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Method for detecting the signature of noise-induced structures in spatiotemporal data sets
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Spatiotemporal stochastic resonaii€d SR is a phenomenon, where the stability of spatial patterns in an
extended dynamical system displays a resonance-type dependence on the noise amplitude with the patterns
being optimal at intermediate noise level. This dynamical behavior has been found in theoretical systems as
well as in biochemical processes, where the noise level has been controlled externally. However, it is an open
guestion how to identify the signature of a spatiotemporal stochastic resonance in a natural system, e.g., in
ecology, when the noise amplitude is not known. This question is addressed in the present paper. We provide
analysis tools, which allow to reconstruct the noise intensity in a spatiotemporal data set from the data alone.
These tools are based on nearest-neighbor considerations inspired by cellular automata and are an appropriate
method for detecting STSR, when combined with some measure of spatial order. As a test of our analysis tools,
we apply them to sample data generated by four theoretical model systems. We show explicitly that without
knowledge of the theoretical value of the noise amplitude for those systems displaying STSR the correspond-
ing resonance curve can be reconstructed from the data alone. In addition, thénotiresonantcases are
properly identified by our method with no resonance curve being found.
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I. INTRODUCTION enhancement of spatial coherence, called spatiotemporal sto-
chastic resonancSTSR,[4,5)).

. : . Atypical restriction when dealing with real experimental
The development of new analysis techniques for experi- )
: data(as opposed to sample data generated with some math-
mental data can be complemented by studying model sys-~ " o o
o . . : . —2“ematical modelis ignorance about certain internal param-
tems. This is particularly true for the experimental investiga-

) . : : eters of the system: it is one of the main difficulties in find-
tion of nonlinear systems. The idea is to generate samplg

. s - Ihg, e.g., stochastic resonance in natural systems that the
data using models and then put similar restrictions on these . I o
sample data as in the case of an actual experiment Examplvalu.e of the noise |nten§|ty is frequently noF known. This is

. - e Sgrtlcularly true for spatiotemporal data, which are currently
for typical restrictions arg1) only one of the dynamical

iable i h t is reduced in the center of interest in biology. Finding such a phenom-
variable is measured?) the sampling rate is reduced, & enon in a natural system can significantly enhance our un-

the values of internal parameters for different time series 8erstanding of the system's functionifi§—7]. However, in

unknpwn. some cases sophisticated analysis techniques are necessary to
With the help of such sample data one can test, how weljemonstrate the presence of a certain dynamical phenom-

the analysis tools are capable of handling real-life data. Iienon in an experimental data geee, e.g., Ref8] for ex-
many cases one can improve the analysis techniques signitimples in biology. Spatiotemporal dynamics are particularly
cantly on the basis of such tests. difficult to analyze and currently no standardized set of ob-
One of the key features of research in nonlinear dynamicservables exists. Frequent methods are Fourier and wavelet
is the correspondence between theoretical mechanisms aadalysis as well as application of image analysis t¢8ls
dynamical processes observed in nature. A prominent exdowever, image analysis usually focuses on some form of
ample of such a situation is stochastic resonance, where thgattern recognition, i.e., a form of data analysis aiming at a
response of an excitable system to @ng., subthreshold very specific situation. Some methods from time series
signal is enhanced at intermediate noise levfds reviews analysis can be generalized to the spatial or spatiotemporal
see[1-3]). Similarly to the purely temporal case, where sig- case. For others some straightforward modifications exist to
nal transduction reacts resonantly @xternal or internal  serve the needs of two-dimensional data analysé® e.g.,
noise, a spatially extended system can additionally exhibit aRefs.[10—12). The lack of widely applicable quantification
methods for spatiotemporal patterns has resulted in a huge
amount of quantification attempts, frequently only used for
*Corresponding author. Schnittspahnstr.3-5, 64287 Darmstadthe analysis of a single experimeisee, e.g., Ref§10,13—
Germany. Electronic address: huett@bio.tu-darmstadt.de 15]).
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The present article attempts to provide the appropriatservables defined here are applicable to any type of matrices.
tools for searching for STSR in experimental data. We doA time sequence of such matrices or “images” is a set
this in three steps(1l) we introduce the tools themselves
(which are spatiotemporal filters based upon nearest- {Z(t); t=12,...Nq}, (1)
neighbor interactions (2) we check the performance of
these tools using sample data from model systems, some
which display STSR, some of which do n¢8) we discuss
some aspects important for the actual application of our tool
to real experimental data.

