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We derive amplitude equations for interface dynamics in pattern forming systems with long-range interac-
tions. The basic condition for the applicability of the method developed here is that the bulk equations are
linear and solvable by integral transforms. We arrive at the interface equation via long-wave asymptotics. As an
example, we treat the Grinfeld instability, and we also give a result for the Saffman-Taylor instability. It turns
out that the long-range interaction survives the long-wave limit and shows up in the final equation as a nonlocal
and nonlinear term, a feature that to our knowledge is not shared by any other known long-wave equation. The
form of this particular equation will then allow us to draw conclusions regarding the universal dynamics of
systems in which nonlocal effects persist at the level of the amplitude description.
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. INTRODUCTION zero (type Il the dynamics is described by a long-wave
equation such as the Kuramoto-Sivashin@k$) equation. A
A number of pattern formation problems involving an in- prerequisite for these derivations is that nonlocal interactions
terface are computationally difficult despite the fact that theare screened off beyond some lengsmall in comparison
bulk equations are linear. Examples include Laplacian dywith the inverse of the bifurcation wave number. When long-
namics(diffusion-limited aggregation, limit of vanishing Pe  range interaction.g., in electrostatic, magnetic, elastic sys-
clet number in dendritic growlh flow problems in the tems, etd. are effectively present, no universal equation has
Stokes approximation, and elastic problems. They are diffiyeen known as yet for the latter case. The result§7c8]
cult because of the long-range self-interaction of the i”ter'pertain to the former case, i.e., they constitute a generaliza-
face mediated by the external field. With the availability of ;0 o the Ginzburg-Landau description including nonlocal
modern computer power, _these p_roblems can usually b teractions. We derive here a universal form of dynamics in
solved to good accuracy in two dimensions. But none o he long-wavelength limit when long-range interactions pre-

them h?S been successfully treated on a large scale in thr%g” and obtain a result that is complementary to the
dimensions so far.

Whenever an interface equation can be derived, this Oﬁerguramoto-SNashlnsky description. The derivation is exem-

the advantage of better tractability, both numerically anopl'ﬂe‘_:I ona system “”dergo'”_g a surface instapility due to
analytically. Interface equations for three-dimensional Syselastlc stress. Besides the universal feature of the resolved

tems are two dimensional, rendering much larger Systemguestion., we present the practical_virtue of this stratggy_.
accessible than bulk simulatiofis]. For problems contain-  APPlying our approach to a particular system, a uniaxially
ing a length scale restricting the interaction distance, such arained solid undergoing the Grinfeld instabil[ty0,11], a
the diffusion length in solidification problems, interface Problem that has recently attracted the community of crystal
equations aréocal in the long-wave limi{2,3], i.e., they are  growth[12-14, we obtain an equation that, when truncated
partial differential equations. The Laplace or Laregua- to the leading-order nonlinearities should provide an ex-
tions, however, do not have a cutoff distance. Hence, it i@mple of the universal dynamics. As we shall see, this equa-
interesting and important to investigate how this feature aftion contains fewer parameters than to be expected, which is
fects the long-wave limit, if any. There have been interfacemost likely due to the fact that in the case of the Grinfeld
equations containing nonlocal blinear terms in the litera- instability the dynamics is variational. Introducing an addi-
ture beforg4—6]. As it will turn out, the nonlocal aspects of tional free parameter, we are able to give the generic form of
the system we consider are much more ferocious, leading tthe universal equation. A derivation of this equation from
terms that are both nonlocand nonlinear. We are also symmetry considerations will be presented elsewh&bg
aware of the case of a previously derived amplitude equation The paper is organized as follows. In Sec. Il, we write
containing nonlocal nonlinearitigd,8]. However, the equa- down the model equations for the elastically strained system
tion in question is weakly nonlinear whereas we will obtain aand introduce the appropriate rescaling to perform an
strongly nonlinear equation. asymptotic analysis. Section Ill describes the asymptotic ex-
Let us recall that close to the instability threshold for the pansion and matching procedure and presents the final inter-
merging of order, systems exhibiting a typgimstability in ~ face equation for two dynamical situations corresponding to
the nomenclature of Cross and Hohenbl@lj i.e., an insta- conservative and to nonconservative dynamics. In Sec. IV,
bility at finite wave number, are all expected to be describedve give some simulation results for these equations. Section
by a universal amplitude equation of the Ginzburg-Landaw contains a discussion of universality aspects and gives an
type. Otherwise, when the critical wave number approachesxample of a simulation of the generic equation. Finally, we
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will briefly summarize some conclusions and give an outlookcapillary overpressure, leading to a curvature dependent

