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Critical structure factor in Ising systems
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We perform a large-scale Monte Carlo simulation of the three-dimensional Ising model on simple cubic
lattices of sizd_® with L =128 and 256. We determine the corresponding structure féetarier transform of
the two-point function and compare it with several approximations and with experimental results. We also
compute the turbidity as a function of the momentum of the incoming radiation, focusing in particular on the
deviations from the Ornstein-Zernike expression of Puglielli and Ford.
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[. INTRODUCTION wherel is the wavelength of the radiatidneutron$ in the
scattering medium and is the scattering angle. The func-
Near a phase-transition critical point, some observedionsg..(Q), normalized so that
quantities show a universal behavior that is common to a B
large class of systems, independently of the microscopic de- 9:-1(Q)=1+Q%+0(Q% €)
tails. A very important universality class is the Ising one, i i
which is characterized by short-range interactions and a scd2" Q=k¢—0 (this defines as the second-moment correla-
lar order parameter. It describes the liquid-vapor transition ifion length, are universal. Their limiting behavior is well
fluids, the mixing transition in multicomponent systems, angknown. ForQ small,g-.(Q) is approximated by the leading
the Curie transition inantjferromagnets with axial anisot- t€rm, the so-called Ornstein-Zernike approximation
ropy. The Ising critical behavior has been extensively studied 1
both theoretically and experimentally; see Rdfs-3]. In -
. - . 90z(Q) 2 (4)
particular, the critical exponents, the equation of state, and 1+Q

several amplitude ratios have been determined with goo% h imation d ib Il the d 1
precision. Another important quantity in the theory of critical 2Uch an approximation describes well the data uRte
ind is routinely used in the analysis of the data Wigrsmall

phenomena is the static structure factor, which can be me& o > .
sured experimentally by determining the intensity of the Iightand of the turbidity for the determination of the correlation
scattered by the fluid relative to the intensity of the incident'€N9th[8]. On the other hand, for larg®,g--(Q) shows an
light [4]. To probe larger wave numbers, neutrons are use@nomalous decay controlled by the expongnt

instead of light. At the critical density of fluids near the gas- .

liquid critical point or at the critical concentration of 9-(Q)~ Cy ®)
binary fluids near the critical mixing point, one expects for * Q¥ 7

t=(T—T.)/T.—0 the general scaling behavis—7]
Therefore, the experimental determination of the structure
factor for large wave numbers allows a direct determination
S.(k)=xg-(ké), (1) of the exponent; [9—-21].
In this paper, we compute the structure factor in the high-
temperature phase for small values@@by means of Monte
where y=C>[t|”?,¢ is the correlation length, which di- Carlo simulations on latticek3, with L=128,256. We are
verges ag=f~[t| ",k is the momentum-transfer vector, and aple to determine the functiog, (Q) with an error of less
= refers to the two phases (—) corresponding to the than 1%(2%) for Q<5 (Q=<20). These numerical results
high- (low-) temperature phase. Since at criticality only elas-together with the most recent estimates of the critical expo-
tic scattering is relevank is given by nents[22] are then used to determine interpolations that are
valid for all values ofQ and have the correct larg@-behav-
ior. For this purpose, we use a dispersive apprda&x-25,
K Am 0 @) which allows us to determine an interpolating form for

A sy 0. (Q) that agrees with the Monte Carlo data in the sngall-
region and that well approximatéwithin 0.5%) the recent
experimental results of Ref19].

*Electronic address: Victor.Martin@romal.infn.it These results are then used to compute the turbidity, i.e.,
"Electronic address: Andrea.Pelissetto@romal.infn.it the attenuation of the transmitted light intensity per unit op-
*Electronic address: Vicari@df.unipi.it tical path length due to the scattering with the sample. This
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TABLE |. Estimates ofc, ,Sy;, andS; . IHT denotes the results obtained from the analysis of high-
temperature expansions for improved models, HT,LT results obtained from the analysis of high- and low-
temperature expansions for the Ising model, whikeekp.” and “d=3 g-exp.” label the field-theoretical
results.(s¢) and(bco denote the simple cubic and the body-centered cubic lattice, respectively. Unless stated
otherwise, field-theoretical results are taken from IR&d], while the IHT estimates are taken from Rgf2].

For S,, we should also mention the Monte Carlo estimate of R&f], S,,=0.941(11).