Following this line of thought the structure of our paper is

as follows: First we formulate the tools, which are dynamical€/€menta;; from the neighborhood _
filters based upon cellular automata considerati@es. I). The first observable to be discussed here is the CA homo-

Next we briefly describéSec. I\) the theoretical systems, 9€neity. The corresponding analysis rule is given by the map-

which we used to generate the sample data. Then, as [aBt"9

step, we apply our tools to these model systems in order to 1

extract information on a possible resonance behavior with ajj =T 2 0 (a;j ,b), 2)
respect to noiséSec. V). The advantage is that without using | Vij| beNj;

any information on the system other than what would be )
available as part of an experimental measurenteet, in where|\j;| denotes the number of nearest neightipes the
particular without knowledge of the parameters used to genC®!! & and the functior® has to be specified in accordance
erate the data and the value of the noise amplitu8d SR with the state spack as

gfhere nowt denotes some normalizédimensionlesstime
and N+ is the number of images in the sequence. TV
Neumann neighborhood\j; of an elemenia;; consists of
the element’s four nearest neighbdi®., for sake of nota-
tional convenience in our definition we exclude the central

can by reconstructed. The systematics of these results are (a—b)?
discussed in Sec. VI. O(a,b)=1- , 3)
]2
Il. SPATIOTEMPORAL OBSERVABLES AND CELLULAR where [X| is the maximum distance in the state spate
AUTOMATA between two states of cells. In the case of a state space with-

out a distancde.g., the Ising model, sg0] for details of
this analysis ® reduces to & function, giving 1 for identity
and O else,

The idea behind cellular automat&€A) is to simulate,
which global dynamics of a system result from a certain
local interaction[16,17. Such an interaction is represented

in terms of update rules for a cell as a function of its neigh- 1 a=b
borhood. In this general form CA applications may range O(a,b)= ’ (4)
from the approximate solution of partial differential equa- 0, a#b.

tions to the study of particles, molecules or biological cells in

a local potential generated by their immediate neighbor%’ve fo_und th.at the spec?fic form @ is no_t decisive as long
(see, e.g., Ref[18,19). Here our aim is not the study of as 0 is confined to the intervdl0,1] and increases monoto-

temporal dynamics after specification of a set ugdate nously. Application O.f Eq(2) with @ as in Eq.(3} leads 1o
rules, but rather the implementation of locahalysis rules ﬂ:e metas.tatehof the image l;l]orma}llzedr]sung?ﬁtlon over ".’l"
for a given(experimental or simulatgdime development. In elements in the metastate then gives the omogehkity

this framework the evaluation of a given neighborhood at

time t does not yield the state of this particular cell tat H[I]=i 2 i 2 A(a; ,b). (5)

+ At, but rather gives some characteristic observable for the N? ‘G |Nij| beA; v

state of this cell at timé. The state of the automaton is thus

translated into a metastate, which shows the observable for Here and below all normalization coefficients are written
each cell corresponding to the analysis rules. This metastatgimediately before the corresponding summation. Note that
can then be evaluated in different ways. The simplest way othe neighborhoodVj; of cells at the boundaries has to be
arriving at a definite quantitative measure for the data set anodified according to the boundary conditions. In a system,
the timet is the summation of all cells with respect to the where the average value over all cells changes significantly
metastate. Other measures are obtained when the spatial inith time, an appropriate measure of spatial order is the dif-
formation is retained or additional restrictions are imposederence between the actual homogenéityZ] and a state
upon the metastate before summation. In this section, whomogeneityH [ Z] given by

briefly summarize the general idea of such measures and

introduce two explicit observables, namely, the CA homoge- _

neity and the CR fluctuation number, bo){h of which ha?/e HS[Z]_a,éz O@.0)papo, ©
been studied previously in R€i20].

Let 7 denote a two-dimensional spatial data set, i.e., avith the probabilityp, of the statexe X and the functior®
square matrix of siz&l with components;; € %, whereX is ~ from Eq. (4). Equation (6) is the expectation value of
the set of possible states. Note that the restriction to a squaf@(a,b) over the whole spatial lattice. One can think of the
matrix only refers to the notation used in the text. The ob-quantityHg as the average homogeneity obtained by reshuf-
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fling all cells and, thus, destroying spatial order. In the fol-So the reduced homogenetyZ],
lowing, the resultingeduced homogeneity

M= A=A " h[Z]=H[Z]—Hs[I]=2c|:;[|?. a4

is used, rather than the homogenéityZ] itself. It is shown
below that for the choice o® as in Eq.(3) this difference
h[Z] is proportional to the covariance of a matfixEven for ~ iS proportional to the autocovariance of the im&afeand
small spatiotemporal data sets this method of calculating 8ives the complete spatial information about neighbor sites
quantity describing the spatial correlation is fast and reliablewithin Z. Note that this relation is only valid for the particu-
H[Z], HJ Z], andh[Z] of Egs.(5), (6), and(7), respec- lar form of ® from Eq. (3).
tively, can be related to commonly used statistical properties. Noise and fluctuations can be thought of as the contribu-
Defining the varianc of an imageZ as tion of processes with small time constants in the observed
dynamicg21]. This prerequisite in mind, we assume that the
1 _ fluctuations under consideration enter the model systems as
VIZ]= = 2 (ay—a)?=a’-a? (8)  white or nearlys-correlated noises.

