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Casimir problem of spherical dielectrics: Numerical evaluation for general permittivities
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The Casimir mutual free enerdyfor a system of two dielectric concentric nonmagnetic spherical bodies is
calculated, at arbitrary temperatures. The present paper is a continuation of an earlier invesiggsoRRev.
E 63, 051101(2003)], in which F was evaluated in full only for the case of ideal metaksfractive indexn
=x). Here, analogous results are presented for dielectrics, for some chosen valu@siobasic calculational
method stems from quantum statistical mechanics. The Debye expansions for the Riccati-Bessel functions
when carried out to a high order are found to be very useful in pragtiegeby overflow/underflow problems
are easily avoided and also to give accurate results even for the lowest valuéglofvn tol=1. Another
virtue of the Debye expansions is that the limiting case of metals becomes quite amenable to an analytical
treatment in spherical geometry. We first discuss the zero-frequency TE mode problem from a mathematical
viewpoint and then, as a physical input, invoke the actual dispersion relations. The result of our analysis, based
upon the adoption of the Drude dispersion relation at low frequencies, is that the zero-frequency TE mode does
not contribute for a real metal. Accordinglly, turns out in this case to be only one-half of the conventional
value at high temperatures. The applicability of the Drude model in this context has, however, been questioned
recently, and we do not aim at a complete discussion of this issue here. Existing experiments are low-
temperature experiments, and are so far not accurate enough to distinguish between the different predictions.
We also calculate explicitly the contribution from the zero-frequency mode for a dielectric. For a dielectric, this
zero-frequency problem is absent.
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I. INTRODUCTION Ref.[3]. We will have to repeat some of the formalism below
for readability.

In the Casimir world, it is desirable to consider geometri- One lesson from the calculation fii] was that the power
cal configurations that are amenable to an analytical trea®f the quantum statistical method is remarkably strong when
ment and at the same time nontrivial enough to elucidate thepplied to the rather demanding case of generdlhe most
physically important properties. The following configuration central formula in our context is the statistically derived Eq.
turns out to satisfy these two criter{af. Fig. 1): there are  (40) in [1]; it gives the value ofdF=F/T for arbitrary val-
two spherical bodies present with concentric surfaces at ues of temperature, width, ard Whereas this equation was
=a andr=Db, with a vacuum region in between. We shall given in terms of a very compact notation [ii], it will be
consider the free enerdy(T) due to the mutual interaction convenient here to rewrite it slightly. Lete (—o,%) be an
between the two bodies. We gave an analysis of this problerimteger corresponding to Matsubara frequenciés
earlier [1], with the use of quantum statistical methods as=2=m/B; let n= /e be the refractive index of the two me-
well as field theoretical methods. Whereas the general fordia lying atr<a andr>b; and lets|(x),e (x) be Riccati-
malism in[1] was valid for arbitrary(equa) permittivitiese Bessel functions with imaginary argument defined according
in the two dielectric regiong <a and r>b, the explicit to s/(x)=(mx/2)*2 (x),e(x)=(2x/7)¥K (x), so that
evaluation ofF(T) for various values oflT and widthsd their Wronskian become®/{s,,e;}=—1. Here v=1+1/2,
=(b—a) was made for the case gferfectly conducting andl,,K, are modified Bessel functions. We write the for-
walls only, corresponding t@—co. Our purpose with the mula as
present paper is to extend these previous considerations to
cover the case of general values of the permittivity. To our
knowledge such a calculation has not been undertaken be-
fore, although there are similarities with the theory given by
Kleinert some years ag@®]. We will henceforth assume, as
in [1], that the two media are nonmagnetic. A brief account
of the essentials of the present theory was recently given in

e
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*Email address: johan.hoye@phys.ntnu.no FIG. 1. Sketch of the spherical geometry.
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3F=m220’ lE I+ D[INA-A"+In(1-\T5], (1) BF(SHoo)zmzo’ I21(2|+1)

3 S/ (x) e/(y)
e (x) s/(y)

s(0 ely)
e (x) si(y)

=0 term is taken with half weight. The two eigenvalugs’ ] '

and)\lTE in Eq. (1) correspond to the transverse magnetic and

the transverse electric moddsn the notation of Ref[1], )
Aa=MM, N=\F; we find it useful here to emphasize

the physical nature of the two modeEor later use we will

write these eigenvalues as ratios. First,

where the prime on the summation sign means thatnthe < |

which is in agreement with Eq68) in [1]. If we next letx
—0, y—0 observing the same low-argument approxima-
tions, we obtain as contribution from=0

a 21+1
1‘(5)
where 8

again in agreement withl], Eq. (79). This is the conven-
tional result.Boththe two electromagnetic modes are in this
way found to contribute equally to the sum in E§).

