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Nonequilibrium stochastic processes: Time dependence of entropy flux and entropy production
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Based on the Fokker-Planck and the entropy balance equations we have studied the relaxation of a dissipa-
tive dynamical system driven by external Ornstein-Uhlenbeck noise processes in the absence and presence of
nonequilibrium constraint in terms of the thermodynamically inspired quantities such as entropy flux and
entropy production. The interplay of nonequilibrium constraint, dissipation, and noise reveals some interesting
extremal nature in the time dependence of entropy flux and entropy production.
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I. INTRODUCTION Il. THE FOKKER-PLANCK DESCRIPTION, TIME
DEPENDENCE OF ENTROPY FLUX AND PRODUCTION

] o ) OF NOISE-DRIVEN DYNAMICAL SYSTEMS
Understanding of the nature of nonequilibrium and equi-

librium states of a dynamical system in presence of sur-  A. Relaxation of the noise-driven dynamical system
roundings is always an intriguing issue of physics. Entropy is to the steady state
an important quantity in this regard in thermodynamics. 1. Ornstein-Uhlenbeck noise process

While in the traditional classical thermodynamics, the spe-

cific nature of a stochastic process is irrelevant, this may pla We consider the dynamics of a dissipative dynamical sys-

an important role for establishing the connection between th em driven by the external Ornsteln—UhIenl_)eck NOISE process
Ih the phase space. The relevant Langevin equation of mo-

phase space of a dynamical system and the related thermﬁén can be written as
dynamically inspired quantities such as entropy production,
flux, and Onsagar coefficients, etc. Recently a number of
authors[1-11] have explored the relationship in consider-
able detail.

The aim of the present paper is to enquire into this con
nection about the imprints of coldi2], white, and cross-
correlated noise processgt3,14 on time dependence of
entropy, entropy production, and entropy flux using a con- D lt—t'|
nection between the information entropy and the probability (p(t)p(t"))= 7ex;{ - T) 2
distribution function of the phase-space variables for thermo-

dynamically open systems. Based on a Fokker-Planck deb is the noise strength and corresponds to the correlation

scription of stochastic processes and the entropy balan e of color noise process. The time evolutionspEan be

equation we first consider here the relaxation of a diSSipatiV%onveniently expressed in terms of the Gaussian white noise
dynamical system in presence of the noise processes to P'?ocessg(t) as

steady state from a given nonequilibrium state in terms o

thermodynamically inspired quantities. For additive white _ n Nb)

noise we compare our results in the equilibrium state with n=——+—, 3

the standard results for the closed systems. We also enquire T

how the system relaxes if the system is thrown away from , ,

the aforesaid steady state by a nonequilibrium constraint to (Let))=2es(t—t"),

understand how the entropy flux and the entropy production

pass through minima with time in the latter case and how thé?md

two relaxation processes for different noise properties differ.
The outline of the paper is as follows: In Sec. Il we cal-

cglate the _entr.opy flux a_nd the entrppy producnop_fo_r Awhere the parameter is used to identify the noise strength.

simple dissipative dynamical system in the nonequilibrium

. ’ ) . Now treating » as a phase-space variable on the same
state for different noise processes. The paper is concluded 'I’aoting asX we can write Fokker-Planck equation in the
the Sec. lIl.

extended phase spafk?] as

X=—yX+7, 1)

wherey is the damping constant. The temrin Eq. (1) is the
‘external Ornstein-Uhlenbeck noise whose two time correla-
tion is given by

(£)=0,

Ip(X1, Xo,t)  dXyp dp  1Xp D Fp
ot Taxy TRaXyr X, 2 o2
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whereX;,X, refer toX and » in Eq. (1) andp(X4,X,,t) is
the extended phase-space probability distribution function.
Now making use of the transformation

U=aX;+X,, ®)
the Fokker-Planck Eq4) can be written as
dp(U,t) dFp p
=- eDs—, (6)
at au IU?
where
F=-\U, (7)
X2
and
D
Ds=—. 9
T

Herea and\ are constants to be determined. Using Eq.
(5) in Eqg. (8) and comparing the coefficients &f;, and X,
we find

1—vyr

A=y and a= (10

We are now in a position to define entropy flux and en-
tropy production using Ed6). In the microscopic picture the
Shannon form of the entropy is connected to the continuou
probability distributionp as

S (11)

—f p(U,t)Inp(U,t)dU.