IHT HT,LT €-exp. d=3 g-exp.

cy —3.90(6)x10° %  —3.0(2)x10°* [29] —3.3(2)x10°4 —4.0(5)x10°4
—5.5(1.5)x10"* (s [32]
—7.1(1.5)x10"* (bco [32]
cy 0.88(1)x10°° 1.0(1)x 1075 [29] 0.7(1)x10°° 1.3(3)x10°°
0.5(2)x10°° (so [32]
0.9(3)x10°° (bco [32]

cy —0.4(1)x10°° —0.3(1)x10°8 —0.6(2)x10°°
Sy 0.9996016) 0.9997%10) [29] 0.999684) 0.999596)
S5 1.00081013)

c, —1.2(6)x10°? [32] —2.4x107? [33]

cs 7(3)x 1072 [32] 3.9x107% [33]

Su 0.9388) [30]

0.9306) [34]

guantity is routinely measured in experiments, since it allows + c* c:
the determination of the correlation length. In particular, we 9. (Q)~ 217 1+ 172 / +_13/ ' )
compute the deviations from the Puglielli-Ford expression Q7 QU-alv

[8], which is based on the Ornstein-Zernike approximation.

The paper is organized as follows. In Sec. Il we reviewa behavior predicted theoretically by Fisher and Larigéf
the theoretical results for the structure factor. In Sec. Il Aweand proved in the field-theoretical framework in Refs.
define the basic observables and report the behavior 427,28
g-(Q) for small and large values d®. Estimates of the Beside the constants, , the constants,, andS, , de-
constants appearing in these expansions are reported in Séiced by
II B. In Sec. Il C we discuss Bray’s approximation. First, we
discuss the high-temperature phase: we update the estimates .
of Ref. [24] by using the most recent results for the critical Su=M3a£% 8
exponents. Then, we generalize the approximation to the
low-temperature phase. In Sec. lll we discuss our high-
temperature Monte Carlo results which are compared with S, = X/(gzzgap), 9
approximate expressions and with the experimental data of
Refs.[10,19. In Sec. IV we compute the turbidity, focusing are of theoretical interest. Heild g, (the mass gap of the
on the deviations from the Puglielli-Ford expressj@fdue  theory andZg,,determine the long-distance behavior of the
to the anomalous decay gf. (Q). We find that the turbidity  two-point function inx space:
is larger than this expression by 1%f%0) for Qu= 15 (350),
where Q= (¢ and qq is the momentum of the incoming

radiation. Z
G(X)~ 4ﬂe—Mgadxl. (10)

x|

The critical limits of Sy, andS, are related to the imaginary
zeros+iQ, of g;*(Q) closest to the origin by

Several theoretical results are available for the structure
factor. ForQ small, one can compute the corrections to the

Il. THEORETICAL RESULTS

A. Definitions

Ornstein-Zernike behavior by writing Sy=— Qé , (12
0:1(Q=1+Q%+ > c,; Q™" ) .
n=2 . dg Q)
:d—Q2 . (12)
For largeQ, the structure factor behaves as Q==*iQq
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B. Numerical results

The coefficientsc, turn out to be very smal[7], c; c, 2
~10 4, and this explains the success of the Ornstein-Zernike
approximation up t@~ 1. The constants, have been cal-
culated by field-theoretical methods. They have been com-
puted toO(€%) in the framework of the: expansiorj24] and
to O(g*) in the framework of thal=3 fixed-dimension ex-
pansion29]. The perturbative series have been resummed in —_yw 17)
Ref. [30] obtaining the results reported in Table I. The most Cs ’
precise estimates have been obtained from the analysis of
their high-temperature expansions in improved mo{2H; where
see the results labeled by IHT in Table I. N . N

As already observed in Ref29], the coefficients show PRI AT A 18)
the pattern OCAT T2 CT T