in Sec. VI. jump of o, across the interface. An overall constant pres-
sure, not influencing the dynamics of the interface, has been
Il. MODEL EQUATIONS AND subtracted out of the definition @f,,.
NONDIMENSIONALIZATION Due to the free boundary character, E(3. through(5)

) ) ) . i do not completely specify the problem and there is a need for
~ The physics of the Grinfeld instability has been discussedyn additional condition, which is just E¢l) expressing the
in some detail in Ref.16]. We consider the case of a solid in act that the chemical potential difference between solid and

contact with its melt; let us call the interface positiofx,t)  jiquid is proportional to the normal mass current across the
(i.e., we restrict ourselves to two dimensiprisis related t0  jnterface. This means that we assume the interface to be
the stress distribution vigl2,16-18: microscopically rough(so that a linear relation holds be-
Loxt) 1 (1,2 tween the current and its conjugate variable, the chemical
xn L7 B 2 2 potential differenceand the solid to be in contact with its
Ji+8  kes| 2E [(oy=onn)" =00l +yxtApgl ). liquid or vapor.
(1) Note, however, that for the solution of the elastic problem

at one instant of time with given interface position we do not
Herein, 1k is the mobility, ps the density of the solidg is  need Eq.(1) (since we have neglected sound propagation
Young’s modulus,y the Poisson ratioy is the surface ten- effecty. This suggests to attack the problem in two stages:
sion, A p the density contrast between solid and liquid, gnd first solve the elastic equations, then move the interface ac-
the gravitational acceleratior= —,,/(1+¢2)%?is the in-  cording to the elastic fields, and repeat the procedure for the
terface curvature, and partial derivatives{ofire denoted by new interface position.
subscripts oy, and o, are tangential and normal stresses at  The question is how to obtain a closed interface equation,
the interface, i.e.gn,=n;0yin;, ox=tio;t;, wheren; and and to identify its generic form. In order to proceed, we first
t; are the components of the normal and the tangent to theondimensionalize the above equations by introducing two
interface. Bya,, we denote the externally imposed uniaxial length scalesty=yE/o3(1—1?) (the Griffith length [19],
stress, and the interface position is measured from the equipart from a factor of 4#) and €,=(1— v?) U§/2Ang (a
librium position of a planar interface(Setting k=0 and  gravity length as well as a time scale=kps(2/y [18]. Then
|ow—onnl=|00| in Eq. (1) leads to a steady stae=0.) we use Hooke’s law2) to express stresses by strains and
Equation(1) describes the mass current density that is proreduce the latter by a dimensionless fad(1+ v)oo. We
portional to chemical potential changes produced by strainfind
capillarity, and gravity.

To solve this equation, it must be supplemented with the Zi(X,1) 1 ’
equations describing mechanical equilibrium. Assuming lin- W= - E[(utt_unn) =1+ k+al, (6)
X

ear isotropic elasticity,
wherea=€1/2(,, i.e.,a=0. Alinear stability analysis of the

E : : . )
o=l Uy N 1_V2Vukk5ij , ) ELiIEI;]set of Egs.(2) through(6) yields the dispersion relation
whereu;; is the strain tensor, expressible via the elastic dis- 0=2|q|-9*—a, (7

placements; according tou;; = %(aiuj +d;u;), the condition ) )
for mechanical equilibriumg;a;;=0 (neglecting gravity in wherew andq are the nondimensional growth rate and wave
the bulk as a small cross efféctakes the form of the Lame number, respectively. The absolute valuej@frises, because

equations: the eigensolutions of the elastic problem carry a factor
exp(*igx+|ql2), approaching zero for— —o. A linear in-
(1-2v)V?u+V(V-u)=0. (38)  stability will arise fora<1.