However, a discussion has recently arisen as to whether
this recipe for dealing with then=0 term in the TE mode is
really correct. The problem becomes most acute in the high-
T regime, but is present at moderate and low temperatures
also. We may refer to the paper of Bostrand Serneliuf5]
questioning this point, and the subsequent comment of Lam-
oreaux[6]. What has been most welcome in recent years are

x=2mmal B, y=_2mmbl/ . (4) the accurate experiments on the Casimir force, due to Lam-
oreaux[7], Mohideenet al. [8—11], and Bressiet al. [12].
We puth =c=kg=1; B=1/T is the inverse temperature. It By means of these experiments it has become much easier to
should be noted that, in contradistinction to the formalism informulate a sound theory. Several theoretical papers have
[1], the primes in Eqgs(3) mean derivatives with respect to appeared, discussing various facets of the experinésts
the whole argument. 17]. An extensive recent review has been given by Bordag

Next, the TE eigenvalues are written as et al.[18]. We also mention several other related pap&gs-

21], of a more general nature, although these also are con-

mw_ fif2 *

f1=ns/ (x)s(nx) —s;(x)s/ (nx),
f,=ne/(y)e(ny)—el(y)e/(ny),
f3=ne (x)s;(Nx) —e/(x)s/ (nx),

f,=nea(ny)s/(y)—e/(ny)s|(y), 3

x andy being the nondimensional frequencies

Te_ 9192 5) cerned with finite temperature effects in a Casimir context.
b 9304 One of the purposes of the present work is to analyze how
them=0 case works out for the case of the spherical geom-
where etry of Fig. 1. It turns out that the formalism actually be-
comes quite manageable. Use of the Debye expansion for the
91=5/ (X)s(NX) —Nng(X)s/ (nx), Riccati-Bessel functions is an essential element in our analy-
sis, and it implies as an additional bonus that the overflow
g-=¢((y)e(ny)—ne(y)e/(ny), and underflow problems that so often plague calculations of
this sort are easily abandoned.
gs=¢/ (X)s(nx)—ne(x)s| (nx), Our analysis obviously requires machine evaluation, as
we will carry out the Debye expansion to the 18th order in
gs=¢e(ny)s/(y)—ne/(ny)s(y). (6) the quantityd defined in Sec. Il A below. Then the numerical

accuracy becomes quite satisfactory for all practical pur-

The case of metallic wallsy= \E—m, leads to a delicate poses, even for the lowest valuesladown tol=1. Up to
two-limit problem as regards the contribution from zero Mat-about one million terms in the series will be summed. The
subara frequencyn=0. The conventional way to proceed limiting case of metals will be handled in a physical rather
when handling this problem within the framework of nondis- than a mathematical way by adopting the physically prefer-
persive theory, has been to take the limits in the followingable Drude dispersive model as input at low frequencies. On
order: (i) First sete =o0; (ii) then take the limiim—0. the basis of the Drude dispersion relation, we are quite natu-

This way of taking the limits was advocated earlier in therally led to the conclusion that there is no contribution from
1978 paper of Schwinger, DeRaad, and Mil{@l}, and the them=0 TE mode to the free enerdyin the case of infinite
same procedure was followed in Sec. VII of our previousconductivity. This implies that the conventional expression
paper[1]. The method implies inserting the small-argumentfor F for metals has to be multiplied by one hafhis con-
approximations for the Riccati-Bessel functions into By,  clusion is actually in agreement with the outcome of the
resulting in the following free energy expression: statistical-mechanical considerations in Sec. lll[i).) We
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show graphically several results for the variationFofvith [2(x)
temperature and width, both for the ideal metallic céise e(x)= € "W BlO(X)], (11)
which the zero-frequency mode is counted twiaed for the [1+2°(})]

dielectric case. Finally, we calculate the magnitude of the o 114
m=0 contribution toF for a dielectric, as a function of tem- s/ (X)= E [1+2°(X)]
perature, and compare the result with the total valué.of ! 2 Vz(X)
Also, the mutual internal enerdy itself is briefly discussed.