The time evolution equation for entropy then can be writ-

ten as
[

Putting the usual boundary conditions into the result o
partial integration of the right-hand side of the above Eq.
(12), one obtains the following form of information entropy

balance:
1/ ap\?
J ;(m) av

Equation(13) implies that the first term has no definite
sign while the second term is positive definitely sirizgis
always positive. Then one can identify the first and the sec
ond terms as entropy flu$: and entropy productiorsy,
respectively:

SF:J’ p

ds
dt

IF 9
——p—l—eD p

U (12)

Inp

ds

.|,

T dU+eD 13
dt JuddTe (13

JF

mdU, (14
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Sp=eD J L% 4y

p= €D olau :

To find the explicit time dependence of these quantities
we then search for the Green’s function or conditional prob-

ability solution for the system dtl at timet for the given
initial condition,

(15

€1 12
p(U,t=0)=?exq—61(U—U ). (16)
We now look for a solution of Eq(6) of the form
p(Ut|U",0)=exd G(1)], 17
where
G(t)=— )[U B+ Inw(t). (18

o(t

We will see that by suitable choice ¢f(t), o(t), v(t)
one can solve Eq6) subject to the initial condition,

€1
p(U,O|U’,0)=?exq—el(U—U')z]. (19

Comparing Eq(19) with Eqg. (17) andG(0) we have

B(0)= (20

1
O'(O):e—l

If we put Eq.(17) in Eq. (6) and equate the coefficients of
gqual powers ofJ we obtain after some algebra the follow-
ing set of equations:

o(t)=—2yo(t)+4eDq, (22)
B(t)=—yB(1), (22)

1. .
WV(U: - T(t)a-(t). (23)

The relevant solutions of(t) and B(t) for the present

fproblem which satisfy the initial conditions above are given

by

2eDg
o(t)=

and

B(t)=p(0)exp(— yt). (25

Now making use of Eq917), (24), and(25) in Egs.(14)
and (15) we finally obtain the explicit time dependence of

the entropy flux and the entropy production as

and
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01 X=—yX={1X+ 71 (30
391 The correlation between the noise processes are given by
- (LD (t"))=2eD" 5(t—t"),
o 2.51 , |

e 201 (M) (1)) =2€ad(t—t"),
1.5 | (£1(D) 91 (t"))=(L1(t") 1 (1)) =2\ 16D " ab(t—1"),
1o, 0<\;<1, (31)

00 05 10 15 20 25 30 where\ ; denotes the cross correlation of the two noise pro-
t cesses. The Fokker-Planck equation for the Langevin Eqg.

. ) _ (30) can be written agfor details see Ref8])
FIG. 1. Plot of entropy productio8; vs time using Eq(27) for

¢(0)=0.1, D=0.5, andy=1.0. Solid and dotted curves are for &_p - IFp (92p

=2 and 1, respectivelyunits are arbitrary Friniaira + eDlﬁ’ (32
& _ 2¢D > where the drift term is
= o 2D - @
72 5 +[a(0)——2]exp(—zyt) F=—TX+I (33
YT YT

and
respectively, where we have used=D/7%. Thus entropy

flux is negative and is independent of time, noise strength,D;=[ay?+(2—v)eD’a{(2—v)eD'+2y—2y\5—\{(2
and correlation time. But entropy production decreases

monotonically almost exponentially with time for a given set —v)eD'}]IT? (34)
of D, 7, andy as shown in Fig. 1 and finally reaches to theWith

limiting value y at the long time satisfyingS= — Sp)

ds . .
G =S t5=0. (29)

I'=y+2eD’'—v, 1=(2—v)\1eyD’a. (35

In Egs. (34) and (35) »=1 stands for the Stratonovich

) ) convention andv=0 for the Ito convention.
We now examine the connection between the thermody- The Fokker-Planck equatiof82) is very similar to Eq.

namic entropy production and the phase-space collapse ¢f) Following the earlier method the time dependence of

the systems in nonequilibrium stationary states. In this stalgntropy flux and entropy production for the cross-correlated
dS¥dt=0 and we have from Eqg13), (14), and(15) (for  [ise-driven process is

details see Ref.7])

o oF Se=-T, (36)
Sp=—SF=—f pmdU=—dlvF =—0'+0(e)>0 | 2D,
(29) SP:(Tl(t)' (37)

in the limit e<1. Hereo' is the Lyapunov exponent of the
one-dimensional deterministic system. Thus information enyvhere
tropy as defined by Eq(l5) is equal to the negative of 2¢D

Lyapunov exponent or equivalently to the rate of phase- oq(t)= 1+(01(0)_
space volume contraction plus a correction term vanishing as r

the noise strength goes to z€b,16. The results in Eq.
(29) is very much interesting, since it would seem at first

