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Critical structure factor in Ising systems
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We perform a large-scale Monte Carlo simulation of the three-dimensional Ising model on simple cubic
lattices of sizeL3 with L5128 and 256. We determine the corresponding structure factor~Fourier transform of
the two-point function! and compare it with several approximations and with experimental results. We also
compute the turbidity as a function of the momentum of the incoming radiation, focusing in particular on the
deviations from the Ornstein-Zernike expression of Puglielli and Ford.
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I. INTRODUCTION

Near a phase-transition critical point, some observ
quantities show a universal behavior that is common t
large class of systems, independently of the microscopic
tails. A very important universality class is the Ising on
which is characterized by short-range interactions and a
lar order parameter. It describes the liquid-vapor transition
fluids, the mixing transition in multicomponent systems, a
the Curie transition in~anti!ferromagnets with axial anisot
ropy. The Ising critical behavior has been extensively stud
both theoretically and experimentally; see Refs.@1–3#. In
particular, the critical exponents, the equation of state,
several amplitude ratios have been determined with g
precision. Another important quantity in the theory of critic
phenomena is the static structure factor, which can be m
sured experimentally by determining the intensity of the lig
scattered by the fluid relative to the intensity of the incide
light @4#. To probe larger wave numbers, neutrons are u
instead of light. At the critical density of fluids near the ga
liquid critical point or at the critical concentration o
binary fluids near the critical mixing point, one expects f
t[(T2Tc)/Tc→0 the general scaling behavior@5–7#

S6~k!5xg6~kj!, ~1!

where x5C6utu2g,j is the correlation length, which di
verges asj5 f 6utu2n,k is the momentum-transfer vector, an
6 refers to the two phases1 (2) corresponding to the
high- ~low-! temperature phase. Since at criticality only ela
tic scattering is relevant,k is given by

k5
4p

l
sin

u

2
, ~2!
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wherel is the wavelength of the radiation~neutrons! in the
scattering medium andu is the scattering angle. The func
tions g6(Q), normalized so that

g6
21~Q!511Q21O~Q4! ~3!

for Q[kj→0 ~this definesj as the second-moment correl
tion length!, are universal. Their limiting behavior is we
known. ForQ small,g6(Q) is approximated by the leadin
term, the so-called Ornstein-Zernike approximation

gOZ~Q!5
1

11Q2 . ~4!

Such an approximation describes well the data up toQ'1
and is routinely used in the analysis of the data withkj small
and of the turbidity for the determination of the correlatio
length @8#. On the other hand, for largeQ,g6(Q) shows an
anomalous decay controlled by the exponenth:

g6~Q!'
C1

6

Q22h
. ~5!

Therefore, the experimental determination of the struct
factor for large wave numbers allows a direct determinat
of the exponenth @9–21#.

In this paper, we compute the structure factor in the hig
temperature phase for small values ofQ by means of Monte
Carlo simulations on latticesL3, with L5128,256. We are
able to determine the functiong1(Q) with an error of less
than 1%~2%! for Q&5 (Q&20). These numerical result
together with the most recent estimates of the critical ex
nents@22# are then used to determine interpolations that
valid for all values ofQ and have the correct large-Q behav-
ior. For this purpose, we use a dispersive approach@23–25#,
which allows us to determine an interpolating form f
g1(Q) that agrees with the Monte Carlo data in the smallQ
region and that well approximates~within 0.5%! the recent
experimental results of Ref.@19#.

These results are then used to compute the turbidity,
the attenuation of the transmitted light intensity per unit o
tical path length due to the scattering with the sample. T
©2002 The American Physical Society12-1
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TABLE I. Estimates ofcn
6 ,SM

6 , and SZ
6 . IHT denotes the results obtained from the analysis of hi

temperature expansions for improved models, HT,LT results obtained from the analysis of high- an
temperature expansions for the Ising model, while ‘‘e-exp.’’ and ‘‘d53 g-exp.’’ label the field-theoretical
results.~sc! and~bcc! denote the simple cubic and the body-centered cubic lattice, respectively. Unless
otherwise, field-theoretical results are taken from Ref.@30#, while the IHT estimates are taken from Ref.@22#.
For SM

2 we should also mention the Monte Carlo estimate of Ref.@31#, SM
250.941(11).