N“ The key idea here for quantification of such contributions
where is to use the relative movement of neighbors of a particular
cell af’ at a timet, i.e., changes of the quantitie§" in

2
as 9 NG
© 5i(j‘)——{ai(jt)—b“); b(‘)e/\/}j}——{éi(jt*l), . ,5i(jt‘ J"},

and the purely spatial autocovarianggof nearest neighbors

for the imageT as as a means of separating directed and undire@eentually

stochastit change of the state of a cell. If the discretization
1 of the spatiotemporal data set in spddee to the finite cell
yilZl= = > ot (a;—a)(b—a) size) and time(due to the finite number of images small
N2 T | ijl bejj . enough, directed and stochastic changes will have very dif-
ferent scales in time and space.
1 1 — For means of separation, one has to assume that the scales
N2 <IN bER}, 1 for the stochastic part will be smaller than the scales present
in the discretization of the data set and the time scales of
one finds forH deterministic dynamics themselvésf. the Appendix.
This leads to dsufficiend condition for a manifestation of
(ay;— b)z) noise in a specific change af

HIZ)= 5 E IN.,I >

e Njj

Sid 59— o M9 sid o - 5(1]

=1 2v1212<b_2>)
=1 —— _— [ a-b—a ,
3|2 Nl A I AR — 5120 N0 slW20, (15
and, therefore, . . - . .
where the last two inequalities are subsidiary conditions in-
V[Z]-C4[T] troduced for convenience and the sign function
H[Z]zl—ZT, (12)
12 +1, x>0
where the autocorrelation coefficie@ is defined as Sigx]={ 0, x=0
-1, x<O0
C1:X1[Z] . (12)
VIT]

_ _ _ has been used. Each transitigfi™**)— {9 — 5 ful-
This demonstrates that the CA homogengitys a universal fjlling the condition(15) gives a contr|but|on

measure abstracting from the specific properties of the ana-
lyzed system. The state homogenéity from Eq.(6) can be
written as

1 ii—a)? 2V
HS[Z]:W% % (1——(a‘ %) ) - 2

|2 |22 Averaging with respect t&,i, andj leads to the final expres-
(13 sion for the CA fluctuation numbe® (t),

=

S8 1] 10— 500, (1
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[V analysis techniques, such as stationary tests and methods

1 1
Q(t S(| 8=l based on surrogate data.
0=3 3 w1 & 2 |
IV. THEORETICAL MODELS USED TO GENERATE

+] 5(t+lk) 5(Jt k)l) S|g: 5(t k) _ (t 1k)] SAMPLE DATA

) ) _ In this section, we apply the observables defined above to

t+1Kk)_ o(tk) (tK)_ s(t—1k) '

X Sig 5i(j G 1(Sid g 5i(j four different theoretical model systems, each of which is a
XSiqéi(jHl,k)_ai(jt,k)]_l), (17) network of coupled nonlinear oscillators. The individual

units are FitzHugh-Nagumo oscillators, Sel'’kov oscillators,
Braaksma-Grassman oscillators, and a threshold device lead-
where the term in the second row is either 0 or 1 filtering theng to a CA-type excitable medium introduced in REf]
dynamics according to the fluctuation conditick®). In the  and further studied in Ref23]. While the first two systems
following, we will show that the quantit§) in combination are well known, the latter two require some comment. The
with the reduced homogeneith or with the (nearest- Braaksma-Grassman systdsee, e.g.[24,25) is an exter-
neighboj correlation coefficient of the imaggis capable of nally driven network of excitable oscillators in which sto-
distingushing between STSR and a nonresonant behavighastic resonance has recently been foltf]. The system
with respect to noise. from Ref.[4], which in the following we will refer to as the
Jung system, is an excitable media cellular automaton with a
threshold and an exponentially decaying coupling between
ll. APPLICATION TO EXPERIMENTAL DATA elements. The explicit forms of the model systems are as

follows.
A well-designed experiment for spatiotemporal dynamics (1) FitzHugh-Nagumo(FHN): The model is given by
will yield data with a higher spatidbnd temporalresolution (see, e.g., Ref26]) '

than required by the dynamics of the system.
This, however, means that one does not automatically ap- 1

ply these tools to the appropriate length scale. Tha CA ho-  uj;=[(a—uj)(ujj —1)uj;—vj;]=+ &;(1) + DAu;; ,