GDl
r

)exp( —=2I't). (39

Hereo(0) has the same significance as in Effl). Thus
) . entropy flux for the cross-correlated noise process is time
sight from Eq.(15) thatSp should tend to zero as—0. The jygependent but its value not only depends on dissipation
fact is that it nevertheless gives a finite contribution in th'sconstanty as in the previous case but also on the strength of
Iim_i;, which _reflects the nonanalytic dependence of the pmb'multiplicative noiseD’. The time dependence of entropy
ability density one [7]. production is qualitatively same as in the Fig. 1 but the re-
laxation time is different sinc€ contains bothy andD’. In
the long time limit Eqs(36) and(37) satisfy Eq.(28). Since

We now consider another case where a simple dissipativEgs.(6) and(32) are formally same, the connection between
system is driven by both additive and multiplicative white the thermodynamic entropy production and the phase-space
Gaussian noises, collapse of systems in nonequilibrium stationary states for

2. Cross-correlated noise process
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the correlated noise-driven system should be similar to Eqg. _ d p\?

(29). UsingD'=0, \;=0, »=0, anda=yKT in Eq. (37) A3P=6Dsf dUP(mm—) =0, (43
(K and T are Boltzmann constant and temperature, respec- Ps

tively) one can obtain the time dependence of entropy flux

: : : which is both positive definite and of second order in the
;ned,\agzgsit;onn"fr%ritthermodynamlcally closed sysfdnf in deviation from the steady state, thereby fulfilling the princi-

pal condition required on entropy production. On the other
hand, the first term on the right-hand side of Ep), divF!,

has no definite sign and contains, in principle, contributions
of all orders in the deviation from steady state. In the station-
1. The Ornstein-Uhlenbeck noise process ary statedS/dt=0, and the contribution of this term and of

We shall now examine the time dependence of entropyl® S&cond one in E¢42) must cancel that ok Sp . The role
flux and production during the relaxation of steady state to 21 this latter term in this balance is, then, to remove the
new steady state for the system driven by an weak extern&gontributions of all but second orders in the deviation from
force. To this end we consider the constant dijftn Eq. (1) ~ Steady state contained dfivF'.
due to external force so that the total drift in H&) now We may therefore write, in the new steady state
becomes

B. Relaxation of the small external force-driven steady state
to the new steady state

ASPZ —divF” — (terms of zeroth and first order ih).

whereFo=—\U, F;=af,, andh is smallness parameter. So by virtue of Eq(29) we have
Whenh=0, p=pg, p is the steady state solution of the Eq.
(6). The deviation ofp from pg in the presence of nonzero

small h can be explicitly taken into account once we make
use of the identity for the diffusion term in E¢p),

ASp,=— o' —(terms of zeroth and first order ih).
(45)

This establishes a connection between the irreversible

0 i ﬁ} (40) thermodynamics on the one hand, and phase-space dynamics

SoU pgl’ on the other in the case when the dynamical system is exter-

nally driven by deterministic small term.
Now we are in a position to establish a connection be- We now return to Eq(6) and consider the dynamics in

tween the entropy production of irreversible thermodynamicgresence of an additional for¢e=; [Eq. (34)],
and the relevant quantities of the underlying dynamics in
phase space for the present model following R&éf. The ap dpp  IFp d J p
explicit calculation using Eo(.40) shows that the information gt U h U +DS(9U (Psﬁu Py
entropy balance Eq12) now yields

ds d(Fp) d [pdlnpg
a——Jdump[——aU +€Dsm< U

J Jd p ¢
_GDS,[ dU|ﬂpsm psmp—
s

i
au

#p 9

au? U

aln pg
P=50

) . (46

where ¢ is defined as

aln pg
DU

=Fy (47)

Here we have used=1 for the rest of the calculation.

9 2 : :
n 6Dsf dUp(—Inﬁ) . (41) The steady state solution of E@®) is
U " ps
AU2
It is noted that the first, the second, and the third integrals ps=Nexg — 5D (48)
in Eq. (41) are of zeroth, first, and second order, respectively, s
with respect to the deviation from steady state. Doing partia\INhereN is the normalization constant
integrations in Eq(41) we obtain Using Eq.(48) in Eq. (47) we have
ads —— dlnpg\?2  dlnp dlnps
— =i t — =
T divF +6DSJ dUp[ ( 70 ) U 90 ¢ps=0. (49

p\? To consider the entropy flux and the entropy production in
+eDg | dUp m'“g : (42 the nonequilibrium state in presence of external forcing we
use Eq.(46) in the time evolution equation of entrog$l).