_ o o _ _ As is obvious from the derivation, to be able to manifest
Note that the static version is sufficient since all interfaceitself the instability requires mass transport. Besides the case
motions are slow in comparison with sound propagationdescribed of a liquid in contact with its melt, corresponding

Boundary conditions are to nonconserved dynamics, another situation is of particular
interest, due to possible applications in epitaxial growth. This
Onn=0n=0 (4)  is a solid in vacuum. Material transport will ordinarily be

dominated by surface diffusion then. Consequently, we have

at the interface, periodicity in thedirection with some pre- conserved dynamics, with E¢6) replaced by

scribed wavelength #/q, and
Gxt) 1 1

O-ij_>0-05iX5jX for z— —co, (5) = J
Vi+2 1+2 1+ 8

Herein,o .= n;oj;t; is the shear stress at the interface, which .
must evidently vanish if the latter is in contact with a fluid. _ 2
Another cross effect has been neglected here, viz. that of X 9x 2[(utt Unn) "= 1]+ K+ ag ®)
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and the dispersion relatiai) is simply multiplied by a fac- 0=(1—v)d;V+vayU—(1—v){xd;U+ €[ (1—2v)

tor g2 on the right-hand side. Since the gravity term is nor-

mally negligible in experiments on epitaxial growftimless a X (L5 ExdxV) + (1= v) 33V + axU — {xd-U)],

temperature gradient mimics a strong gravitational field (12)

[16,17)), we may seta=0 in this case, obtaining a

parameter-free equation. 5 5.2
As it turns out, the asymptotic analysis can be performed 0=[dzU+ € (axV—{xdzV) (1~ €°Lx)

together for both dynamical situations, since its most exten- 2 _ _

sive part consists in solving the elastic problémiich is the T2 092V = U+ Exd U= ). 3

same for both casgOnly afterwards is the solution inserted

into the equation describing the interface evolution. At inter-

mediate steps of the calculation, we will therefore write

down equations for the nonconservative case only, but we

shall give the final interface equation for both cases. 1. ASYMPTOTIC ANALYSIS
Let us now consider a situation, whefeg is very large,

i.e., we introduce a small parameter setting{ ;= O(1/e).

This corresponds to a very small stress, but we can neverth

less reach an unstable state by reducing gravity or the densi i R, )
difference, sof, becomes larger thafy /2. olution {x=0. This difficulty usually does not appear with

Then it will be natural to measure length scales in units Oiequa_tions th"’.‘t have an internal Iepgth scale, in contrast to the

el [which isO(1)] rather thanf,; and time scales in units elastlc_ equat!ons, which are devo_ld of such a scale. To over-
¢ 2 Coordinates are transformed according o come it, one introduces annerregion, wher&Z=0(1), and

or e - 5 ) 9 ~anouterregion, wherep=eZ=0(1) [5], attempting then to
=xle, z=7le, and t=t/e". Referring to the new coordi- match the solutions in their common domain of validity. In
nates, the dispersion relation transforms inte-2¢[q|—q?  the inner region, Eqg10)—(13) hold, and solving the bulk
— €?a. For smalle, each term in this relation must behave asequations may be reduced to ordinary differential equations
€%, hence we have for the wave numlitgr €. A long-wave N Z via expansion in powers of. In the outer region, de-
equation should therefore be derivable. To perform theivatives with respect toy andX are the same order of mag-
asymptotics, we introduce another set of coordinatesXvia nitude. Therefore, true partlal differential equations have to
—&X, Z=7—{(x,t), andT = €%, conveniently mapping the be solved. It is here that the linearity of the Laeguations