We do not in the present paper aim at resolving the issue , [1+2200]" ®
about them=0 term for the TE mode for real metals. We & xX)=- We I DLOX) ] (13
make some estimates, however, in the discussion in Sec. V,
item 6, choosing aluminum as a concrete example. As fofere v=1+1/2, 1=1,2,
experiments, the atomic force microscope experiment of Mo-y 72(x)]~1/2 and
hideen and Roy8], and that of Harriet al. [10], achieved
an accurary of about 1%. These are essentially low- 1 Z(X)
temperature experiments, where the influence fromrthe 7(X)= 6(X) +In1+ 1/6(x) (149
=0 TE term is smallat T=0 them=0 is completely neg-
ligible since the sum over discrete Matsubara frequencies i66 is the same as the symhkiah Ref.[22]). There occur four
replaced by an integral over imaginary frequencigge all-  polynomialsA(6),B(6),C(6),D(6), which are found to be
over temperature correction at room temperature is predictedf order unity. In Ref[22] the first two of themA(6) and
to be of the same 1% accurafy7] . The singlem=0 tem-  B(#), are expanded to ordet'?, whereasC(6) and D(6)
perature term that we discuss is not singled out experimerare expanded to ordet®. In Ref.[23] we expanded all the
tally under these circumstances. polynomials to ordem'8. These expansions, which will not
be reproduced here, are found to be easily handled on a
computer. The polynomials possess the important property
that they go to unity whem goes to zero.

e’7™ C[ ()], (12)

o zZ(X)=xlv, 0(x)=[1

Il. NUMERICAL CONSIDERATIONS

We now define the nondimensional temperature: The factors in Eqs(10)—(13) that can take extreme values
are the exponentials. They are easily dealt with analytically.
2ma It is now convenient to calculate the following ratios be-
t= 5 (9)  tween the functions defined in Eq8):
. . . E = — EeZV"?(X)
implying thatx=mt. It turns out numerically that the con- fa 2
ventional uniform asymptotic expansions of the Riccati-
Bessel functions, which are used often to low orders when n%yC[O(x)]— AL 8(x)IC[ 8(nx)I/A[ 6(nX)]
dealing with rough approximations, become quite accurate if 2 '
the polynomial parts of the expansions are expanded to high "yYDLOGIT+BLOCOICLOMX) VAL 6(nX)]
order. This makes the evaluation in the present case straight- (19

forward in principle: the polynomial parts, which generally

turn out to be about unity in magnitude, can easily be 2 _9e2vny)
handled on a computer. The remaining parts of the Bessel f,4

functions, which are simple exponentials, can be dealt with

analytically. Actually, what are needed in practical calcula- X”25D[9(Y)]—B[ﬁ(y)]D[ﬁ(ny)]/BW(n)’)]
tions arefractionsbetween Bessel functions. This is the way n25C[ A(y)]+A[ 6(y)]D[ 8(ny) /B[ 8(ny)]’

in which the overflow and/or underflow problems are

avoided. Overflow/underflow problems would easily arise if (16)

we instead chose to take the whole Bessel function direCtl}é\/here and s are the coefficients
from the computer library. The remaining numerical evalua- Y

tion is not quite trivial, though; in particular, in the case of a 2 2
narrow slit the number of necessary terms turns out to be y= 1\ /HZ—(X), 5= /1+z—(y). (17)
quite large, about ) as we mentioned above. 1+27°(nx) 1+2%(ny)

We start by presenting our expanded version of the Debye
formalism. Similarly,

91 1.,
A. The Debye expansions 9_3 = Ee 2vm)
Let us write the Debye expansions in the form
ye ep y yCLO(X)]—AL8(X)]C[ (nx) ]/ AL B(nX) ]
s00= V9 atet. 0 ¥YDL60)T+BLOO)ICL () TTALA(nX)]’
B 2 (14 2] ’ (18)
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n=11 n=1.1

log, (-BFY)
log,(-BF)

FIG. 2. Logarithm of mutual nondimensional free energy, FIG. 3. Logarithm logy — BF) versusd/a, whenn=1.1.
log,o( — BFt), versus relative widttd/a for various values of the

nondimensional temperatute= 27ra/ 8. Refractive indexi=1.1. dium becomes strengthened whebecomes greater. Figure