Such a new decomposition of the rate of change of inforFollowing Ref.[7] we finally identify entropy flux ASy)
mation entropy now exhibits a pa#tSp, and entropy productionASp) as
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. d [ dinp,
ASF__&J" du

din
+de(F1Wps)5p

du+JdF15 du
du °°P

and

. d p)\?
ASP:DSJ dUp mlnp— .
s

Here we have usedp=p—ps andh=1.

In the next step we solve E@46) as before to find the
explicit time dependence &S: andASy. The time depen-

dent solution of Eq(46) is given by

e U B
p=Ni€X (T(t)

.. PHYSICAL REVIEW E 66, 026122 (2002

(50

(51)

FIG. 2. Plot of entropy productioASy vs time using Eq(55)
for the same parameter set as in Fig. 1 @{0)=1.0 andf,
(52) =1.0. 7=2, and 1 for solid and dotted curves. In the inset the sum
of AS, andAS: from Egs.(55) and(54) is plotted against time for
7=2 (units are arbitrary

whereN; is the normalization constant amdt) is obtained

from Eq. (24). The expression foBy(t) is given by

= F,
Bn() =~~~ Bh(o)_T) exf —\t].

In Eq. (57) first term in the numerator, which vanishes as
t—0, implies that the external force increases entropy pro-

(53 duction while the second term corresponds to the decrease of
entropy production with time due to dissipative action. Be-

Now using Eqs(48) and (52) in both Egs.(50) and(51) ~ cause of these two opposite effects a system thrown away

we have

from a steady state by a small external force relaxes to a new
steady state passing through a minima in entropy production
with time for the caseyr# 1. Foryr=1 entropy production

) A
ASFZZ_DS[ZDS_ No(t) +2Bp(—= Bah+F1)]— D_SFIIBh decreases monotonically since the effective external force

and

(54) becomes zero under this condition. Similarly entropy flux
also shows extremum properties for#1 case, which is
shown in the solid curve of Fig. 3. Dotted curve of this figure
corresponds to the time dependence of entropy fluxyfor

- (x 2)()\ 2)(20(0
25704\, "om/||D, e/ At

)
g

+4

Bﬁ ] =1. Another interesting point that should be noted here is
a(t)

thatdS/dt andA Sy or AS reach their equilibrium values at
different times(the plot ofd ¥dt vst is shown in the inset of
Fig. 2. Thus Fig. 2 implies that before the true stationary
state is reached the system may shb@/dt=0.

In the Markovian limit—0 so that Eq(57) reduces to

(55

where\, Dg, o(t), Bn(t), andF, are given by the Egs.

(10), (9), (24), (53), and(39), respectively. The time depen-

dence ofASp is shown in Fig. 2 for different values affor 01
a given set of values of other parameters. It is interesting to

note that foryr#1 the entropy production first decreases
with time and then passes through the minima and finally 47
reaches to the following steady val{i] that is shown by

solid curve of Fig. 2:

)
4
. (1—ym)?f2 . -21
ASP=+=—ASF. (56)
This observation can be explained by simplifying Ezp) .3
in the limit 0(0)—0 andB,(t)—0 as 0
t
o 2 — - .
ASp= D[1—exp—271)] [(1—y7)?fe(1—2e "+2e %" FIG. 3. Plot of entropy flwA S¢ vs time using Eq(54) for the

—e M+ yDe .

same parameter set as in Fig.72:2 and 1 for solid and dotted
(57) curves(units are arbitrary
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1.6- _ 30
1.4] 2.5
1.2- 2.0-
'U)Q 1 .0-. o 1.5
< 0.8 Q
] 1.04
0.6
0.47.. ) 0.5
0.2 L . ; . 0.0 . . . .
0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5
T Y
FIG. 4. Plot of entropy production\Sp) vs r using Eq.(55) for FIG. 6. Plot of entropy productioA Sy vs y using Eq.(55) for
the same parameter set as in Fig. 2-a0.5 (units are arbitrary the same parameter set as in Fig. 2 amd2 att=0.5 (units are
arbitrary).

