or conditional pro
ability solution for the system atU at time t for the given
initial condition,

r~U,t50!5
e1

p
exp@2e1~U2U8!2#. ~16!

We now look for a solution of Eq.~6! of the form

r~U,tuU8,0!5exp@G~ t !#, ~17!

where

G~ t !52
1

s~ t !
@U2b~ t !#21 ln n~ t !. ~18!

We will see that by suitable choice ofb(t), s(t), n(t)
one can solve Eq.~6! subject to the initial condition,

r~U,0uU8,0!5
e1

p
exp@2e1~U2U8!2#. ~19!

Comparing Eq.~19! with Eq. ~17! andG(0) we have

s~0!5
1

e1
, b~0!5U8, n~0!5

e1

p
. ~20!

If we put Eq.~17! in Eq. ~6! and equate the coefficients o
equal powers ofU we obtain after some algebra the follow
ing set of equations:

ṡ~ t !522gs~ t !14eDs , ~21!

ḃ~ t !52gb~ t !, ~22!

1

n~ t !
ṅ~ t !52

1

2s~ t !
ṡ~ t !. ~23!

The relevant solutions ofs(t) and b(t) for the present
problem which satisfy the initial conditions above are giv
by

s~ t !5
2eDs

g
@12exp~22gt !#1s~0!exp~22gt ! ~24!

and

b~ t !5b~0!exp~2gt !. ~25!

Now making use of Eqs.~17!, ~24!, and~25! in Eqs.~14!
and ~15! we finally obtain the explicit time dependence
the entropy flux and the entropy production as

ṠF52g ~26!

and
2-2
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ṠP5
2eD

t2F2eD

gt2
1H s~0!2

2eD

gt2 J exp~22gt !G , ~27!

respectively, where we have usedDs5D/t2. Thus entropy
flux is negative and is independent of time, noise stren
and correlation time. But entropy production decrea
monotonically almost exponentially with time for a given s
of D, t, andg as shown in Fig. 1 and finally reaches to t
limiting value g at the long time satisfying (ṠF52ṠP)

dS

dt
5ṠF1ṠP50. ~28!

We now examine the connection between the thermo
namic entropy production and the phase-space collaps
the systems in nonequilibrium stationary states. In this s
dS/dt50 and we have from Eqs.~13!, ~14!, and ~15! ~for
details see Ref.@7#!

ṠP52ṠF52E r
]F

]U
dU52divF`52s81O~e!.0

~29!

in the limit e!1. Heres8 is the Lyapunov exponent of th
one-dimensional deterministic system. Thus information
tropy as defined by Eq.~15! is equal to the negative o
Lyapunov exponent or equivalently to the rate of pha
space volume contraction plus a correction term vanishin
the noise strength goes to zero@15,16#. The results in Eq.
~29! is very much interesting, since it would seem at fi
sight from Eq.~15! that ṠP should tend to zero ase→0. The
fact is that it nevertheless gives a finite contribution in t
limit, which reflects the nonanalytic dependence of the pr
ability density one @7#.

2. Cross-correlated noise process

We now consider another case where a simple dissipa
system is driven by both additive and multiplicative wh
Gaussian noises,

FIG. 1. Plot of entropy productionṠP vs time using Eq.~27! for
s(0)50.1, D50.5, andg51.0. Solid and dotted curves are fort
52 and 1, respectively~units are arbitrary!.
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Ẋ52gX2z1X1h1 . ~30!

The correlation between the noise processes are give

^z1~ t !z1~ t8!&52eD8d~ t2t8!,

^h1~ t !h1~ t8!&52ead~ t2t8!,

^z1~ t !h1~ t8!&5^z1~ t8!h1~ t !&52l1eAD8ad~ t2t8!,

0<l1<1, ~31!

wherel1 denotes the cross correlation of the two noise p
cesses. The Fokker-Planck equation for the Langevin
~30! can be written as~for details see Ref.@8#!

]r

]t
52

]Fr

]X
1eD1

]2r

]X2
, ~32!

where the drift term is

F52GX1 l ~33!

and

D15@ag21~22n!eD8a$~22n!eD812g22gl1
22l1

2~2

2n!eD8%#/G2 ~34!

with

G5g12eD82n, l 5~22n!l1eAD8a. ~35!

In Eqs. ~34! and ~35! n51 stands for the Stratonovic
convention andn50 for the Ito convention.

The Fokker-Planck equation~32! is very similar to Eq.
~6!. Following the earlier method the time dependence
entropy flux and entropy production for the cross-correla
noise-driven process is

ṠF52G, ~36!

ṠP5
2D1

s1~ t !
, ~37!

where

s1~ t !5
2eD1

G
1S s1~0!2

2eD1

G Dexp~22Gt !. ~38!