S8

len|<lcpqf<---<|cy|<1 for n=3. (13)  Here,C* andf™* are the amplitudes of the susceptibility and
of the second-moment correlation length defined above,
Therefore, a few terms of the expansiongaf(Q) in powers  while A* are defined from the critical behavior of the spe-
of Q% provide a good approximation of, (Q) in a relatively  cific heat, C;~A*|t|~“. Using the estimates of Ref22]
large region around=0: as we shall see, deviations are (other estimates can be found in Rg3,35—4(), we obtain
less than 1% up t@Q=3. This is in agreement with the

theoretical expectation that the singularitygf'(Q) nearest C,=1.27510) C; ~1.17,
to the origin is the three-particle ci23,24. If this is the
case, the convergence radius of the Taylor expansion of C,=-0.7285)C,~—1.3,
9;}(Q) is r,=34/S,,. Since(see Table )l S;;~1, at least
asymptotically we should have C;=-0.3452) C;~0.9. (19
N 1, The large-momentum behavior of the structure factor has
Chi1~ " gCn - (14 also been studied experimentally and the behagiorhas

been explicitly verified in the high-temperature phase. In par-
; +
This behavior can be checked explicitly in the lafgdimit  ticular, the exponeny and the constar; have been de-
of the N-vector mode[29]. termined. ReferencglQ] studied the structure factor for the
binary mixture 3-methylpentane—nitroethane. By analyzing

much as in the high-temperature case. Indeges 102 see the experimental data with Bray’s approximation they found

i . : .
Table I. They have been computed using fieId—theoretic:afV:o_'017_(15)c1 20'96(4)_’ while using two dn‘fer_ent ap-
methodg33] and from the analysis of low-temperature seriesProximations +proposed in Ref[23] they Sbtamed Y

[32]. In the low-temperature phase, one also observes thg 0-020(17)C; =0.95(4) a”d”:O-O?’O(Z?)Cl ~0.954).

pattern(13), although the coefficients decrease slower. ThisReferencd 12] found »=0.0300(15) andC; =0.921), and
is related to the fact that in the low-temperature phase th&ef.[19] reportedy=0.042(6) andC; =0.915(21). No un-
nearest singularity is the two-particle cut, so that the converbiased determination o€, and C;3 is available. Fixing

The coefficientsc,, are also quite small, although not as

gence radius _ of the Taylor expansion of~(Q) is r_ C, +C5 =—0.9 (the e-expansion result of Ref24]), Ref.
=2./Sy, and therefore, [19] obtainedC, =2.05(80) andC; =—2.95(80), in rea-
sonable agreement with theexpansion predictions.
_ 1 _
Cnea™ " 4S,, Cq~—0.2%C, . (15 C. Bray’s approximation

- . In order to compare with the experimental data it is im-
The large-order coefficient§; ,C, , andC; have been portant to know the functiog.. (Q) for all values ofQ. For
computed theoretically within the expansion to ordee®  the high-temperatureg, (Q), several interpolations have
[24] in the high-temperature phase and to oreérin the  been proposed with the correct large- and sr@atiehavior
low-temperature phag3]. Using thee-expansion results, [6,32,23—-25,92 The most successful one is due to Bfay],

we obtain which incorporates the expected singularity structure of
0. (Q). Here, we present Bray’s interpolation together with
C;=~0.92, C,;=~1.8, Cs~—27. (16) its generalization to the low-temperature phase.

In this approach, one assumgs’(Q) to be well defined
The corresponding low-temperature parame@fscan be in the complexQ? plane, with a cut on the negative re@f
derived from the high-temperatu@, by using a set of re- axis, starting aQ?=—r% , where, as discussed abové,
lations derived in Ref[28]: =9S},,r2 =48,,. Then

026112-3



MARTiN-MAYOR, PELISSETTO, AND VICARI PHYSICAL REVIEW E66, 026112 (2002

i ” 1
0= 22 " qu i (w
7TC1 ==
s, Q2 0.1 ¢
X =S, + 202 (20 s
3 0.01
where F.(u) is the spectral function, which must satisfy @
F.(+»)=1F.(r.)=0, andF.(u)=0 foru=r. . Notice
the appearance of the consta®f , which is determined, 0.001 ¢
onceF . (u) is given, by requiringg:*(0)=1.
In order to obtain an approximation one must specify 0.0001
F.(u). Bray [24] proposed to use a spectral function that 1 10
gives exactly the Fisher-Langer asymptotic behavior, i.e., Q
1 FIG. 1. Scaling functiong..(Q) versusQ in Bray’s approxima-
Pi(U)—Qt(U)COtiﬂ'?? tion. We report the high(HT) and low- (LT) temperature scaling
functions.
F.p(u)= 5 —, (2D)
P.(u)“+Q(u)