interface position t&Z=0. X and T are slow variables. We beco:nes |_m[:ortant, beecal_Jset I aI]!ows ople tto_ sollve thetse
setU=u,— (1— »)X andV=u,+ »(Z+¢), whereu, andu, equations in terms of Fourier transforms. Nontrivial aspects

are the displacements, which makes the boundary conditior%f Ehﬁ. calcfulati?n thenfaretllargelytr(]:ltljze to thte asfymptotic
at —o homogeneousY—0, V—0). The transformed Eqs. matching of real space functions wi ourier transtorms.
(1) and (3) read Denoting field variables in the outer region by small let-

ters,u(X,n,T)=U(X,Z,T), v(X,n,T)=V(X,Z,T), we ob-
tain theouter equations

Equations(9) through(13) constitute our starting point for
the asymptotic analysis to be carried out.

These equations are singular4ni.e., the boundary con-
ditions at infinity, where the implicit assumptiah=0O(1)
es not hold anymore, can be satisfied only with the trivial

1
elr(1+ €5 =— H(l_ €00 (1+ 0xU — LxdzU (1—20) 20+ 2(1— v) (35— elxd,)u

2 - =
—92V) +245[ 97U+ €2(9xV = {xdzV) ] T el9x €lxdy) I =0, (149

(Ix— €Lxd,) I u+2(1—v)ed’p

1
_ 2¢2\2__ 2 ¢2\1/2
7 (LT e85 —elxx(1T €850 +e(1-20)(dx—elyd,)?=0, (19

+eal(1+ 52§§<)2] , (9)  theinnerones being given by Eqé10) and(11). Expanding
the interface position and the fields in powersepfwe find
that the expansion is singular in another sense. If it is as-
2 2 2 sumed that=0(1), nonlinear terms willnot arise in the
- + - - ; ; .
(1=2)2U+ eT2(1=v)(9x= Ex2)"V interface equation, a fact that can also be inferred from sym-
+(dy— {xdz)I:V]=0, (10) metry considerations and power counting. Scalings that lead
to a nontrivial result aref=0(e 1), u=0(1), and v
=0(e 1). We therefore write
2(1— )93V + (9x— {xd7) dU
— -1
+eX(1-2v) (9~ {xd)?V=0, (1D LX) =€ 11X T+ Lo(XT) + €Ly (X, T+ - ”

and the boundary conditions at the interfage=(0) become implying d3x¢(X,T)=0(1). Next we set
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V(Z)=€ V_1(Z)+Vo(Z)+eVy(Z)+ - -- where the prime denotes a derivative with respect to the ar-
. gument (). To the two leading orders, the inner equations
=v(p)=€ v_1(n)+vo(n)tevs(n)+---, are solved by
17
Uo(X,Z,T)=By(X,T), (23
:u(n):uo(’)?)‘i‘fu:]_(’”)—'— s (18) V*l(xvzaT):Dfl(xaT)v (24)
where for brevity we have suppressed end T depen- Uy(X,Z,T)=ZA(X, T)+By(X,T), (25)

dences. We then obtain as matching conditi@aging into
account thee dependence of),

Vo(X,Z,T)=ZCo(X,T) +Do(X,T). (26)
Uo(Z)—Ug(0)  (Z—), (19
The outer equations need to be solved only at lowest order in
V_1(Z)—=v-1(0) (Z—x), (200 €. For brevity, we renamé&_,(X,T) back to(X,T). Con-
) fusion should not arise, since we will never negdor ;. It
U1(Z)~Zuy(0)+uy(0) (Z—0), (21)  should be kept in mind, however, that the ng@X,T) is
) O(1), because it is the prefactor ef 1. The outer solution
Vo(Z)~Zv" 1(0)+vo(0) (Z—), (22)  then reads
|
1 (= _
Uo(X, 7. T)= 5 f {20(a,T) +bo(a, T)[ 7+ {(X,T) ]} P+ Al é D, (27)

3_4Vb0(q1T) ein+|q‘[7]+g(x’T)]dq. (28)

1 ©
U—l(xyﬂaT):ﬂf_ (—i sgr(a){ao(a.T) +bo(q, M7+ L(X, T I} +i
Using the boundary conditiond2) and(13), we can expresf; andC, by B, andD _;:

Ay (X)= {Ex2(1—v)+ (1= 2v) 5+ (1= v) {3+ 2= v)BYX) ] = (1—v—v2)D (X))}, (29

(1-)(1+£3)?