Heres1(0) has the same significance as in Eq.~24!. Thus
entropy flux for the cross-correlated noise process is t
independent but its value not only depends on dissipa
constantg as in the previous case but also on the strength
multiplicative noiseD8. The time dependence of entrop
production is qualitatively same as in the Fig. 1 but the
laxation time is different sinceG contains bothg andD8. In
the long time limit Eqs.~36! and~37! satisfy Eq.~28!. Since
Eqs.~6! and~32! are formally same, the connection betwe
the thermodynamic entropy production and the phase-sp
collapse of systems in nonequilibrium stationary states
2-3
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BIDHAN CHANDRA BAG PHYSICAL REVIEW E 66, 026122 ~2002!
the correlated noise-driven system should be similar to
~29!. Using D850, l150, n50, anda5gKT in Eq. ~37!
(K and T are Boltzmann constant and temperature, resp
tively! one can obtain the time dependence of entropy fl
and production for thermodynamically closed system@17# in
the Markovian limit.

B. Relaxation of the small external force-driven steady state
to the new steady state

1. The Ornstein-Uhlenbeck noise process

We shall now examine the time dependence of entr
flux and production during the relaxation of steady state t
new steady state for the system driven by an weak exte
force. To this end we consider the constant driftf e in Eq. ~1!
due to external force so that the total drift in Eq.~6! now
becomes

F5F0~U !1hF1 , ~39!

whereF052lU, F15a fe , and h is smallness paramete
Whenh50, r5rs , rs is the steady state solution of the E
~6!. The deviation ofr from rs in the presence of nonzer
small h can be explicitly taken into account once we ma
use of the identity for the diffusion term in Eq.~6!,

]2r

]U2
5

]

]U Fr ] ln rs

]U G1
]

]U Frs

]

]U

r

rs
G . ~40!

Now we are in a position to establish a connection
tween the entropy production of irreversible thermodynam
and the relevant quantities of the underlying dynamics
phase space for the present model following Ref.@7#. The
explicit calculation using Eq.~40! shows that the information
entropy balance Eq.~12! now yields

dS

dt
52E dU ln rF2

]~Fr!

]U
1eDs

]

]U S r] ln rs

]U D G
2eDsE dU ln rs

]

]U S rs

]

]U

r

rs
D

1eDsE dUrS ]

]U
ln

r

rs
D 2

. ~41!

It is noted that the first, the second, and the third integ
in Eq. ~41! are of zeroth, first, and second order, respectiv
with respect to the deviation from steady state. Doing par
integrations in Eq.~41! we obtain

dS

dt
5divFt1eDsE dUrF2S ] ln rs

]U D 2

12
] ln r

]U

] ln rs

]U G
1eDsE dUrS ]

]U
ln

r

rs
D 2

. ~42!

Such a new decomposition of the rate of change of inf
mation entropy now exhibits a partDṠP ,
02612
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r-

ḊSP5eDsE dUrS ]

]U
ln

r

rs
D 2

>0, ~43!

which is both positive definite and of second order in t
deviation from the steady state, thereby fulfilling the prin
pal condition required on entropy production. On the oth
hand, the first term on the right-hand side of Eq.~42!, divFt,
has no definite sign and contains, in principle, contributio
of all orders in the deviation from steady state. In the stati
ary state,dS/dt50, and the contribution of this term and o
the second one in Eq.~42! must cancel that ofDṠP . The role
of this latter term in this balance is, then, to remove t
contributions of all but second orders in the deviation fro
steady state contained indivFt.

We may therefore write, in the new steady state

DṠP52divF`2~ terms of zeroth and first order inh!.
~44!

So by virtue of Eq.~29! we have

DṠP52s82~ terms of zeroth and first order inh!.
~45!

This establishes a connection between the irrevers
thermodynamics on the one hand, and phase-space dyna
on the other in the case when the dynamical system is ex
nally driven by deterministic small term.

We now return to Eq.~6! and consider the dynamics i
presence of an additional forcehF1 @Eq. ~34!#,

]r

]t
52

]fr

]U
2h

]F1r

]U
1Ds

]

]U S rs

]

]U

r

rs
D , ~46!

wheref is defined as

f5F02Ds

] ln rs

]U
. ~47!

Here we have usede51 for the rest of the calculation.
The steady state solution of Eq.~6! is

rs5N expF2
lU2

2Ds
G , ~48!

whereN is the normalization constant.
Using Eq.~48! in Eq. ~47! we have

frs50. ~49!