5 shows, as an example, the analog of Fig. 4 in the case of
92 _ _Zefzm(y)éD[a(y)]_B[G(Y)]D[e(”Y)]/B[e(”Y)] n=2. For instance, when=1, d/a=0.01, the magnitude
04 SC[O(y)]+A[0(y)ID[O(ny)1/B[O(ny)]" |F| is about 50 times as large wher=2 as whem=1.1.
(29 Figure 6 shows the analogous variationFofor the case

of an ideal metali.e., n= for all @, the m=0 mode is
counted twice This figure is reproduced from Fig. 3 ji];
it is included here both for the purpose of comparison, and
also to correct the labeling on two of the curves in our pre-
vious Fig. 3. We remind ourselves that the order of taking the
limits in [1] was in accordance with the prescriptidifsand
) ) (i) mentioned earlier, above E(7) in Sec. I(Refs.[4,1]).

B. Calculated results for dielectrics Generally, we found the asymptotic Debye expansions to

On a logarithmic plot with base 10, Fig. 2 shows how be useful forx>10 and/orl >9. Then, an accuracy of eight
log,o( — BFt) varies withd/a for various values of when  digits for the individual terms was achieved. Below these
the medium is diluten=1.1. The figure is to be compared limits for x and I, we employed the machine-generated
with the corresponding Fig. 1 ifl]. As expected, the mag- Bessel functions. For small values dfa andt, slow con-
nitude|F| of the mutual free energy is much less for a dilute
medium than it is in the case of ideal metallic walls ( n=11
=), For instance, whed/a=0.2, t=1, forn=1.1 we see ¢ ' ' ' '
that|F| has only about 0.1% of the value it has for an ideal an001
metal. The various curves in Fig. 2 tend to overlap at low  ss}
temperatures. Thus the curve calculatedtfe© turns out to
be indistinguishable from the curve calculated for low tem-
peratures up tb=1. The curves in Fig. 2 are most useful for
the case of low temperatures.

Figure 3 shows how log(— BF) varies withd/a. This
representation is convenient for the case of high tempera&
tures, since the curves for hidtend to overlap. Al

Figure 4 shows the representation in the form that is prob-
ably the most instructive one, namely, lgg- BFt) as a da =008
function of logg. It shows clearly that there is a low- T
temperature plateau, extending up to a region lying some-
where between 1 and 2 in the cases shown. For higher value 1l

Now the eigenvalues™ and\F are calculable from Egs.
(2) and(5), with use of the expression45)—(19) in which
the # expansions for the four polynomials are taken from
Ref. [23]. As in our previous papefrl], we made use of
standard~ORTRAN routines throughout.

£
2 sl d/a=0.025
[=3

' s ) ) L '
05 0 0.5 1 15 2 25

of t, there is a gradual change into the region wHeraries log..t
linearly with t. *
We calculated analogous figures for other values alfso, FIG. 4. Variation of logy — BFt) versus logg for various val-

with results as one would expect: the influence of the meues ofd/a, whenn=1.1.
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55 ' ' _n=20 . . us analyze here how the formalism behaves in the ideal-
conductor limit when the spherical geometry of Fig. 1 is
given. It will actually turn out that the Debye expansion is
very useful in this case also. As we treated this topic in
reasonable detail in Reff3], we need only be brief here.

We assume first that the medium is nondispersive. The
formal limit that we have to take is thus—. Let us cat-
egorize how to take the two actual limits: we let option A
meanfirst taking the refractive inder= \s — o, andthere-
after taking the Matsubara frequeney— 0. Option B re-
verses the succession of the limits wandm.

Consider first the TM mode, employing option A. When
ash | n—o, #(x) is finite, while 6(nx) —0. Thus all polynomials
{A,B,C,D}[6(x)] at argument 6(x) are finite, while
{A,B,C,D}[6(nx)]—1. Observing than?y and n?s are
2 . . . . . . proportional ton for large n we get, when taking the limit
" o8 ° o8 ! ' z #  m—0, the following expression for th@=0 contribution to

Fd
1)
T

i0g, (-BF)

d/a = 0.025

-
T

d/a=0.05

0t the TM free energy:
FIG. 5. Same as Fig. 4, but with=2.0. 1.7 Q| 2+1
. _ FM(m=0)=5 2, (21+1)I 1—(—) . (20
vergence was observed. The summation of the series thus AF(m=0) 2 21 ( N b (20

became rather demanding. For instance, wiin=0.05, t
=0.01 about 1.1 million terms were needed, if we truncate
the summation at =10 ° (heree means the ratio between a
general term in the series and the sufrhe sum itself how-
ever, is, accurate only up to four or five digits.