0.1% forQ<100 if  andSy, are varied within one error bar.
Also C; +C4 does not play an important role. For instance,
C: mp Ci m by usingC, +C3 =—0.8 or —1.0g., g(Q) varies by 0.1%
P.(u=1+ —pcos7+ 1,C0%5 at Q=10 and 0.5% a@Q=100.
u u v In the low-temperature phase, we have tried to follow
. . again Bray’s strategy. We have first €&f + C; = — 0.4 and
C; mp C3 requiredF_ g(r_)=0. However, the resulting estimates of
(U)= —5 +— , - BV =0 T Lo )
QU= gpsiny+ mSiny, 22 C, andc, are not in agreement with the previous results:
. o _ we find C; ~0.87¢, ~—1x10 3. Little changes if we fix
with p=(1—a)/v. These definitions do not specify the spec-ct +C; = —0.9 and use the relatiori47). For this reason,

tral functions completely since several quantities are still unye nave given up requiring_ g(r_)=0 and we have sim-
known. First of all, we should fix the critical exponents. We ply setC, = —1.3C5 =0.9, as obtained in the previous sec-

WI|| use the estimates of Re[f22]_, obtame_d from the analy-. tion. Then, Bray’s approximation gives
sis of high-temperature expansions for improved models:

where

y=1.23732), v»=0.6301216), - - -
C;{~1.0, c, ~—1.1x1072, C3~1.7X1073,

7=0.0363915), a=0.10965). (23) (25)

Several other determinations are reported in REg6,40—
47]. For a comprehensive review see H&f. ForSy, we use  Which are close to previous estimates. A plot of Bray’s ap-
the estimate labeled by IHT reported in Table |, while &y ~ Proximation in the low-temperature phase is also given in
we employ the low-temperature prediction of REF0]; see Fig. 1. Note that the structure factors in the high- and low-
Table I. We must also fixC, and C3. In the high- temperature phases are very similar.

temperature phase, Bray proposes to @ +Cj to its

e-expansion valueC; +C3 =—0.9 and then to determine

these constants by requiritig, g(r;)=0. These conditions lll. MONTE CARLO RESULTS

completely fix the spectral function and thus the structure
factor. As a check, we can compare the estimates, oand
C, obtained by using Bray's approximatian, g(Q) with
the previously quoted results. We obtain

We determine the structure factor in the region of small
k—as we shall see, we are able to reaeh5-10/ by means

of a large-scale Monte Carlo simulation. We consider the
Ising model on a cubic lattice, i.e., the Hamiltonian