IHT HT,LT e-exp. d53 g-exp.

c2
1 23.90(6)31024 23.0(2)31024 @29# 23.3(2)31024 24.0(5)31024

25.5(1.5)31024 ~sc! @32#

27.1(1.5)31024 ~bcc! @32#

c3
1 0.88(1)31025 1.0(1)31025 @29# 0.7(1)31025 1.3(3)31025

0.5(2)31025 ~sc! @32#

0.9(3)31025 ~bcc! @32#

c4
1 20.4(1)31026 20.3(1)31026 20.6(2)31026

SM
1 0.999601~6! 0.99975~10! @29# 0.99968~4! 0.99959~6!

SZ
1 1.000810~13!

c2
2 21.2(6)31022 @32# 22.431022 @33#

c3
2 7(3)31023 @32# 3.931023 @33#

SM
2 0.938~8! @30#

0.930~6! @34#
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quantity is routinely measured in experiments, since it allo
the determination of the correlation length. In particular,
compute the deviations from the Puglielli-Ford express
@8#, which is based on the Ornstein-Zernike approximatio

The paper is organized as follows. In Sec. II we revi
the theoretical results for the structure factor. In Sec. II A
define the basic observables and report the behavio
g6(Q) for small and large values ofQ. Estimates of the
constants appearing in these expansions are reported in
II B. In Sec. II C we discuss Bray’s approximation. First, w
discuss the high-temperature phase: we update the estim
of Ref. @24# by using the most recent results for the critic
exponents. Then, we generalize the approximation to
low-temperature phase. In Sec. III we discuss our hi
temperature Monte Carlo results which are compared w
approximate expressions and with the experimental dat
Refs.@10,19#. In Sec. IV we compute the turbidity, focusin
on the deviations from the Puglielli-Ford expression@8# due
to the anomalous decay ofg1(Q). We find that the turbidity
is larger than this expression by 1%~5%! for Q0515 ~350!,
where Q05q0j and q0 is the momentum of the incomin
radiation.

II. THEORETICAL RESULTS

A. Definitions

Several theoretical results are available for the struc
factor. ForQ small, one can compute the corrections to t
Ornstein-Zernike behavior by writing

g6
21~Q!511Q21 (

n52
cn

6Q2n. ~6!

For largeQ, the structure factor behaves as
02611
s
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g6~Q!'
C1

6

Q22h S 11
C2

6

Q(12a)/n
1

C3
6

Q1/nD , ~7!

a behavior predicted theoretically by Fisher and Langer@26#
and proved in the field-theoretical framework in Re
@27,28#.

Beside the constantscn
6 , the constantsSM

6 and SZ
6 , de-

fined by

SM
6[Mgap

2 j2, ~8!

SZ
6[x/~j2Zgap!, ~9!

are of theoretical interest. HereMgap ~the mass gap of the
theory! andZgap determine the long-distance behavior of t
two-point function inx space:

G~x!'
Zgap

4puxu
e2Mgapuxu. ~10!

The critical limits ofSM
6 andSZ

6 are related to the imaginar
zeros6 iQ0 of g6

21(Q) closest to the origin by

SM
652Q0

2 , ~11!

SZ
65

dg21~Q!

dQ2 U
Q56 iQ0

. ~12!
2-2
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B. Numerical results

The coefficientscn
1 turn out to be very small@7#, c2

1

;1024, and this explains the success of the Ornstein-Zern
approximation up toQ;1. The constantscn

1 have been cal-
culated by field-theoretical methods. They have been c
puted toO(e3) in the framework of thee expansion@24# and
to O(g4) in the framework of thed53 fixed-dimension ex-
pansion@29#. The perturbative series have been resumme
Ref. @30# obtaining the results reported in Table I. The mo
precise estimates have been obtained from the analys
their high-temperature expansions in improved models@22#;
see the results labeled by IHT in Table I.