mogeneity, for example, when naively applied to a time se- €

ries of high-resolution spatial images will be dominated by :

measurement noise, rather than quantifying the patterns aris- vij=buj—yvij—c (18)

ing on the level of the system’s dynamics. In such cases it is With parameters d,b,c, y,e,D)=(0.15,0.0024,0.0,0.003,

necessary to study thezale dependencaf the observables.
In the case of experimental data analyzing this scale de1 0.0.05) in the excitatory regime and the diffusion term

pendence is straightforward: one has to substitute blocks of
sXs pixels, each containing the numerical measurement Au;j = 2 (U —ujj). (19
value, by their average value. Suclbianingyields a spatial leNj

image with a lower resolution for which, e.g., the CA homo- Th iahborhoodV: . f the f iahb
geneityH can be calculated. Averaging over time and vary-' ¢ N€1gNbOrNOoV;; consists of the four nearest neighbors
ing s one obtaingH as a function of the scale of the element ij). For the discussion of the oscillatory

On the other hand, a lot can be learned about the lengtff9ime we use the following ~parameter values:
scales present in the experimental data, when one, in prlrﬁ a,b,c,7,6,0)=(0.5,1.0,0.3,0.5,0.01,0.1).
ciple, knows what behavior of the observables one can ex- (2) Selkov (oscillatory: We use the following form of
pect. Then the scale dependence of these observables dhe Sel'kov systeni27]:
help to extract characteristic scales of different contributions

to the dynamics, even if some of them are masked by mea- Uij = — Ujj +7‘U|J+Uuuu '

surement noise or more than one length scale is present in i

the system. A detailed analysis of the scale-dependence for vij=b—\vij—vjuf + &;(t) + DAy, (20
“data” generated by theoretical model systems has been per-

formed in[22]. with parametersi{,A,D)=(0.66,0.114,0.16) and a coupling

In addition to binning, some application of noise- termAv;; corresponding to the one given in E49).
reduction techniques may be an appropriate preparation of (3) Braaksma-GrassmaiBG) (excitatory: The BG sys-
the experimental data before studying them with the tooldem is given by
described in the preceding section.

The CA homogeneity can often be substituted by standard U= 0 — Eu? _ Eu-?’-
tools for the quantification of clustering phenomena. In the T 2N 3
following we will show this explicitly for the spatial corre-
lation coefficient. In Ref[20] the CA homogeneity has also ,}ij =a—Uj;+&;(t)—Du (21)
been compared with cluster quantification algorithms.

In practice any application of these spatiotemporal filterswith parameters «&,e,D)=(0.1,0.01,0.15) and a coupling
can be(and often has to becomplemented by further data term as in Eq(19). The system is driven by an external force
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A cost) with A=1 andw=18 [time units (t.u.] ! acting
additively upon they;; with i=1,1<j<32.

Due to the negative sign of the coupling constann Eq. A
(21), coupled neighbors are driven in opposite directions. For
optimal coupling and noise the oscillators drive each other
into the stationary or excited state in a temporally and spa-
tially alternating fashion. Because E@1) has no back cou-
pling, excitations can propagate only in one direction. Hence,g
in the resonant state plane waves propagate according to tr
unidirectional coupling across the system, while direct
neighbors oscillate in an antiphase manner and every secon
element pulses in phase. This results in a checkerboardlik
pattern[cf. Fig. 2a), system 2 Decreasing or increasing the
noise level destroys simple geometrical patterns as the sys
tem becomes less excitgiig. 2(a), system 1 and Bor noise i[
dominated(system 4, respectively.

(4) Jung CA: The Jung CA has been implemented as de-
scribed in Ref[4]. We investigate a 100100 grid of pulse- FIG. 1. Snapshots of the typical dynamical behavior of two of
coupled threshold devices, whose time evolution is given byhe model systems. The state of one dynamical varigiatede-

scribed in the textis shown for four different noise intensities.

ujj(t+ A =(1—y)u; () +&;(H)+D;; (22) (@): FHN system in its excitatory regiméhe values ofo? are

1:9x10°%, 2:3x10 %4, 3:1x10 3, 3:8>< 10*3),3(b): FHN i2n the
with spatially incoherent Gaussian noi_s,gand a di_ssipation ?(ngl,alt)o, ry(c): rsegflr(r:)?/ S)Eit'ezg (110:1>’<21'§*>§’,1£2.’4><& igi]é(’)&&ld;
parametery=0.5. A network elemen.t fires when it crosses a4:0.25). In all cases an array of 832 oscillators has been used.
thresholq vall_Je of 1.0, after_whlch it enters a refractory. P€~The parameter values are given in Sec. IV.
riod of nine time steps, during which it cannot be excited
again. The couplin@®;; regulates the contribution tg; from
input of all other elements in the network that fire at titme

—At.