C{~0.918, C;~256, Cj~—3.46,
c; ~—4.2x10°%, c3~1.0x10°°. (24) H=—B> oio;, (26)
m

The constant€; ,C, , andC; are in reasonable agreement

with the e-expansion resultél6), while c; andcy are close

to the estimates reported in Table I. Bray's approximation isvhereo;=*1 and the summation is over nearest-neighbor
reported in Fig. 1. Note that the result changes by less thapairs{ij). We measure the structure factor
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TABLE IlI. For the three lattices considere@), (b), and(c), we 0 - . . T . i ——
report the number of iterations;;, the susceptibilityy, the second- % (B) =--ox—-n
moment correlation length, andh(q;8,L) for n=qL/(2). 1y eﬁg{ """ X o
‘i(\ Bray ------
@ (b) (©) 2 *s&_\ T
N, 4.35<10P 3.2x10P 2.14x10° 5 st *\X ]
X 669.94) 1501(2) 633910) i Y
¢ 13.05a7) 19.73914) 41.165) D 4r “*&k% 1
n h(q:5.L) 5t . :
P,
1 —0.0009(9) —0.0015(11) —0.0002(17) &l e ST |
2 —0.0002(11) 0.00034) 0.000125) R A o
3 0.001712 0.002716) 0.001927) -7 L L . . :
4 0.003913) 0.006517) 0.004227) g d 2 o 2 &2 o
5 0.006313) 0.009618) 0.006728)
6 0.0093193) 0.013518) 0.009528) FIG. 2. FunctionS(q;8,L)/x versusQ=q¢ for the three cases
7 0.012813) 0.017918) 0.012329) (@), (b), and(c). We also report the experimental results of Ref.
8 0.017813) 0.023219) 0.014128) [19], “expt,” and Bray’s approximation, “Bray.”
9 0.022214) 0.028118) 0.017928)
10 0.027013) 0.033519) 0.020428) In Fig. 2 we plot S(q;B,L)/x for the three lattices
11 0.032614) 0.039818) 0.023429) considered—errors are smaller than the size of the points—
12 0.038813) 0.0454917) 0.026328) together with the experimental results of REf9] for CO,
13 0.043813) 0.052117) 0.029G29) and Bray’s approximation. We observe good agreement, the
14 0.051013) 0.059318) 0.032429) numerical data for latticéc) being close to the experimental
15 0.057913) 0.066618) 0.035328) ones.
16 0.064714) 0.073618) 0.038029) However, at a closer look one observes tiny deviations of
17 0.072213) 0.081518) 0.040929) order 1%—2%. In order to observe better the differences
18 0.080613) 0.089618) 0.043728) among the dlﬁgrent apprOX|mat|9ns and data, it is useful to
19 0.088714) 0.098617) 0.047828) pIot2 the functlon h(q;.,B,L)' yvh|ch converges to [ifl
20 0.097513) 0.107818) 0.050829) +Q9)g.(Q)] in th_e scaling limit. We have been able to ok_)-
21 0.107214) 0.116818) 0.053829) serve accuratelji.e., at th.e level of one error bar, approxi-
29 0.115814) 0.127118) 0.057629) mately 0.3% org.+(Q')] this convergence only up IQ~4,
23 0.125814) 0.136618) 0.0616289) as can be seen in Fig. 3. Indeed, only in this region do we
observe a good overlap of the results for the two lattites
24 0.136714) 0.147318) 0.064229) and (c), which have the largest values ¢f As a further
25 0.147214) 0.158318) 0.067628) check, we can compare the numerical results with the small-
Q expansion6) which is expected to converge rapidly up to
1 . _ _
S(q;8,L)= 3 X% (e'V+e'Y+e'9%) (00,000 xy.2) 0015 @ ——
(27) DLMtiL -
o1 B8
seriesd -~

for three different values of and L: (a) L=1288
=0.2204;(b) L=1288=0.2210;(c) L=256=0.22145.
Of course, in Eq(27) q=2mn/L, wheren is an integer. In & 0.005 |
the simulation we used the Swendsen-Wang algorithm, start=
ing from random configurations and discarding (2 x40
iterations. The results of the simulations are reported in Table Py
[I. We report the number of iterationhl;;, the susceptibility
X, the second-moment correlation lengthandh(q; 3,L),

-0.005 ' - : - :
0

(1+0°6%)S(q; B,L)
(G B.L) = Inf === e a
FIG. 3. Functiorh(q;8,L) versusQ=q¢ for the three case®),
_ _ o (b), and (c). We also report the experimental results of Réf]
which directly measures the deviations from a purely(DLMFL) and of Ref[10] (CBS), and the smal@ approximations
Ornstein-Zernike behavior. “series3” and “series4.”
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0.1

are far less accurate than the more recent ones, as can be
understood by comparing the errors on the estimateg of
presented at the end of Sec. Il B.

For the computations of the next section, it is important to
have an estimate of the structure factor with a reasonable
error bar. For this purpose, we determine a second interpola-
tion that is in better agreement with the experimental data of
Ref.[19]. We will obtain an error by comparing the results
obtained using this interpolation and Bray’s approximation.
This interpolation may be obtained by considering expres-
sions that agree with the numerical data for latticein the
region Q< Qa~15. We shall use again the spectral repre-
sentation(20), since such an expression gives automatically
0 5 10 15 20 25 30 the behavior(14) and ensures the correct sm@llbehavior.

Q In order to obtain the correct larg@-behavior, we use a
generalization of the spectral function proposed by Bray, i.e.,

0.08

0.06 |

0.04 |

hk;B,L)

0.02

FIG. 4. Functiorh(q; 8,L) versusQ=q¢ for the three casds),
(b), and (c). We also report the experimental results of Ré0]
(DLMFL) and of I?ef.[lo] (CBS), a phenomenological interpola- Fa(u)=Fg(u)(1—u~?)
tion (fit), and Bray's approximatiofBray).