An important result was that even for low valuesl dhe
asymptotic series gave very good results. One reason for th
is the high-order expansions used for the polynomial
hen sanied out 0 orcel oan be e foall x andi, or  CONSIGer then the TE mode, employing option A. The
all practical purposes ’ difference from the preceding case lies in the sensitivity of

' A\ E(n—o) to the coefficientsy and 6. From Eq.(17) we
get y—0,6—0, implying that, in the limitm—0, \/F
—(a/b)?*1. It follows that the TE contribution to then
A. The nondispersive case =0 free energy is the same as given by Ezf).

Although it would seem most natural to discuss the case EMPIOYINg instead option B we obtaig—1,6—1, re-
of a metal on the basis of a parallel-plates configuration, lefulting iNA;=—0 whenm—0. Consequently,

q:ollowing instead option B we find precisely the same ex-
pression as in Eq20). Them=0 TM free energy is thus
robust with respect to the choice between options A and B.
This is actually what we would expect physically: The TM
mode means that the magnetic field is transverse to the ra-
Hius vectorr at r=a,b; this is the natural electromagnetic
Spoundary condition at perfectly conducting surfaces.

Ill. THE LIMITING CASE OF A METAL

3007 B: BF'§(m=0)=0. (21)
475
Option B gives accordingly one-half of the conventional re-
4507 sult of Eq.(8) for the total free energy in the ideal-conductor
azs- limit. _ _ o _ _
log, (-BFt) dla=005 ~ The immediate question is now: Which of the two options
4,00 is correct? We cannot decide upon this only by investigating
how the mathematical formalism behaves in the limiting
3357 cases; we have to bring physics into the consideration. That
150- d/a=0075 means we have to _co_nsider a physical_ly appropriate disper-
’ sion relation in the limit of low frequencies. That is the topic
325+ of the next subsection.
dfa=0.1
e s o0 o5 10 15 20 2 B. The dispersive case
logmt

Let now w denote the frequency along the imaginary fre-
FIG. 6. Same as Fig. 5, but for an ideal meta=c, the m quency axis. There are two actual dispersion relations com-

=0 mode counted twide Reproducedwith corrected labeling ~ monly used. The first corresponds to fhlasma modebf the

from Ref.[1]. dielectric:
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2 n=1.1

.A wp :

g(iw)=1+ =, (22
w

09F d/a = 0.05

w,, being the plasma frequency. As mentioned by Landau anc  °°f ]
Lifshitz ([24], Sec. 78, the range of frequencies over which ;| da =008 ]
this formula is applicable begins, in practice, at the far ultra-
violet for light elements and at the x-ray region for heavier  °% 7

elements. Let us for convenience rewrite the coefficiéhts 5 os| )
d/a=0.01
as
04 4

1+ (walv)? 1+ (wb/v)? 0s| ]
y= D — o= ——— (23
1+ (nwalv)? 1+ (nwb/v)? o2 _

When w—0, it follows from Eg.(22) that n(iw)o— w,, ) l

which means that(i w) wa/ v—x,/v, where, in dimensional T S ST T T T

X g ) 6 1 0 20 40 60 80 100 120 140 160 180 200
units, Xx,=wpal/c. Taking, for |nstance,wp~3><10l S !

anda~1 cm we ge1xp~106. In practice, the most signifi-
cant values of are much lower than this. We can thus as-
sume tha,/»>1 in Eq.(23), so that in practicey—0, &
—0. That is, we recover in this way option A. In conclusion,
the use of the plasma dispersion relati@®8), to a good
approximation, leads to the conventional req@yf for the
m=0 total free energy for a metal.