As already observed in Ref.@29#, the coefficients show
the pattern

ucn
1u!ucn21

1 u!•••!uc2
1u!1 for n>3. ~13!

Therefore, a few terms of the expansion ofg1(Q) in powers
of Q2 provide a good approximation ofg1(Q) in a relatively
large region aroundQ50: as we shall see, deviations a
less than 1% up toQ'3. This is in agreement with the
theoretical expectation that the singularity ofg1

21(Q) nearest
to the origin is the three-particle cut@23,24#. If this is the
case, the convergence radiusr 1 of the Taylor expansion o
g1

21(Q) is r 153ASM
1 . Since~see Table I! SM

1'1, at least
asymptotically we should have

cn11
1 '2

1

9
cn

1 . ~14!

This behavior can be checked explicitly in the large-N limit
of the N-vector model@29#.

The coefficientscn
2 are also quite small, although not a

much as in the high-temperature case. Indeed,c2
2'1022; see

Table I. They have been computed using field-theoret
methods@33# and from the analysis of low-temperature ser
@32#. In the low-temperature phase, one also observes
pattern~13!, although the coefficients decrease slower. T
is related to the fact that in the low-temperature phase
nearest singularity is the two-particle cut, so that the conv
gence radiusr 2 of the Taylor expansion ofg2

21(Q) is r 2

52ASM
2 , and therefore,

cn11
2 '2

1

4SM
2 cn

2'20.27cn
2 . ~15!

The large-order coefficientsC1
6 ,C2

6 , andC3
6 have been

computed theoretically within thee expansion to ordere3

@24# in the high-temperature phase and to ordere2 in the
low-temperature phase@33#. Using thee-expansion results
we obtain

C1
1'0.92, C2

1'1.8, C3
1'22.7. ~16!

The corresponding low-temperature parametersCn
2 can be

derived from the high-temperatureCn
2 by using a set of re-

lations derived in Ref.@28#:
02611
e
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C1
1

C1
2 5U2

21Uj
22h ,

C2
1

C2
2 52U0Uj

(12a)/n ,

C3
1

C3
2 52Uj

1/n , ~17!

where

U05
A1

A2 , U25
C1

C2 , Uj5
f 1

f 2 . ~18!

Here,C6 and f 6 are the amplitudes of the susceptibility an
of the second-moment correlation length defined abo
while A6 are defined from the critical behavior of the sp
cific heat,CH'A6utu2a. Using the estimates of Ref.@22#
~other estimates can be found in Refs.@3,35–40#!, we obtain

C1
251.275~10! C1

1'1.17,

C2
2520.728~5! C2

1'21.3,

C3
2520.345~2! C3

1'0.9. ~19!

The large-momentum behavior of the structure factor
also been studied experimentally and the behavior~7! has
been explicitly verified in the high-temperature phase. In p
ticular, the exponenth and the constantC1

1 have been de-
termined. Reference@10# studied the structure factor for th
binary mixture 3-methylpentane–nitroethane. By analyz
the experimental data with Bray’s approximation they fou
h50.017(15),C1

150.96(4), while using two different ap-
proximations proposed in Ref.@23# they obtained h
50.020(17),C1

150.95(4) andh50.030(25),C1
1'0.95(4).

Reference@12# foundh50.0300(15) andC1
150.92(1), and

Ref. @19# reportedh50.042(6) andC1
150.915(21). No un-

biased determination ofC2
1 and C3

1 is available. Fixing
C2

11C3
1520.9 ~the e-expansion result of Ref.@24#!, Ref.

@19# obtainedC2
152.05(80) andC3

1522.95(80), in rea-
sonable agreement with thee-expansion predictions.