Co(X)= {Z&+[— v+ (1= ) ZIBHX) + {x(X)D 1 (X)1}, (30)

(1= v)(1+25)?
where we have left out th€ dependencéwhich is “passively” present everywhere but important only in the final equation—
the Lameequations are always solved at a fixed time

The matching conditions at leading order give four equations expre&jngD 1, A4, and C, by Fourier integrals
involving ag(qg,T) andby(q,T). ForBy andD _ 4, these integrals are essentially shown in E83) and(28), we just need to
set =0 there. The two remaining equations read

1 (= .
ALX)= 5 J _ {ao(@lal+bg(@)[1+ gl £(X) J}e' ™1 dg, (31)

1 (= _
Co(X)= 5~ f ~_{~igac(a)—ibo(a)[sgria) +aZ(X)]+i sg()(3—4v)bo(q)}e! ¥ *13dg, (32

So we have six equations altogether, viz., H83)—(32), . 1 (o ,
for the six unknown function8y, D_;, A;, Co, a and aO(X)Ez_j ao(q)e'*dq, (33
by [20]. Their solution determines the elastic fields, which mJo
then can be inserted into the interface equat@nHowever, 1 (=
what we need is an explicit analytic solution. Its details are Q — igx
technical, so we just give some essential steps. First, we bo(X)= ijo bo(q)e™da, (34
rewrite the equations in terms of Laplace transfofnasher,
one-sided Fourier transforms for example,
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Bo(X)=ag[ X—i {(X)]+ {(X)bo[X—i{(X)]+c.c.

(35

Settingw=X+iZ,
2aj(w)=m(X,Z)+in(X,Z2), (36)
2bo(w)=0(X,2)+ip(X,2), (37)

with m, n, o, andp real functions, we can then reduce our
problem to just two(rea) equations involving complex

guantities. These are the Eq29) and (30) with all quanti-
ties expressed byj(w) and by by(w), i.e., finally by
m, n, o, andp.

Introducing the abbreviations

{x[2=2v+(1-20) (%]

MO T e %9
o
= -
v G A= 0Ed s

(1= v)(1+55)?
these two equations become
[1—Aa(X)Ex+
=N 2(X) +N5(X) ExIm(X, = £)
= N1 (X) +[A2(X) = N3(X) {x]dox(X, =) +[—1
T NAX)Ex+A(X)I[N(X, = ) + Ipx(X, = )]
—2(1=2v)A3(X){xP(X, = 0), (44)
[=1=Ns(X)+N6(X)IxIM(X, =) +[ = Ns(X){x
+(3=4v)hg(X)]Jo(X, =)
= Ng(X) = [ = 1= N5(X) +Ne(X) Ex]Ox(X, = {)
+2(1=2v)[1-Ne(X) ExIP(X, = &) +[N5(X) {x
TAe(X)IN(X, =)+ Lpx(X, = D], (45)

where py and oy denote the derivatives ofp(X,
—{), o(X,—¢) with respect toX at fixed{. That is, we first
take the derivative and only then allagw= £(X).