To consider the entropy flux and the entropy production
the nonequilibrium state in presence of external forcing
use Eq.~46! in the time evolution equation of entropy~11!.
Following Ref. @7# we finally identify entropy flux (DṠF)
and entropy production (DṠP) as
2-4
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DṠF52
d

dtE r
d ln rs

dU
dU1E dF1

dU
d rdU

1E dUS F1

d ln rs

dU D dr ~50!

and

DṠP5DsE dUrS d

dU
ln

r

rs
D 2

. ~51!

Here we have useddr5r2rs andh51.
In the next step we solve Eq.~46! as before to find the

explicit time dependence ofDṠF andDṠP . The time depen-
dent solution of Eq.~46! is given by

r5N1expF2
@U2bh~ t !#2

s~ t ! G , ~52!

whereN1 is the normalization constant ands(t) is obtained
from Eq. ~24!. The expression forbh(t) is given by

bh~ t !5
F1

l
1S bh~0!2

F1

l Dexp@2lt#. ~53!

Now using Eqs.~48! and ~52! in both Eqs.~50! and ~51!
we have

DṠF5
l

2Ds
@2Ds2ls~ t !12bh~2bhl1F1!#2

l

Ds
F1bh

~54!

and

DṠP5DsF S l

Ds
2

2

s~ t ! D H S l

Ds
2

2

s~ t ! D S bh
21

s~ t !

2 D14
bh

2

s~ t !J
14S bh

s D 2G , ~55!

where l, Ds , s(t), bh(t), and F1 are given by the Eqs
~10!, ~9!, ~24!, ~53!, and~39!, respectively. The time depen
dence ofDṠP is shown in Fig. 2 for different values oft for
a given set of values of other parameters. It is interesting
note that forgtÞ1 the entropy production first decreas
with time and then passes through the minima and fin
reaches to the following steady value@8# that is shown by
solid curve of Fig. 2:

DṠP5
~12gt!2f e

2

D
52DṠF . ~56!

This observation can be explained by simplifying Eq.~55!
in the limit s(0)→0 andbh(t)→0 as

DṠP5
1

D@12exp~22gt !#
@~12gt!2f e

2~122e2gt12e23gt

2e24gt!1gDe24gt#. ~57!
02612
to

y

In Eq. ~57! first term in the numerator, which vanishes
t→0, implies that the external force increases entropy p
duction while the second term corresponds to the decreas
entropy production with time due to dissipative action. B
cause of these two opposite effects a system thrown a
from a steady state by a small external force relaxes to a
steady state passing through a minima in entropy produc
with time for the casegtÞ1. Forgt51 entropy production
decreases monotonically since the effective external fo
becomes zero under this condition. Similarly entropy fl
also shows extremum properties forgtÞ1 case, which is
shown in the solid curve of Fig. 3. Dotted curve of this figu
corresponds to the time dependence of entropy flux forgt
51. Another interesting point that should be noted here
thatdS/dt andDṠP or DṠP reach their equilibrium values a
different times~the plot ofdS/dt vs t is shown in the inset of
Fig. 2!. Thus Fig. 2 implies that before the true stationa
state is reached the system may showdS/dt50.

In the Markovian limitt→0 so that Eq.~57! reduces to

FIG. 2. Plot of entropy productionDṠP vs time using Eq.~55!
for the same parameter set as in Fig. 1 andbh(0)51.0 and f e

51.0. t52, and 1 for solid and dotted curves. In the inset the s

of DṠP andDṠF from Eqs.~55! and~54! is plotted against time for
t52 ~units are arbitrary!.

FIG. 3. Plot of entropy fluxDṠF vs time using Eq.~54! for the
same parameter set as in Fig. 2.t52 and 1 for solid and dotted
curves~units are arbitrary!.
2-5
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DṠP5
1

D@12exp~22gt !#
@ f e

2~122e2gt12e23gt2e24gt!

1gDe24gt#. ~58!

The above equation implies that even for white noise
tropy production passes through the minima with time
both thermodynamically open and closed (D5gKT) sys-
tems@17#. As t→` Eq. ~58! reduces to

DṠP5
f e

2

D
. ~59!

For D5gKT the above equation reduces to the stand
result for entropy production of irreversible processes fo
Brownian oscillator.

Equation ~57! further implies that fort.0 the entropy
productionDṠP passes through minimum atgt51, which is
shown in Fig. 4. The variation ofDṠF with t in Eq. ~54!
shows the maximum as evident in Fig. 5. These extre
behavior is not observed forh50.

Now to show the effect ofg on the interplay betweeng
andt we plot bothDṠP vs g andDṠF vs g using Eqs.~55!
and ~54! ~Figs. 6 and 7!. Both the figures show extremum

FIG. 4. Plot of entropy production (DṠP) vs t using Eq.~55! for
the same parameter set as in Fig. 2 att50.5 ~units are arbitrary!.