—0.26

4.10
—0.03

where . is the noise correlation time. The noise teg(t)
is uncorrelated from site to site, i.e., spatially incoherent.
Equationg18—21 were numerically integrated using a Heun
2 algorithm[28] with a stepsize\t=10 3 t.u.3The noise cor-

_ ij .kl relation time has been chosen to he=10"° t.u.
DiJ_K2 exp( _7‘_2)' (23 Throughout this paper, the model parameters are held
constant, except for the noise intensityf. We checked,
however, that the forms of dynamics discussed here persist

wherer? ,, is the squared Euclidian distance between com '
5 over a wide range of the model parameters.

municating elements normalized to the grid spacngl.l.
The spatial decay of the coupling is given hy=0.1 The
quantityK=0.176 is the coupling strength. V. RESULTS

Networks of 3232 oscillators with randomized initial ] o ]
conditions have been simulated. Only for the Jung system a Even with the eye one sees significant differences be-
network of 100< 100 elements is discussed. We applied operfveen the snapshots at different noise intensities for each of
boundary conditions for the excitatory FHN system, the BGthe four systems shown in Figs. 1 and 2. A quantitative
system and the Jung system, while for the Sel’kov and th@nalysis, however, is not straightforward, in particular, when
oscillatory FHN systems periodic boundary conditions havdhe nhoise intensity itself is not given as an additional infor-
been used. mation. _ _

In all cases the numerical simulations have been carrieq NOte that here and in the following we use only one of the
out using exponentially correlated, colored noise, which prodynamical variables to quantify spatial organization. This is
vides a more realistic description of real fluctuations in bio-CloSer to the case of real experimental data, as in most cases
logical systems, as compared to spectrally flat noise. It i©Nly one of the system’s dynamical variables is observed. We
generated by an Ornstein-Uhlenbeck prodees Ref[25] used the variable for all systems studied here. For the first
and references given ther@he noise intensity is defined WO casegexcitatory and oscillatory FHNwe will give four

via the standard deviation of the Gaussian-distributed nois@iagrams, namely, thezreduced homogenéity?), the CA
amplitudes, fluctuation numbef) (o), a correlation diagram with pairs

(h,Q), and a correlation diagram with pair€{,(}), where

(£(1))=0, (24) C, is the spatial nearest-neighbor correlation coefficieat

the usual autocorrelation coefficig¢mf the imageZ. For the

2 t—t'| other systems only the correlation diagram of pairdY), is
(E(DEL))= U—exp( _ ) (25) given, as in these cases the quantlty showed the same
Tc gualitative behavior ak and, thus, did not provide any ad-

Tc
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intensity. Thus, we are now able to obtain the resonance
curve solely from information present in the data sets them-
selves. This is shown in Fig(®, which is a scatter plafor
correlation diagramof the pairs [,Q). At this stage of the
analysis process information on the theoretical noise inten-
sity o is no longer necessary. In this manner our analysis
technique could also be applied to rdak., not artificia)
data, e.g., when dealing with ecosystem dynamics or in vivo
systems, where no direct information of the noise intensity is
available. The second correlation diagram, Figl) 3display-
ing the correlation coefficient, together with the CA fluc-
FIG. 2. Snapshots of the typical dynamical behavior of the re-j[uatlon numbet) Conf'.m?S this picture. Here the resonance
o s even more clearly visible.

maining two model systems. As in Fig. 2 the state of one dynamica\ Th fth tem t . h isibl h
variable is shown for four different noise intensitié®: BG system € response ot the system 1o noise changes visibly, when

(the values ofo? are 1:1x10°5, 2:1x10 %, 3:8x10 % 4:5 ON€ passesto the oscillatory_ regime of the FHN syst_em. Fig-
x1073), (b): Jung system(1:0.07,2:0.10,3:0.15,4:0.35). Again, Ure 4 shows the corresponding results of our analysis. From
the parameter values are given in Sec. IV. the snapshots in Fig.(i) it can be seen that one no longer
finds stable patterns at intermediate noise intensities. How-
ditional information. In all cases averages over many timeever, the average size of clusters still seems to depend on the
steps have been takésee figure captions for detgiland a  noise intensity in a nonmonotonous way. This impression is
transient at the beginning of each time series has beetaptured by the reduced homogendiBig. 4(a)], where a
skipped. peak inh(o?) is seen around?~0.01. In this case, the?
Figure 3a) shows the reduced homogendity H—Hgas  dependence of the correlation coeffici€@y deviates from
a function of the noise intensity? for the FHN system in  that observed for the function(a?), as forC; no resonant
the excitatory regime. A resonance-type behavior is seebehavior is foundcf. Fig. 4(d)]. The effect is much less
with a maximum around?~0.0006. An important interme- dramatic, however, than in the excitatory case, where the
diate step in our attempt to recover the stochastic resonane¢esonance was also observed in the noise dependence of the
from the “data” set alone is given in Fig.(B), where the CA  correlation coefficient, Fig. (8). Nevertheless, on the basis
fluctuation numbex) is shown as a function a#%. Due to  of Fig. 4(@), which corresponds to what is seen in the snap-
the monotonous, over a wide range of almost linear, shots from Fig. b), we find that a measure of spatial order
shape of the curve) is able to quantify the inherent noise shows a resonance-type dependence on the noise intensity.