Nmax

1+ 22 anu‘”). (30)

Q~3. Using Eq.(6) to orderQ® (Q¥®) we obtain the curve Such an expression is purely phenomenological. The first
labeled “series3"(“series4”) in Fig. 3. The datdc), which  term has been introduced to guarantee Bygtl)=0 as gen-
correspond td- =256, are in perfect agreement, confirming erally expected, while corrections of orderulhave been
that in this region we are seeing the correct asymptotic beavoided, since they would give rise to terms of order
havior. In Fig. 3 we also repof[#8] the experimental results 1/Q2~ 7! for Q—o that are stronger than those appearing
of Refs.[19,10. The results of Refl19] are systematically in the Fisher-Langer behavi@?). In Egs.(20) and (22) we
higher than the Monte Carlo results, indicating that, at leastise thee-expansion estimate€l6) and the values of the
in this region, the experimental error on the structure factoexponents reported in E(R3). The constanta,, are fixed by
is approximately of order 0.5%—1%. The results of R&0]  requiringg; *(0)=1 andg_. (Q) to fit the numerical datéc)
are in better agreeement: This is essentially due to the spgp to Q<Q,. If Qma=15, a good fit is obtained by taking
cific interpolation used, which has the correct behavior forn =6 and a,= —574.128,a;=7588.59,a,= — 29 558.9,
Q—0. as=43740.7, andig= —21 715.6. The corresponding curve
For larger values o, we are not able to observe scaling, |abeled “fit” is reported in Fig. 4. The results depend on
as can be seen in Fig. 4. According to standardQ . used in the fit and tend to give a lower curve if smaller
renormalization-group theory, values ofQ,.x are used. However, it is interesting to remark
. _ Cw that, with the choic&,,.x=15, the interpolation is in excel-
h(a:8,L)=h(QLIETL *h(QLI+ -, (29 o agreement with the experimental data forQi 15; see
where[22] w=0.835). Thus, we could try to extrapolate in F19-4 , _
L at L/£ fixed and then take the limit/é— . Lattices(b) Fmally, it is mtgrestmg to remark that the Ornstein-
and (c) have approximately the samé¢,L/é~6 and thus, Zermke_approxmaﬂon _dlffers at most 1% from the correct
in principle, one should be able to extrapolateLinin prac- ~ €XPression foQ=5, while forQ=5 the Fisher-Langer for-
tice, corrections increase quickly with (see Fig. #and no Mula can be applied, as already observed in many experi-
reliable extrapolation can be done. In any case, we believA'ental works; see, e.g., Refd6,18,20,21
we can still use the numerical data presented in Fig. 4 to
conclude conservatively that, fa@p=15-20h(q;B,L) for IV. TURBIDITY

lattice (c) is a good approximation to the limiting function - . . .
with an error at most of 0.02, i.e.. that we can use our data The turbidity 7 is defined as the attenuation of the trans-

(c) to computeg ., (Q) with a 2% precision up t@= 15-20. mitted light intensity per unit optical path length due to the

In Fig. 4 we also report Bray's approximation. Such ar]scattering with the sample. Explicitly, it is given by
approximation agrees nicely with the Monte Carlo res(djs
up to Q~10 and, as expected, it is lower in the regiQn TNJ dQ S(k)
=10 where we expect the results) to be higher than the
scaling limiting curve. Bray’s function looks therefore a rea-
sonable approximation to the universal scaling functionwherek=2kgysin(6/2),ko=2mn/\ is the momentum of the
Comparing with experiments, we note that Bray’s function isincoming radiation in the medium\ the corresponding
somewhat lower than the experimental data of RE®] by  wavelength in vacuumpn the refractive index, andQ
1%—2%. The older experimental resis8] of Ref.[10] are  =(¢,6) the solid angle. By using Eq(l), in the high-
significantly lower, but it should be noticed that these resultdemperature phase we can write the turbidity in the form

: (31)