Consider next thédrude modelfor the dielectric, corre-

FIG. 7. Relative importance of the zero-frequency tenm 0 in
the free energy, versus-27a/B. The quantityY is defined in Eq.
(26).

again, so than is taken to be a constant. Since the-0 case
does not contribute to the TE mode at all, for any finite value
of n, our present discussion has no bearing on the topic dis-
cussed in the previous section.

sponding to Let us first summarize, from a physical point of view, how
2 the free energy is distributed over the various frequencies for
eliw)=1+ # (24)  various values of the temperature. When-0 the Matsub-
w(w+y) ara frequencies are closely spa¢dt Matsubara summation

being replaceable by an integral B&0), and a large num-

y being the relaxation frequency. According to this relationper of eigenfrequencies contributes Fo The contribution
n(iw)o—0 when @—0, implying that y—1, §—1 ac- from the lowest termm=0 is insignificant. WhenT in-
cording to Eq.(23). That is, we recover option B. The total creases, the number of contributing Matsubara terms gradu-
m=0 free energy for a metal is thus, according to the Drudeally becomes smaller and the frequencies gather at the lower
model, predicted to be one-half of the expresdiba). end of the spectrum until finally, at— «, the termm=0

When deciding between these dispersion relations, we exdominates completelythis is the classical limjt How this
pect that relatior{24) is physically correct in the limit when gradual change actually occurs, as a functionTpffor a
w—0. On general grounds the permittivity has to be in-given relative slit widthd/a, can, however, only by found by
versely proportional to the frequency at low frequencies; cfan explicit calculation. .
Sec. 77 in[24]. Explicitly, &(w)—iolw, or s(i&))=o/&), We_ _recall that for a given geometry there are s_tlll three
where ¢ is the conductivity. This is a result following di- quantities to be contemplated, namély,m,t}. Let us fix the

rectly from Maxwell's equations. The Drude model satiﬁesValue qfn, and look for the contribution & from F“IO' as
this requirement. Thus both the Drude modahd, as we a function oft. From Eq.(1) we have, for an arbitrary tem-

have seen, statistical mechanical methpdspport the op- Perature,
tion B above. The plasma model, E§2), as we have noted, 1.7
is appropriate only for the higher frequencies. BF(M=0)= 5 Izl (21 + 1)|n(1_)\ITM) (25)

IV. CALCULATION OF THE m=0 CONTRIBUTION TO F

FOR A DIELECTRIC (as noted)\| F does not contribute for a dielectyidVe define

Y as the ratio betweeR(m=0) and the expressiofl) for
The delicaten=0 problem in the limiting case of a metal the full free energy:

accentuates the following question: How large is the 0
contribution to the free energy in the general case, for a v F(m=0) (26
dielectric? As the last point in our paper we shall calculate F ’
this effect, for a given value af, and show the result graphi-
cally in a typical example. This point appears to be of physi-For givend/a, Y thus becomes a function only tfFigure 7
cal interest, and with the above formalism the calculation cashowsY versust for various values ofl/a, for the case when