2
oosl @ @) 25| (b) ; i
0.03 2 : f
15 1
:l,? 0.02 @ o .
T o1 h 1 x
' ) v ¥ P o .
0 [ .
[T o
0.00001 0.0001 0.001 0.01 0.1 0 0.02 0.04 0.06 0.08 0.1
o2 o2
1
oot | © @
o 003 o8
T oo g %
} f o4 }
0.01 h%m % ﬁH%ﬂ{‘ %
K
o LI 02 T g &k My ;
T ; —
0.001 0.01 0.1 1 0.001 0.01 0.1 1
Q Q

FIG. 3. The dependence of the reduced homogeteitid — H [cf. Eq.(7)] on the noise amplitude? for a lattice of FHN oscillators
in the excitatory regiméa). For the computation df an average over 3500 time series samples with a sampling rate of 18 has been
taken. For parameter values see the discussion in Sec. IV. faustlows the dependence of the CA fluctuation nunibécf. Eq.(17)] on
the noise intensityr?. In panel(c) the correlation diagram df and Q. The shape of the curve in pan@) is retained. The numbers in
brackets shown in the pan@) indicate the noise intensities at which the snapshots in Fig. 1 have been takendPgis the correlation
diagram of the correlation coefficie@; and the CA fluctuation numbe®.
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0.03

0.02 @

-

0.00001 0.0001 0.001 0.01
o2

FIG. 4. Same as Fig. 3, but for
the FHN system in the oscillatory
regime. The average has been
taken over 500 samples with a
sampling rate of 5 t.ul. Both,
panel(a), which contains the the-
oretical noise intensity, as well as
panel (c), where the noise inten-
sity reconstructed with the fluc-
tuation number has been used,
show some evidence of STSR. In
the correlation diagram(d) of
pairs (C,,{) no resonant behav-
ior is seen.

H-H,

0.01

(©)

0.03

[/ ]

I 0.02
[]

I

T
T
T

0.01 H

0.001 0.01 0.1 1 0.001 0.01 0.1 1
Q Q

This can also be seen as a special case of STSR. As befopmint the average number of oscillators spiking synchro-
the functionQ(o?) shows a monotonous behavior, but the nously within each column has a maximuuof. [25]).
two distinct regimes discernable in Figlltlead to a shift of Already from the snapshofsig. 2c)] for the Jung sys-
the peak in the correlation diagram, Figc) The correlation — tem one can appreciate the fact that noise intensity regulates
coefficientC, remains almost constant over a wide range ofthe structural stability of the spiral waves appearing in this
o2 and then sharply decreases at highlcf. the correlation ~€xcitable medium. The reduced homogenéityh(o<) has a
diagram shown in Fig. @)]. Thus, even without knowledge Sudden ncrease at aboaf~0.09 and shows a maximum
of the noise intensity, we can reproduce the evidence for thigroundo“~0.11 followed by a slow descent at highef
form of STSR found in Fig. @). [cf. Fig. 7@]. Although the CA fluctuapon numbe® als_o

The results for the Sel’kov system are shown in Fig. 5. AsSOWS & pror;ounged Ju?pfatszvo.OQ, it neverthelesls 'Sh a
the correlation coefficient, and the reduced homogeneity monqtonous unc.tlon afr [cf. F|g.. 0)]. Consquent Y, .t N
display qualitatively the same dependence ghwe only resulting correlation diagram, Fig.(¢J correctly identifies

. ; the system’s behavior as STSR.