C. Bray’s approximation

In order to compare with the experimental data it is im
portant to know the functiong6(Q) for all values ofQ. For
the high-temperatureg1(Q), several interpolations hav
been proposed with the correct large- and small-Q behavior
@6,32,23–25,9#. The most successful one is due to Bray@24#,
which incorporates the expected singularity structure
g1(Q). Here, we present Bray’s interpolation together w
its generalization to the low-temperature phase.

In this approach, one assumesg6
21(Q) to be well defined

in the complexQ2 plane, with a cut on the negative realQ2

axis, starting atQ252r 6
2 , where, as discussed above,r 1

2

59SM
1 ,r 2

2 54SM
2 . Then
2-3
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g6
21~Q!5

2 sinph/2

pC1
6 E

r 6

`

du u12hF6~u!

3F SM

u22SM
1

Q2

u21Q2G , ~20!

where F6(u) is the spectral function, which must satis
F6(1`)51,F6(r 6)50, andF6(u)>0 for u>r 6 . Notice
the appearance of the constantC1

6 , which is determined,
onceF6(u) is given, by requiringg6

21(0)51.
In order to obtain an approximation one must spec

F6(u). Bray @24# proposed to use a spectral function th
gives exactly the Fisher-Langer asymptotic behavior, i.e.

F6,B~u!5

P6~u!2Q6~u!cot
1

2
ph

P6~u!21Q6~u!2
, ~21!

where

P6~u!511
C2

6

up cos
pp

2
1

C3
6

u1/n
cos

p

2n
,

Q6~u!5
C2

6

up sin
pp

2
1

C3
6

u1/n
sin

p

2n
, ~22!

with p[(12a)/n. These definitions do not specify the spe
tral functions completely since several quantities are still
known. First of all, we should fix the critical exponents. W
will use the estimates of Ref.@22#, obtained from the analy
sis of high-temperature expansions for improved models

g51.2373~2!, n50.63012~16!,

h50.03639~15!, a50.1096~5!. ~23!

Several other determinations are reported in Refs.@30,40–
47#. For a comprehensive review see Ref.@3#. ForSM

1 we use
the estimate labeled by IHT reported in Table I, while forSM

2

we employ the low-temperature prediction of Ref.@30#; see
Table I. We must also fixC2

6 and C3
6 . In the high-

temperature phase, Bray proposes to fixC2
11C3

1 to its
e-expansion valueC2

11C3
1520.9 and then to determin

these constants by requiringF1,B(r 1)50. These conditions
completely fix the spectral function and thus the struct
factor. As a check, we can compare the estimates ofcn

1 and
Cn

1 obtained by using Bray’s approximationg1,B(Q) with
the previously quoted results. We obtain

C1
1'0.918, C2

1'2.56, C3
1'23.46,

c2
1'24.231024, c3

1'1.031025. ~24!

The constantsC1
1 ,C2

1 , andC3
1 are in reasonable agreeme

with thee-expansion results~16!, while c2
1 andc3

1 are close
to the estimates reported in Table I. Bray’s approximation
reported in Fig. 1. Note that the result changes by less t
02611
t

-
-

e

s
n

0.1% forQ,100 if h andSM
1 are varied within one error bar

Also C2
11C3

1 does not play an important role. For instanc
by usingC2

11C3
1520.8 or 21.0,g1,B(Q) varies by 0.1%

at Q510 and 0.5% atQ5100.
In the low-temperature phase, we have tried to follo

again Bray’s strategy. We have first setC2
21C3

2520.4 and
requiredF2,B(r 2)50. However, the resulting estimates
Cn

2 and cn
2 are not in agreement with the previous resul

we find C1
2'0.87,c2

2'2131023. Little changes if we fix
C2

11C3
1520.9 and use the relations~17!. For this reason,

we have given up requiringF2,B(r 2)50 and we have sim-
ply setC2

2521.3,C3
250.9, as obtained in the previous se

tion. Then, Bray’s approximation gives

C1
2'1.0, c2

2'21.131022, c3
2'1.731023,

~25!

which are close to previous estimates. A plot of Bray’s a
proximation in the low-temperature phase is also given
Fig. 1. Note that the structure factors in the high- and lo
temperature phases are very similar.