be easily effectuated. We now return to nondispersive theorm=1.1. The curves behave qualitatively as we would expect;
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the contribution fromm=0 goes to zero at very low tem- (4) It ought to be stressed th&t means everywhere the
peratures, and goes toward unity at higAnalogous curves mutual free energy between the two concentric dielectric
for other values ofi behave similarly; thus the curves calcu- bodies. Thug-—0 whend=(b—a)—«. It may be of inter-
lated forn=2.0 turn out to be essentially indistinguishable est to calculate the mutual internal enefgylso. By means
from those in Fig. 7. of the thermodynamic relatioB= d( 8F)/dB we find imme-
One additional conclusion to be drawn from Fig. 7 is thatdiately from Eq.(1)
the smaller the value af/a, the less becomes the importance
of them=0 term. It is worth noticing that this is a result that C
can be understood physically: When the slit is narrow, as E=— ZO > (21+1)
assumed in Fig. 7, we can approximately regard the system = 1
as a conventional two-plate system. For the latter geometry,
it is known that the classicality condition can be written as (27)
dT>1, whered is the distance between the plaies Sec. _ o _
82 in[25]). Whend decreases the system thus becomes morklere the partial derivatives with respect oare most con-
and more a quantum mechanical system, necessitating f¢niently calculated on an analytic computer, on the basis of
increasingly large region of frequencies to determine théhe expressiong2)—(6). If series approximation for the ei-
value ofF. The relative importance of the low frequencies, in genvalues\" or \[= were accessible, for instance in either
particular that ofn=0, thus has to diminish, in accordance Of the temperature limits, it would be convenient to use Eq.
with the figure. (27) for evaluating approximate expressions fér Obvi-
ously,E—0 whend—oe.
(5) It should be noted that since the spherical two-surface
V. CONCLUDING REMARKS geometry that we are considering in our paper is different
Let us summarize our work and supply a conclusion withfrom the (_:onventiongl parallel-plate geometry, thi_s becpmes
some further remarks. reflected in the way in which we define the nondimensional
(1) The Debye expansion procedure is almost surprisingljeémperature: We define it ds=2za/p, i.e., with the inner
effective. When carried out to sufficiently high order in the radiusa as the geometrical variable instead of the conven-
parameteré—order 18 in the present paper—the aCCuraCyt|onal gap distancel. This is a natural _def|n|t|on in the case
becomes fully satisfactory for all practical purposes for allof curved surfaces. There are thiveo different temperature
values ofl, even down to the lowest valle=1. Moreover scales involved here. This implies that at ordinary room tem-
the formalism becomes straightforward to analyze, even ifp€rature our problem becomes@h-temperatureproblem:
the delicate two-limit case—x, m—0 associated with a PY takingT=300 K, a=1 mm, we obtairt to be as large
metal. As mentioned at the beginning of Sec. Il A, it would &S about 830. Under these circumstances, it follows_ from our
seem most natural to analyze the limit of a metal assumingi9s- 6 and 7 that thex=0 TE term would be most impor-
the standard Casimir configuration of parallel plates. In soméant- A measurement of the surface force in this case would
sense the situation seems in fact to be the reverse: the spheffus be critical. So far, no measurement of this force exists,
cal geometry is easier to analyze in the metallic limit than thé’owever. So far, to our knowledge no conflict between our
planar one. The reason for this is obvious: once plane platd§€ory and experiments has been found.
are involved, one becomes confronted with two infinite spa- (6) Recently, it has been argued by Klimchitskaya and
tial dimensions(the linear extensions of the plajesvhich Mostepanenkd17] and Bordaget al. [16] that the Drude
lead to mathematically more delicate issues. Recent investfliSpersive model leads to inconsistencies at low frequencies,
gations of the Casimir effect for perfectly conducting plates€Ven in the conventional case of planar geometry. The reason
have been given by Klimchitskaya, Mostepanenko, andor this, accc')rdmg.to 'the'se authors, is that thg Drude relation
Geyer[17,26]. leads to a dISCOI’ltInl:IIW in the reflection coefficigntas the
(2) The basic expression for the free enefgyEqg. (1), imaginary frequencyn— 0, in the case of perpendicular po-
holds for arbitrary temperatures as well as for arbitridrg-  larization. The plasma dispersion relation, instead of the
quency dispersion relations. In the special case of a reaPrude relation, is accordingly given preference by these au-
metal we find, when adopting the Drude relatiin our  thors since this discontinuity is not found to be present if one
opinion the preferable one at low frequengjethat them uses the plasma relation.

N M 1 o\E

+ .
-\M B 1-\[F B

=0 TE mode does not contribute. The totak=0 free en- These arguments are quite interesting, since they raise
ergy for a metal becomes accordingly one-half of the condoubts not only about the validity of the Drude relation as
ventional expressiofB). such, but more generally even about the applicability of the

(3) For a dielectrigfinite n) there is no limiting problem:  Lifshitz formula at low temperatures. We intend to return to
the m=0 case does not contribute to the TE mode at alla study of this problem in a later papg27]. The problem
Figure 7 shows the magnitude of the=0 free energythus  with @— 0 is most naturally discussed if one assumes planar
associated with the TM modgleelative to the full free energy geometry from the outset. Here, let us merely make a few
F. The relative contribution from then=0 term is seen to remarks, related to our treatment above, choosing a specific
increase with temperature, as one would expect physicallynetal for concreteness. When the raalandb are large, our
the relative weight of the low Matsubara frequencies becomspherical system of course approaches that of planar geom-
ing enhanced at higf. etry. Let us take aluminum, for which one Hd¥,2§
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wp=1.9% 10%s 1 These refractive ingices are large. However, the important
point is that whenw—0, Eq. (34) shows explicitly how
n(im)w—0 when w—0. Thus, this approach is in agree-
ment with our option B above, in Sec. IlI.