show the corresponding results for In accordance with
what is expected from the snapshots shown in Fig), ve
find no STSR for thgoscillatory Sel'kov system. The re-

duced homogeneity changes sign with increasing?, but We introduced a method for quantifying spatiotemporal
no resonance is found. Again, the almost linear relation bedynamics in spatially and temporally discrete systems under
tween() and o2 seen in Fig. B) allows us to rely on the the influence of noise. The capabilities of the method are
data alone for reproducing the noise dependence of the réllustrated here by applying it to a data set with a known
duced homogeneity in terms of a correlation diagram showmechanism of generation and, thereby, detecting spatiotem-
ing pairs (,Q) [Fig. 5c)]. poral stochastic resonance displayed by some of the model
In Ref. [25] Busch and Kaiser have quantified the phe-systems.
nomenon of STSR for the BG system by studying the aver- With the help of this method, we found STSR in the ex-
age number of oscillators within each column of the arraycitatory FHN system, in the BG system and in the Jung sys-
that are spiking within a short time interval as a function oftem. Some evidence for STSR has been found in the oscil-
the noise amplituder. The resulting observable is optimal latory FHN system. The Sel'kov system showed no resonant
for this particular type of oscillation patterns, but is difficult behavior with respect to noise intensity. All these results
to transfer to other dynamical systems. Here we use the reould be reproduced without knowledge of the noise inten-
duced homogeneity as an alternative. As is seen in Fig. 6 thisity by studying correlation diagrams of some spatial observ-
is sufficient to obtain a similar resonance-type structure as iable (in our cases the reduced homogeneity or the spatial
the case of the quantity used[iB5]. Due to the anticorrela- correlation coefficientwith the CA fluctuation number intro-
tion of neighboring oscillatorgcf. the snapshots shown in duced in Sec. Il.
Fig. 2(@)] the reduced homogeneith, being based on It is clear, however, that a lot of detailed studies are nec-
nearest-neighbor considerations, decreases with more amdsary in order to see, how this method deals with situations,
more ordered plane waves running through the latticewhich are not as standard as the system investigated here.
Hence,h as a function of the theoretical noise intensity  The crucial ingredient is the monotonous behavior of the CA
shows a minimum in Fig. @ aroundo?~0.009. At that fluctuation numbef) as a function ofr2. We have tested the

VI. DISCUSSION

026117-7



M.-TH. HUTT, R. NEFF, H. BUSCH, AND F. KAISER

PHYSICAL REVIEW 66, 026117 (2002

0.002 (@) 0 (x(1) (a)
4
0.001 @ 4) % -0.01 % H
o @ . if " @ il
i - T 002 ﬁ%%
T
-0.001 -0.03 % % [P3) %%%
9) P X;:X >I< {8} % >|:<
. T X exX X oxRx
0.002 -0.04 %%
0.00001 0.0001 0.001 _0.01 0.1 1 0.00001 0.0001 0.001 0.01
(o} o2
1ot (b) 0.007 |(b)
0.006
s 0.005 +
08t % o 0.004 %
G os} 0.003
04| I 0.002 é%‘
02 | 0.001
x ¥ 0 [x
Ofw ™
0 0.001 0.002 0.003 0.004 0.005 0.006 0.007
0 01 02 03 04 05 06 07 A
o2 ¢
0.002 0
(c) (c)
0.001 } -0.01 ﬁ
(2] & % (2]
I 0 -~ T -0.02
T & T %
-0.001 -0.03 %ﬁ:
m®
0002 | X wwE o M -0.04
0.00001 0.0001 0.001 0.0 01 1 0.001 0-0029 0.005
Q

FIG. 6. Same as Fig. 5, but for the system of BG oscillators,

ave':r;(;fﬁ;agfe?st;'(gei(?;gC%bgu;;?]:;T:ssvsiltﬁog zﬁrtlzrl]iqr;g;r?aete \gi'th the time average taken over 500 samples with a sampling rate
10 tu. Y. A minimum occurs aroundr=0.008. The system’s

— . . . (0}
10 t.u” 1. Now only one correlation diagram is shown, namely of . ) .
pairs (1,0). No evidence for STSR is found. most ordered state is perfectly anticorrelatel the snapshots in

Fig. 2 and the discussion in Sec.)IVThus, the signature of STSR

in this case is a minimum di(o).

fluctuation numbef) quantifying successfully the noise in-

tensity in several theoretical systems. A universal formulamethods to a variety of experimental data, e.qg., to the analy-

tion of the conditions under whicf is a monotonous func- sis of vegetation patterns in extended ecological systems and

tion of the (interna) noise level of the system has not yet to chlorophyll fluorescence images of plant leavese Ref.

been achieved. [29] for examples of the experimental data for the latter
A major difference between real spatiotemporal data setsase.

and the examples given here is the existence of a canonical The rationale behind these applications is that whenever

length and time scale in the image sequences of the modah observable quantifying spatial structure displays a reso-

systems. The spatial and temporal resolution of the experinance in the correlation diagram with the CA fluctuation

mental data usually is much higher than the typical lengtmumber, this can be regarded as evidence for STSR.

and time scales present in the system and, therefore, nearest-Several important questions have not been addressed here.

neighbor considerations might be difficult to apply. In prac-1t would, for example, be useful to have some means of

tice, it may thus become necessary to scale the spatial datkeciding, whether a given data set fulfills the conditions for

points, as described in Sec. lll, before using the definitionspplication of our method, particularly the scale of discreti-

given in the present paper. Currently we are applying ouzation in space and time. In practice, however, one often has

026117-8
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ous result would facilitate application to real experimental
data.