III. MONTE CARLO RESULTS

We determine the structure factor in the region of sm
k—as we shall see, we are able to reachk'5-10/j by means
of a large-scale Monte Carlo simulation. We consider
Ising model on a cubic lattice, i.e., the Hamiltonian

H52b(̂
i j &

s is j , ~26!

wheres i561 and the summation is over nearest-neighb
pairs ^ i j &. We measure the structure factor

FIG. 1. Scaling functionsg6(Q) versusQ in Bray’s approxima-
tion. We report the high-~HT! and low- ~LT! temperature scaling
functions.
2-4



ta

b

ely

ts—

the
l

of
ces
l to

b-
i-

we

all-
to

ef.

CRITICAL STRUCTURE FACTOR IN ISING SYSTEMS PHYSICAL REVIEW E66, 026112 ~2002!
S~q;b,L !5
1

3 (
x,y,z

~eiqx1eiqy1eiqz!^s (0,0,0)s (x,y,z)&

~27!

for three different values ofb and L: ~a! L5128,b
50.2204; ~b! L5128,b50.2210; ~c! L5256,b50.221 45.
Of course, in Eq.~27! q52pn/L, wheren is an integer. In
the simulation we used the Swendsen-Wang algorithm, s
ing from random configurations and discarding (2 –4)3104

iterations. The results of the simulations are reported in Ta
II. We report the number of iterations,Nit , the susceptibility
x, the second-moment correlation lengthj, andh(q;b,L),

h~q;b,L ![ lnF ~11q2j2!S~q;b,L !

x G , ~28!

which directly measures the deviations from a pur
Ornstein-Zernike behavior.

TABLE II. For the three lattices considered,~a!, ~b!, and~c!, we
report the number of iterationsNit , the susceptibilityx, the second-
moment correlation lengthj, andh(q;b,L) for n5qL/(2p).

~a! ~b! ~c!

Nit 4.353106 3.23106 2.143106

x 669.9~4! 1501~2! 6339~10!

j 13.050~7! 19.739~14! 41.16~5!

n h(q;b,L)

1 20.0009(9) 20.0015(11) 20.0002(17)
2 20.0002(11) 0.0003~14! 0.0001~25!

3 0.0017~12! 0.0027~16! 0.0019~27!

4 0.0039~13! 0.0065~17! 0.0042~27!

5 0.0063~13! 0.0096~18! 0.0067~28!

6 0.0093~13! 0.0135~18! 0.0095~28!

7 0.0128~13! 0.0179~18! 0.0123~28!

8 0.0178~13! 0.0232~19! 0.0141~28!

9 0.0222~14! 0.0281~18! 0.0179~28!

10 0.0270~13! 0.0335~19! 0.0204~28!

11 0.0326~14! 0.0398~18! 0.0234~29!

12 0.0383~13! 0.0459~17! 0.0263~28!

13 0.0438~13! 0.0521~17! 0.0290~29!

14 0.0510~13! 0.0593~18! 0.0324~29!

15 0.0579~13! 0.0666~18! 0.0353~28!

16 0.0647~14! 0.0736~18! 0.0380~28!

17 0.0722~13! 0.0815~18! 0.0409~29!

18 0.0806~13! 0.0896~18! 0.0437~28!

19 0.0887~14! 0.0986~17! 0.0478~28!

20 0.0975~13! 0.1078~18! 0.0506~29!

21 0.1072~14! 0.1168~18! 0.0538~29!

22 0.1158~14! 0.1271~18! 0.0576~28!

23 0.1258~14! 0.1366~18! 0.0616~28!

24 0.1367~14! 0.1473~18! 0.0642~29!