FIG. 5. Plot of entropy fluxDṠF vs t using Eq.~54! for the
same parameter set as in Fig. 2 att50.5 ~units are arbitrary!.
02612
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properties but Eqs.~26! and~27! do not exhibit such kind of
variation. It is thus apparent that in presence of the none
librium constraint the properties of noise processes as we
the dynamical characteristic of the system are important
both entropy flux and production.

2. Cross-correlated noise-driven process

We now turn again to the cross-correlated noise-driv
process to study the time dependence of entropy flux
entropy production due to additional weak forcing on t
stationary system. To this end we add a constant of forcef e
in Eq. ~30!,

Ẋ52gX2z1X1h11h fe . ~60!

The Fokker-Planck equation corresponding to Eq.~60!
can be written as

]r

]t
52

]f1r

]X
2h

] f er

]X
1D1

]

]X S rs

]

]X

r

rs
D , ~61!

where

FIG. 6. Plot of entropy productionDṠP vs g using Eq.~55! for
the same parameter set as in Fig. 2 andt52 at t50.5 ~units are
arbitrary!.

FIG. 7. Plot of entropy fluxDṠF vs t using Eq.~54! for the
same parameter set as in Fig. 6 att50.5 ~units are arbitrary!.
2-6



.

ca

s
ot

he

e-
the
ry
our
act
actly

is-
rties
the
in
n-
er-
t of
one
the
ex-
on-
he
th

nt
and
the

e,
cern
pe
ing
ics

Pro-
he
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f15F2D1

] ln rs

]X
. ~62!

F is given by Eq.~33! and rs is stationery solution of Eq
~32!. Usingrs in f1rs again we have

f1rs50. ~63!

Since Eq.~61! is very much similar to the Eq.~32!, the
time dependence of entropy flux and entropy production
be derived as before to obtain

DṠF5
G

2D1
F2D12Gs1~ t !12S bh82

l

G D ~2bh8G1 l 1 f e!G
1

l f e

D1
2

G

D1
f ebh8 ~64!

and

DṠP5D1F S G

D1
2

2

s1~ t ! D H S G

D1
2

2

s1~ t ! D S bh8
21

s1~ t !

2 D
12S 2bh8

s1~ t !
2

l

D1
Dbh8J 1S 2

bh8

s1
2

l

D1
D 2G , ~65!

where

bh8~ t !5S bh8~0!2
l 1 f e

G Dexp~2Gt !1
l 1 f e

G
. ~66!

Equations~65! and~64! also show extremal properties a
shown by solid curves in Figs. 2 and 3. The variation of b
DṠP andDṠF with noise correlation strengthl1 in Eqs.~65!
and ~64! is shown in Figs. 8 and 9 respectively att50.5.
Although both the figures show extremal behavior in t

FIG. 8. Plot of entropy productionDṠP vs l1 using Eq.~65! for
s150.0, bh850.0, D851.0, a51.0, andg51.0 att50.5 ~units are
arbitrary!.
02612
n

h

nonequilibrum state but at the stationary stateDṠP increases
and DṠF decreases monotonically. Thus the interplay b
tweeng, noise strength and cross-correlation strength in
nonequilibrium state is different from that in the stationa
state. Before leaving this section we mention here that
calculated entropy flux and entropy production are ex
since the models considered here are linear and are ex
solvable by Greens’ function of Gaussian form.

III. CONCLUSIONS

In this paper we have explored the interplay between d
sipative characteristics of the dynamics and noise prope
in presence and absence of nonequilibrium constraint in
nonequilibrium state as well as in the stationary state
terms of entropy flux and entropy production. Both the e
tropy production and the entropy flux show extremal prop
ties with time for color noise processes when the produc
correlation time and dissipation constant is not equal to
in presence of a nonequilibrium constraint. The white and
cross-correlated noise-driven processes also mimic this
tremal nature. This is due to a competition between the n
equilibrium constraint and the dissipative action. T
maxima and minima are also found in the variation of bo
DṠF andDṠP with correlation time and dissipation consta
for the color noise-driven processes in the nonstationary
the stationary states but this feature can be found in
variation of DṠF and DṠP as a function of correlation
strength l1 only in the nonstationary state. Since whit
color, or cross-correlated noise-driven processes con
many situations in biology, physics, and chemistry we ho
that our present observation will be useful for understand
the close connection between irreversible thermodynam
and dynamical system in many related issues.
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FIG. 9. Plot of entropy fluxDṠF vs l1 using Eq.~64! for the
same parameter set as in Fig. 8 att50.5 ~units are arbitrary!.
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