The development of methods for extracting characteristic

and useful information on spatiotemporal phenomena from

L @ experimental data is still at its beginning. The principal aim

()
006 | (@)

0.04

is to formulate standardized analysis methods, which are
0.02 ﬁ% @ tested and gauged by applying them to theoretical systems
ﬁ@r ¥ % and by examining the correlation with existing observables.
1) % H%ﬁ With the present paper, we have tried to provide some ideas
0 in this direction.

H'Hs

0.01 0.1 1
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0.05 % An analytical interpretation of the CA fluctuation number
Q (Eg. 17 can be obtained in the following way: The con-

Opxx AT AR A tribution (16) of each pair of neighbors under the condition
0.01 0.1 1 (15) leads to

APPENDIX

(1810 S0 ]9 902

008 (c) :[5i(jt+1,k)_gi(jt,k)_(éi(jt,k)_é‘i(jtfl,k))]z

,,, = (M =281 + 51712, (A1)
T o004

This corresponds to thésquare of thg discretized second

time derivative of5{" at timet. Thus, each pair of neigh-

bors contributes the “curvature” 08 to the CA fluctua-

tion numberQ}.

In order to exploit this relation further, we assume that the
0.001 0.01 01 system under consideration obeys a one-dimensional first-
Q order differential equation at each lattice point. The whole
lattice at discrete time steps leads to the “imag@ét). The
FIG. 7. Same as Fig. 5, but for the Jung system, now with arsystem, thus represented as a coupled-map lattice then has

average over 260 samples, sampling at every other time step. TIJfBe following form:
maximum inh is the signature of STSR.

0.02

OF — 1 1 ¢ rasn

xij () =f[x;(D]+&(D+D > [b(t)—x;(1)],
be/\fij

additional information about the systef@.g., about typical
length scales or time constaptahich can be used to clarify .
this point. In any case, it is useful to study the stability of the Lj=1...N, (A2)
results under variation of the discretization scale in space and
time. This can be done both experimentally changing, if ~ wheref in general is a nonlinear functios; (t) is a spatially
possible, the resolution of the experimental setoptheo- and temporally incoherent noise abdis the diffusion con-
retically (by introducing some binning before extracting the stant. This equation is solved by
observables

As pointed out, a second question not discussed in depth t
here concerns the conditions for the monotonous relation be- xij(t):f Xij (t")dt" —x;;(0). (A3)
tween noise intensityr and CA fluctuation numbef) as 0
mentioned above. The analytical material of the appendix
may help to gain access to this property(bfwithout, how-  The contribution, Eq(Al), to the fluctuation number in this
ever, solving the full mathematical problem. Clearly, a rigor-formulation is ¢+ 1—t=*At),

026117-9
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[{xi; (t+AD) —x{V(t+ At} = 2{x;; () = x{I (D)} +{x;; (1= At) —x{[O(t— A1) }]?

t+ At t
Jt —Jm){f[xl,a JI+D 2 [b(t) ()] = FIX[P(t)]=D X [e(t)=xf(t)]}dt

beN; ij CEN

M- goamar- 1 g an-gowar]
t ' t '

[UHM J: A)g(t o [ >{§u(t) g‘k’(t’)}dt'r

=[At-[g(t) —g(ty) ]+ 7{(t,AD)]?, (A4)

whereg(t) and 7{{°(t,At) are summing up the deterministic Neglecting the filter term in Eq15) results in the approxi-
and stochastic part, repectively. The mean value theorem wamsation,
used, which implies continuity ofj(t) (t;e[t—At,t],t,
e[t,t+At]). With a smallAt in comparison to the time "
'l

scale of the variation of(t), the deterministic part vanishes 1
and the stochastic one remains to be registeredigy). Q(t)~ 2 Ny E i(jk)(t,At)]2“402At, (A7)
Assuming further a Gaussian white nogg(t) with ' k=
(&j(1))=0,
, b where a largeN is sufficient for the second equality. Thus,
(§ij(D&at))= 0wy o(t—t)a (AS) " the CA fluctuation numbef)(t) is proportional to the vari-
gives for 7l k)(t At), ance of the initial noise and, therefore, an excellent measure
of the noise content of the observed dynamics. An important
<77(k)(t,m)>:0, necessity for the first approximation in EGA7) is a gap
between the time scales of the initial noise and of the deter-
(Pt A0 7 (6L AD) = 8imSjn S S(t—t')4a?At. ministic part placingAt in between to account for the noisy

(A6)  contribution.
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