25 0.1472~14! 0.1583~18! 0.0676~28!
02611
rt-

le

In Fig. 2 we plot S(q;b,L)/x for the three lattices
considered—errors are smaller than the size of the poin
together with the experimental results of Ref.@19# for CO2
and Bray’s approximation. We observe good agreement,
numerical data for lattice~c! being close to the experimenta
ones.

However, at a closer look one observes tiny deviations
order 1%–2%. In order to observe better the differen
among the different approximations and data, it is usefu
plot the function h(q;b,L) which converges to ln@(1
1Q2)g1(Q)# in the scaling limit. We have been able to o
serve accurately@i.e., at the level of one error bar, approx
mately 0.3% ong1(Q)# this convergence only up toQ'4,
as can be seen in Fig. 3. Indeed, only in this region do
observe a good overlap of the results for the two lattices~b!
and ~c!, which have the largest values ofj. As a further
check, we can compare the numerical results with the sm
Q expansion~6! which is expected to converge rapidly up

FIG. 2. FunctionS(q;b,L)/x versusQ[qj for the three cases
~a!, ~b!, and ~c!. We also report the experimental results of R
@19#, ‘‘expt,’’ and Bray’s approximation, ‘‘Bray.’’

FIG. 3. Functionh(q;b,L) versusQ[qj for the three cases~a!,
~b!, and ~c!. We also report the experimental results of Ref.@19#
~DLMFL ! and of Ref.@10# ~CBS!, and the small-Q approximations
‘‘series3’’ and ‘‘series4.’’
2-5
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MARTÍN-MAYOR, PELISSETTO, AND VICARI PHYSICAL REVIEW E66, 026112 ~2002!
Q'3. Using Eq.~6! to orderQ6 (Q8) we obtain the curve
labeled ‘‘series3’’~‘‘series4’’! in Fig. 3. The data~c!, which
correspond toL5256, are in perfect agreement, confirmin
that in this region we are seeing the correct asymptotic
havior. In Fig. 3 we also report@48# the experimental result
of Refs. @19,10#. The results of Ref.@19# are systematically
higher than the Monte Carlo results, indicating that, at le
in this region, the experimental error on the structure fac
is approximately of order 0.5%–1%. The results of Ref.@10#
are in better agreeement: This is essentially due to the
cific interpolation used, which has the correct behavior
Q→0.

For larger values ofQ, we are not able to observe scalin
as can be seen in Fig. 4. According to stand
renormalization-group theory,

h~q;b,L !5h1~Q,L/j!1L2vh2~Q,L/j!1•••, ~29!

where@22# v50.83(5). Thus, we could try to extrapolate i
L at L/j fixed and then take the limitL/j→`. Lattices~b!
and ~c! have approximately the sameL/j,L/j'6 and thus,
in principle, one should be able to extrapolate inL. In prac-
tice, corrections increase quickly withQ ~see Fig. 4! and no
reliable extrapolation can be done. In any case, we bel
we can still use the numerical data presented in Fig. 4
conclude conservatively that, forQ&15–20,h(q;b,L) for
lattice ~c! is a good approximation to the limiting functio
with an error at most of 0.02, i.e., that we can use our d
~c! to computeg1(Q) with a 2% precision up toQ&15-20.

In Fig. 4 we also report Bray’s approximation. Such
approximation agrees nicely with the Monte Carlo results~c!
up to Q'10 and, as expected, it is lower in the regionQ
*10 where we expect the results~c! to be higher than the
scaling limiting curve. Bray’s function looks therefore a re
sonable approximation to the universal scaling functi
Comparing with experiments, we note that Bray’s function
somewhat lower than the experimental data of Ref.@19# by
1%–2%. The older experimental results@48# of Ref. @10# are
significantly lower, but it should be noticed that these resu

FIG. 4. Functionh(q;b,L) versusQ[qj for the three cases~a!,
~b!, and ~c!. We also report the experimental results of Ref.@19#
~DLMFL ! and of Ref.@10# ~CBS!, a phenomenological interpola
tion ~fit!, and Bray’s approximation~Bray!.
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are far less accurate than the more recent ones, as ca
understood by comparing the errors on the estimates oh
presented at the end of Sec. II B.