Let us return to the reflection coefficieny mentioned
above, for perpendicular polarization. It is defined &38|

y=9.6x 101351, (28)

For parallel plates separated by a ghpghe Matsubara fre-

quencies(in dimensional unitsare = 2wkgTm/%. Zero-
temperature theory is applicable as longdégT/Aic<1. At

T=0, the contribution fromm=0 is negligible, since this p—s
contribution is completely buried in the Matsubara frequency ro= , (36)
. p+s
integral.
Assume now room temperatufes=300 K. Then for alu-

where s and p are the conventional Lifshitz variables for

minum
planar geometry:

wm=(2.48M) X 10572, (29 S—(e—1+4p)?
which shows that the difference between two adjacent Mat- R

subara frequencies is in this case quite appreciable. The most k =k, |=(w/c)(p?—1)*2 (37
important frequencies for the Casimir effect occur when

wn~2mcld, corresponding to the ordinary frequency The important question is the following: Does really be-

/27 being of the order of the inverse transit time for pho- cOMe discontinuous ai=0 if one uses the Drude model? In
tons between the two surfaces. This correspondsmto ©OUr Opinion, it does not. This can be seen from a power
~fic/(dkgT). Taking for definiteness the gap to bk  expansion inw/y of the expressions aboveve keepk;
=0.5um, we obtainm~ 15 to be the most significant Mat- fixed; any normal metal must have a finite relaxation fre-
subara numbers. This is so far separated from0 that one  quencyy). To lowest order we obtaie— p—>w§/(2'yklc),
should without any further calculation expect the contribu-s+ p— 2k, ¢/, resulting in
tion from m=0 to be quite small. And this agrees with the
about 1% level of temperature correction following from a Y
more detailed calculatiofl7]. ro— sz —.
It is instructive to calculate also the conductivities, and 4kic® Y
the refractive indices, that follow from the Drude model for
the two lowest frequencies. For convenience we now use Sthis shows that, goes to zero smoothlgin our case lin-
units. We first write the square of the refractive inde%, early) as/y—0; no singularity atw=0 is found.
=¢leq, in the same form as in conventional low-frequency We intend to discuss these points in more detail in the
theory for metals: mentioned forthcoming pap¢27]. There, we will also dis-
A cuss the recent claim of Fischbaehal. [29] that the results
yon . 0(io) of Bostran and Serneliug5] come into conflict with experi-
n“(iw)=1+ oo (30 ment as well as with basic thermodynamics.

0 (7) Generally, when comparing the outcome of Casimir
calculations with experiments, care should be taken if the
calculation involves summation over infinite series. It should
here be observed that our discussion onrtt¥e0 TE term in

(39

Here o(i) is an effective frequency-dependent conductiv-
ity. The Drude model, Eq24), corresponds to

£00> Sec. lll, as well as in our previous pagéi, was based upon
o(iw)= —o>. (31  statistical methods, thus not involving summation methods
oty like the one used by van Kampe al.[30] and others. Our

viewpoint is quite physical: The static mode has to occur

For the static conductivity, using E¢), we find only once not twice; it corresponds to the electric field being

o(0)=3.33x 107 S/m, (32) directed radi_all_y, and _thus transversely to the two spherical
surfaces. This is precisely the TM mode.
whereas for then=1 case (8) A remark on the so-called proximity force hypothesis
[31] is in order, as this hypothesis is being made use of in
o(iw;)=0.93x 10’ S/m. (33)  connection with Casimir calculations for test bodies having

_ o o _ spherical segments. Some doubts have been expressed in the
The effective conductivity thus diminishes quickly when we |iterature concerning the accuracy of this hypothesis. The
move away froorm=0. The corresponding square refractive jssue has recently been analyzed by Barfeersonal com-

indices are munication, with the result that this hypothesis remains
. . valid in fourth-order as well as in second-order perturbation
n%(iw—0)=(3.76kw) x 10'°, (34 theory. Actually the hypothesis holds to all orders, as was
shown by Langbeif32].
n%(iw;)=(1.05/v;) X 108, (35 (9) Finally, the recent experiment of Bressti al. [12] is
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interesting, since it reports a measurement of the Casimipresent decide whether it is in accordance with our theory or
force between conducting surfaces irparallel configura-  not.

tion. At present, an accuracy at a 15% level is achieved. It is
to be hoped that this accuracy can be improved, although a ACKNOWLEDGMENTS

direct experiment of this sort is obviously quite demanding. | B. thanks Gabriel Barton, Vladimir Mostepanenko, and
Again, as this is a low-temperature experiment, we cannot gkoberto Onofrio for valuable correspondence.
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