(3—4v)Ag(X)Jo(X,~ )

PHYSICAL REVIEW E 66, 026102 (2002

Since the four functions involved are real and imaginary
parts of analytic functions, only two of them are indepen-
dent. Indeed, we have

X",0

n(X,— z)———f xTZ(JrgZ)dX/' (46)
X",0

p(X,—0)= ——f “+f) (@7

Equationg44) and(45), being linear, can be solved formally
for o(X,—¢) andm(X,—¢). This leads to

o(X, =) =r1(X)[N(X,= )+ L{px(X,~ )]
Fra(X)p(X, =) +r3(X),
M(X, =) =r4(X)[n(X, =)+ Ipx(X,— )]
+15(X)p(X, =) +16(X) f0x(X, = ) +17(X),

(48)

(49
where the functions throughr - are given by

X)=1=5, (50

20x
X)=————"—, 51
T ar ) oY

—{x
X)=——"—"—"—, 52
T 2
r4(X)=0, (53

eI+ 50

rs(X)=2 TroE (54)
re(X)=-1, (55)

_ {x?
r-(X)= 1ol (56)

The computations leading from Eq®7) through(32) to
Egs. (48) and (49) are straightforward but heavy. Some in-
termediate step®.g., the simplification of the;(X)] as well
as a verification of the whole calculation at the end have
been done using computer algelfkapPLE). Due to the cho-
sen scaling$16)—(18), Egs.(48) and(49) constitute an exact
reformulation of the outer elastic problem, which is linear in
uandv, so higher-order equations have the same form as the
leading order ine. To obtain analytic results, we have to
employ some approximation. We assume thex), the ex-
pansion coefficient 0oé 1, is itself a numerically small quan-
tity. Then expressions, such as E¢4$6) and (47) become
Hilbert transforms Denoting the Hilbert transform df(X)

by
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1= f(X)) first step, taking accurately into account only terms up to
HIF(X)]= —J/ o dX, (57)  order{%(X). Using H{H[ f(X)]}= — f(X), we can solve the
Tl XT=X truncated iteration to obtain explicit expressions for
where the integral is to be taken as a principal value, ag(X,O), m(X.0) that read
indicated by the bar, we find, as the lindi<1 of Eqgs.(48) 0(X,00=—(1—-2v)rz(X)+H[r-(X)], (60)
and(49),

m(X,0)=—(1—-2v)r7(X)
0(X,0)= = r1(X)H[M(X,0) ] = rz(X)H[0(X,0) ]+ r5(X),
(58) —2(1=v)(1-2v)H[r3(X)]. (61)

m(X,0)= —rg(X)H[0(X,0)]+r7(X). (59)  Substitutingo, m, n=—"H[m], andp=—"H[o] back into
the equations foA;, Cy, Bg, andD _4, inserting these into
This set of linear equations can be solved iteratively. ASSumEgs. (23)—(26) and then back into Eq9), we finally obtain
ing, and this is the second approximation, thig{X) is also  the sought-for interface equation, in which we renaiato
numerically small, we may truncate the iteration after thex andT into t (they are the same variables anyway

NS LX) ,
(1 m( 1+ Jw o

42
1+2

by 1y 1
(1+HM2 2 (1+2)?

2
gxx
} + (1+§2)3/2—a§. (62)

The arguments of (x or x" andt) have been suppressed wherever possible without ambiguity.

The nonlocal term drives the instability. It is interesting to see whethe@).will reproduce acoarsening dynamicsf
the type discussed in Rdf18]. For in that case whether a groove grows or shrinks does not depend on local quéntities
as the curvatunealone. Hence, the scenario described cannot be expected from a merely local equation.

This is the melt-crystallization ca$é8]. It is easily checked that linearization of this equation produces the linear disper-
sion relation(7). The corresponding equation with dynamics controlled by surface diffusion is obtained simply by preceding
the right-hand side with the operater (1+ £2) ~*24,]%:

42
1+22

tot=a——al M1 1o ”EF LX)
TR 2 T L oo 400

? Lex
_ n g)2()3/2-|—Oz§ .
(63)

For the system described by this equation, coarsening dycase, in the latter coarsening proceeds more slowly, as can be
namics does not yet seem to have been studied in the litergerified by comparison of Figs. 1 and 2.
ture, therefore it will be briefly discussed in the following  In Fig. 3, we give the dynamics obtained fromlaxal
section. perturbation of a periodic interface. The process of coarsen-
ing is more complex than the simple period-doubling sce-
IV. SOME SIMULATION RESULTS nario suggested in Ref18]. Frustration effects come into