1
1- Esinzﬁ
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1061 TABLE lll. Ratio 7/7pr. We use heréa) Bray’s approximation
and(b) a general phenomenological interpolation based on(Haj.
1.05F with Np=6 andQna=15.
. Qo @ (b)
. 5 1.004 1.004
S 10 1.008 1.009
& 15 1.011 1.014
Lozf 20 1.013 1.017
s 25 1.015 1.020
voik 30 1.017 1.022
r 35 1.019 1.024
L 40 1.020 1.026
e 45 1.022 1.028
50 1.023 1.029
FIG. 5. Ratio 7/7pr versus Qq, using Bray's approximation, ?8 182? 1821
“Bray,” and the phenomenological approximation, “fit.” We also ' ’
report the corresponding asymptotic expressigirpe (“asl” and 80 1.029 1.036
“as2"), wherer,gis defined in Eq(34), and the phenomenological 90 1.030 1.037
approximation(36), “phen,” valid for Q,<100. In “asl” we use 100 1.032 1.039
C;=0.91797K=0.128735; in “as2” we use C;=0.92,
K=0.160 734.
approximations together with their asymptotic expression
2r 17 (20 Q? o Tas/ Tpp. In Bray's approximati0|1<=.0..128 735 while in t.he.
P f OQdQ g+(Q){l— |, (32 second on& =0.160 734. The deviations from the Puglielli-
Q5 Jo 2Q 8Qq Ford behavior are very small and fQ,=100 are well de-

_ scribed by the asymptotic expressi@d4) with C; ~0.92
where Qo=Kko¢ and 74 is a constant that can be assumedand K=0.145(16). Estimates of the turbidity for<iQ,
temperature independent in a neighborhood of the criticak 100 can be found in Table IIl. F&®< 100 one can use the

point. phenomenological formula
For small values of),, the Ornstein-Zernike approxima-
tion can be used obtaining the Puglielli-Ford expres$&in 7= 7pd 0.666421 0.2423991 + 0.00879367) 016195
2a2+2a+1 2(a+1) +0.09118011+0.09Q5) %9097, (36)
Tpp=Tol 7 Tln(2a+ 1)—T , (33

which is also reported in Fig. 6phen”).

We wish finally to compare our results with the approxi-
mate expression given by Ferrg#9], which is valid for
Qo>1 and 7InQy<1, i.e., for 1<Qy<e'7~9x 10", By
expanding Eq(34) and settingL =In(4Q3) as in Ref.[49],

wherea=2Q3.
We can also compute the behavior for la@g by using
Eqg. (7). We obtain

27t 210,48 we obtain
Tas™ 02 CI(ZQO)W#
3 n(n+2)(n+4) ot L . (L2 L 3
. A (2) Cl(L_1)+C1 7](?—54—2 + K. (37)
- —1+K+0(Q3<1“>’”>}, (34
Y In order to compare with Ferrell’'s results, we must compute
Where TI[471ot " 79(2Qp) ]. Since, using the same approximations,
9(2Q0)=C; (2Qg) "4 1+ nL/2+0(%?)], we obtain
1 )
K=f Qng+(Q)+f QdQg.(Q)—Cy Q" 2. T L2
0 1 i ! _—~L—1—77—+7; —+—=|. (38
(35 47ot”79(2Qo) 4 4 7C;

In order to obtainr for all values ofQ, we must use a This formula agrees with Ferrell's expression once we rec-
specific form forg, (Q). We will use here Bray's approxi- ognize thatK=0(#%) since K=0 for a purely Ornstein-
mation and the interpolation formula obtained using @9  Zernike behavior. Numerically, we predict 3/K/(7C;)

with N=6,Qmax=15. The difference between the results ~5.1(5), which is smaller than Ferrell's numerical result
obtained using these two expressions provides the error db4. Ferrell’'s expression predicts a turbidity that is some-
our results. In Fig. 5 we repori/ 7o using the two different  what larger than ours. Indeed, his numerical result implies
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K=0.26 in Eq.(34), and as consequence we would obtaifpe~1.06[1.085 for Q,=100[1000], to be compared with our
prediction 7/ 7pp~1.036(4)[1.0693)].

Another expression for the turbidity that takes into account the anomalous decay of the structure factor is gived@. Ref.
It assumes thdt51] g, (Q)=(1+cQ?) 1" 72 wherec=1/(1— 7/2). It follows that

L [(2b+ 1)72—1][4—2b(n—4)+b%(7?+27+8)]—47b(1+b)
b37(2+ n)(4+ n)

whereb=4QS/(2— 7). Such an expression, however, predicts a turbidity that is too large. For instan€®,=di0 it gives
7/ 7pe=1.05, to be compared with our predictiahrpe~1.008; cf. Table III.

Note the correct turbidity- is larger thanrp¢ sinceg . (Q) decreases slower f@— o than the Ornstein-Zernike approxi-
mation. However, this is apparently in contrast with the experimental results for the binary fluid mixture methanol-cyclohexane
presented in Ref52].

T=4710t , (39
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