A= B exg = 270)] [fe(1—2e7"+2e7"—e™)  properties but Eq426) and(27) do not exhibit such kind of
variation. It is thus apparent that in presence of the nonequi-
+ yDe 4. (58) librium constraint the properties of noise processes as well as

S ) ) the dynamical characteristic of the system are important for
The above equation implies that even for white noise enpoth entropy flux and production.

tropy production passes through the minima with time for
both thermodynamically open and closed £ yKT) sys- 2. Cross-correlated noise-driven process

tems[17]. Ast—o Eq. (58) reduces to . . .
We now turn again to the cross-correlated noise-driven

£2 process to study the time dependence of entropy flux and
Be. (59 entropy production due to additional weak forcing on the
stationary system. To this end we add a constant of fogce

For D= yKT the above equation reduces to the standard’" Eq. (30),

result for entropy production of irreversible processes for a

ASp:

Brownian oscillator. X=—yX—={1 X+ p+hig. (60)
Equation (57) further implies that fort>0 the entropy
productionA Sy passes through minimum gt-= 1, which is The Fokker-Planck equation corresponding to Eg)

shown in Fig. 4. The variation oASe with 7 in Eq. (54) ~ €an be written as

shows the maximum as evident in Fig. 5. These extremal

behavior is not observed fdr=0. dp  dpip  Ifep 4 J p
Now to show the effect ofy on the interplay betweeny X Max T 1(9_x(p507_xg

and r we plot bothASp vs y andAS: vs y using Egs(55)

and (54) (Figs. 6 and Y. Both the figures show extremum where

b e

0.4} 0.0-
-0.51
0.0
1.0
et 041 " -1.51
2 2
-2.01
-0.8F
-2.51
-1.2 T T T T T T T T T T T T -3.0 T T T T T T T T T
0.0 0.5 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5
T Y
FIG. 5. Plot of entropy fluxAS: vs 7 using Eq.(54) for the FIG. 7. Plot of entropy fluxAS: vs 7 using Eq.(54) for the
same parameter set as in Fig. 2at0.5 (units are arbitrary same parameter set as in Fig. 6a&t0.5 (units are arbitrary
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0.40
0.35-
a
)
< 0.30
0.25-
0.00 0.25 0.75 1.00

FIG. 8. Plot of entropy production Sy vs \; using Eq.(65) for
0,=0.0, 8,=0.0,D’'=1.0, =1.0, andy=1.0 att=0.5 (units are
arbitrary).

aln pg
X

¢1=F—-D, (62

F is given by Eq.(33) and ps is stationery solution of Eq.

(32). Using ps in ¢p1ps again we have

$1ps=0.

Since Eq.(61) is very much similar to the Eq32), the

(63

time dependence of entropy flux and entropy production can

be derived as before to obtain

A'st—[ZDl—ral(t)Jrz
1

I
ﬁa—f)<—ﬁar+l+fe>

(64)

and

sseof -l o228
=015, /e am /AT

28, 1) Bh 1)\?
+2(—al<t>‘o—1)ﬁh]*(za‘a—l> }

(65

where

, , [+fg
ﬁh(t>=(ﬂh<0>— .

fe

r

)exq—Ft)+ ! (66)

Equations(65) and(64) also show extremal properties as
shown by solid curves in Figs. 2 and 3. The variation of both

ASs andASe with noise correlation strengthy in Egs.(65)

PHYSICAL REVIEW E 66, 026122 (2002

-0.05+
-0.104
. -0.151
-0.20+

-0.25+

0.0 0.2 0.4 0.6 08 1.0

FIG. 9. Plot of entropy fluxAS: vs \; using Eq.(64) for the
same parameter set as in Fig. &at0.5 (units are arbitrary

nonequilibrum state but at the stationary staf increases

and AS;g decreases monotonically. Thus the interplay be-
tweenvy, noise strength and cross-correlation strength in the
nonequilibrium state is different from that in the stationary
state. Before leaving this section we mention here that our
calculated entropy flux and entropy production are exact
since the models considered here are linear and are exactly
solvable by Greens’ function of Gaussian form.

Ill. CONCLUSIONS

In this paper we have explored the interplay between dis-
sipative characteristics of the dynamics and noise properties
in presence and absence of nonequilibrium constraint in the
nonequilibrium state as well as in the stationary state in
terms of entropy flux and entropy production. Both the en-
tropy production and the entropy flux show extremal proper-
ties with time for color noise processes when the product of
correlation time and dissipation constant is not equal to one
in presence of a nonequilibrium constraint. The white and the
cross-correlated noise-driven processes also mimic this ex-
tremal nature. This is due to a competition between the non-
equilibrium constraint and the dissipative action. The
maxima and minima are also found in the variation of both

ASr andA Sy with correlation time and dissipation constant
for the color noise-driven processes in the nonstationary and
the stationary states but this feature can be found in the
variation of AS: and AS, as a function of correlation
strength A4 only in the nonstationary state. Since white,
color, or cross-correlated noise-driven processes concern
many situations in biology, physics, and chemistry we hope
that our present observation will be useful for understanding
the close connection between irreversible thermodynamics
and dynamical system in many related issues.
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