For the computations of the next section, it is important
have an estimate of the structure factor with a reasona
error bar. For this purpose, we determine a second interp
tion that is in better agreement with the experimental data
Ref. @19#. We will obtain an error by comparing the resul
obtained using this interpolation and Bray’s approximatio
This interpolation may be obtained by considering expr
sions that agree with the numerical data for lattice~c! in the
regionQ,Qmax'15. We shall use again the spectral rep
sentation~20!, since such an expression gives automatica
the behavior~14! and ensures the correct small-Q behavior.
In order to obtain the correct large-Q behavior, we use a
generalization of the spectral function proposed by Bray, i

Ffit~u!5FB~u!~12u22!S 11 (
n52

nmax

anu2nD . ~30!

Such an expression is purely phenomenological. The
term has been introduced to guarantee thatFfit(1)50 as gen-
erally expected, while corrections of order 1/u have been
avoided, since they would give rise to terms of ord
1/Q22h21 for Q→` that are stronger than those appeari
in the Fisher-Langer behavior~7!. In Eqs.~20! and ~22! we
use thee-expansion estimates~16! and the values of the
exponents reported in Eq.~23!. The constantsan are fixed by
requiringg1

21(0)51 andg1(Q) to fit the numerical data~c!
up toQ<Qmax. If Qmax515, a good fit is obtained by taking
nmax56 and a252574.128,a357588.59,a45229 558.9,
a5543 740.7, anda65221 715.6. The corresponding curv
labeled ‘‘fit’’ is reported in Fig. 4. The results depend o
Qmax used in the fit and tend to give a lower curve if smal
values ofQmax are used. However, it is interesting to rema
that, with the choiceQmax515, the interpolation is in excel
lent agreement with the experimental data for allQ.15; see
Fig. 4.

Finally, it is interesting to remark that the Ornstei
Zernike approximation differs at most 1% from the corre
expression forQ&5, while for Q*5 the Fisher-Langer for-
mula can be applied, as already observed in many exp
mental works; see, e.g., Refs.@16,18,20,21#.

IV. TURBIDITY

The turbidityt is defined as the attenuation of the tran
mitted light intensity per unit optical path length due to t
scattering with the sample. Explicitly, it is given by

t;E dV S~k!F12
1

2
sin2uG , ~31!

wherek52k0sin(u/2),k052pn/l is the momentum of the
incoming radiation in the medium,l the corresponding
wavelength in vacuum,n the refractive index, andV
5(f,u) the solid angle. By using Eq.~1!, in the high-
temperature phase we can write the turbidity in the form
2-6
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t5
2t0t2g

Q0
2 E

0

2Q0
QdQ g1~Q!F12

Q2

2Q0
2 1

Q4

8Q0
4G , ~32!

where Q0[k0j and t0 is a constant that can be assum
temperature independent in a neighborhood of the crit
point.

For small values ofQ0, the Ornstein-Zernike approxima
tion can be used obtaining the Puglielli-Ford expression@8#

tPF5t0t2gF2a212a11

a3 ln~2a11!2
2~a11!

a2 G , ~33!

wherea52Q0
2.

We can also compute the behavior for largeQ0 by using
Eq. ~7!. We obtain

tas5
2t0t2g

Q0
2 FC1

1~2Q0!h
h212h18

h~h12!~h14!

2
C1

1

h
1K1O~Q0

h2(12a)/n!G , ~34!

where

K5E
0

1

QdQg1~Q!1E
1

`

QdQ@g1~Q!2C1
1Qh22#.

~35!

In order to obtaint for all values ofQ0 we must use a
specific form forg1(Q). We will use here Bray’s approxi
mation and the interpolation formula obtained using Eq.~30!
with nmax56,Qmax515. The difference between the resu
obtained using these two expressions provides the erro
our results. In Fig. 5 we reportt/tPF using the two different

FIG. 5. Ratio t/tPF versus Q0 using Bray’s approximation,
‘‘Bray,’’ and the phenomenological approximation, ‘‘fit.’’ We als
report the corresponding asymptotic expressiontas/tPF ~‘‘as1’’ and
‘‘as2’’ !, wheretas is defined in Eq.~34!, and the phenomenologica
approximation~36!, ‘‘phen,’’ valid for Q0<100. In ‘‘as1’’ we use
C1

150.917 97,K50.128 735; in ‘‘as2’’ we use C1
150.92,

K50.160 734.
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approximations together with their asymptotic express
tas/tPF. In Bray’s approximationK50.128 735 while in the
second oneK50.160 734. The deviations from the Pugliell
Ford behavior are very small and forQ0*100 are well de-
scribed by the asymptotic expression~34! with C1

1'0.92
and K50.145(16). Estimates of the turbidity for 1&Q0
&100 can be found in Table III. ForQ<100 one can use the
phenomenological formula

t5tPF@0.66642110.242399~110.0087936Q0
2!0.018195

10.0911801~110.09Q0
4!0.0090975#, ~36!

which is also reported in Fig. 5~‘‘phen’’ !.
We wish finally to compare our results with the approx

mate expression given by Ferrell@49#, which is valid for
Q0@1 and h ln Q0!1, i.e., for 1!Q0!e1/h'931011. By
expanding Eq.~34! and settingL5 ln(4Q0

2) as in Ref.@49#,
we obtain

t'
t0t2g

Q0
2 FC1

1~L21!1C1
1hS L2

4
2

L

2
1

3

4D1KG . ~37!

In order to compare with Ferrell’s results, we must comp
t/@4t0t2gg(2Q0)#. Since, using the same approximation
g(2Q0)5C1

1(2Q0)22@11hL/21O(h2)#, we obtain

t

4t0t2gg~2Q0!
'L212

hL2

4
1hS 3

4
1

K

hC1
1D . ~38!

This formula agrees with Ferrell’s expression once we r
ognize thatK5O(h) since K50 for a purely Ornstein-
Zernike behavior. Numerically, we predict 3/41K/(hC1

1)
'5.1(5), which is smaller than Ferrell’s numerical resu
8.4. Ferrell’s expression predicts a turbidity that is som
what larger than ours. Indeed, his numerical result imp

TABLE III. Ratio t/tPF. We use here~a! Bray’s approximation
and~b! a general phenomenological interpolation based on Eq.~30!
with nmax56 andQmax515.

Q0 ~a! ~b!

5 1.004 1.004
10 1.008 1.009
15 1.011 1.014
20 1.013 1.017
25 1.015 1.020
30 1.017 1.022
35 1.019 1.024
40 1.020 1.026
45 1.022 1.028
50 1.023 1.029
60 1.025 1.031
70 1.027 1.034
80 1.029 1.036
90 1.030 1.037

100 1.032 1.039
2-7
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K'0.26 in Eq.~34!, and as consequence we would obtaint/tPF'1.06 @1.085# for Q05100 @1000#, to be compared with our
predictiont/tPF'1.036(4) @1.069~3!#.

Another expression for the turbidity that takes into account the anomalous decay of the structure factor is given in R@50#.
It assumes that@51# g1(Q)5(11cQ2)211h/2, wherec51/(12h/2). It follows that

t54t0t2g
@~2b11!h/221#@422b~h24!1b2~h212h18!#24hb~11b!

b3h~21h!~41h!
, ~39!

whereb54Q0
2/(22h). Such an expression, however, predicts a turbidity that is too large. For instance, forQ0510 it gives

t/tPF'1.05, to be compared with our predictiont/tPF'1.008; cf. Table III.
Note the correct turbidityt is larger thantPF sinceg1(Q) decreases slower forQ→` than the Ornstein-Zernike approx

mation. However, this is apparently in contrast with the experimental results for the binary fluid mixture methanol-cyclo
presented in Ref.@52#.
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