. . play when grooves compete via the nonlocal interaction, so it
Both Eqs.(62) and(63) have been simulated numerically. may happen that the next-nearest neighbor of the leading

Figure 1 gives an example for period-doubling dynamics ) . f th ition b her the third
found in the nonconservative case when an initially periodic@f@0Ve IS hota winner of the competition but rather the thir

sinusoidal structure is submitted to a small perturbation of'€ighbor. _ _
twice its basic periodicity. An extensive overview of the properties of E¢82) and

A similar result is obtained for conservative dynamics and(63) is not intended here. It will be the subject of a different
the same parameter, see Fig. 2. In both cases,was close publication[21]. Suffice it to say that we find these ampli-
to 1, hence the instability was weak. For smaller values,of tude equations to reproduce several qualitative features of the
we found stronger differences between the behavior of thélynamics of the system faithfully, includingonlocally in-
two systems. The main statement that can be made, howevéliced coarseningDifferences with the full dynamic§l18]
is that in both of them similar coarsening scenarios are opappear at large amplitudes. For vanishing grayitg., «
erative, since coarsening allows a reduction of the overal=0), the amplitude is not predicted to saturate in the full
elastic energy. Because of the restriction that the averagmodel but does so in the amplitude equation. This is not so
interface height has to remain constant in the conservativeurprising given that the latter was derived assuming small
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FIG. 1. Period doubling for the interface profile. The initial in- FIG. 2. The initial interface is a cosine with wavelength and
terface is a cosine with wavelengthm2and amplitude 0.1, with amplitude 0.1, with every odd minimum made deeper by %%.
every odd minimum made deeper by 586=0.97 and time interval =0.97 and time interval between curvesAis=10.0.
between curves iAt=10.0.

Ginzburg-Landau equatiof®]. The amplitude equation de-
amplitudeg more precisely a small prefactor of tki¥ e 1) scribes the nature of the bifurcation from the structureless
term in the amplitude expansipnin principle, systematic state as well as instabilities of the ordered pattern with re-
improvement is possible by continuing the iteration schemespect to wavelength modulatior(the Eckhaus instability
truncated after the first step and including higher powers of [9]).
and . In practice, this improvement results in additional A description in terms of a slowly varying amplitude
technical difficulties. makes sense only A varies in a slow fashion in comparison

It is certainly not possible to claim genericity of E462)  with the pattern wavelength d/. This requirement fails if
and(63). Their derivation accounts for only the lowest-order g.—0. In that case a separation between a fast and slow
(i.e., quadratir nonlinearities exactly, while resumming variation is illegitimate. One has thus to resort tsegulap
some nonlinearities to infinite order, which are presumablyexpansion in the manner of Sivashindikl]. Becausey, is
specific for the elastic system. However, if there is a universmall, it provides an appropriate parameter of expansion.
sal amplitude equation for the systems considered, then ifhis is also known as thieng-wavelength limitin that limit
must contain the terms that our derivation produces exactlthe field h obeys generically the Kuramoto-Sivashinsky
and it may be sufficient to consider just these terms. equation(or the damped form with\ the damping rate

which is written in the canonical form,

V. GENERIC EQUATIONS
. . . he= =N —=hy— Dyt hi . (65)

Before looking at the generic equatighderivable from
our particular case, let us briefly recapitulate the general SitUAgain this equation is universf?2,23 in the limit g.—0.
ation concerning amplitude equations of universal validity. gecause of the smallness qf (long wavelengthany non-

There is an overabundance of nonequilibrium systems,cq) effect present in the original constitutive equations dis-
that spontaneously build up an organized pattern from aBpnears, and one recovers again a local equation. This is true
initially structureless state when they are taken su1‘f|C|entIy0n|y because a length scale is present and serves as a cutoff.
far from equilibrium[9]. Typical examples are present in | js akin to the Debye length that makes the nonlocal re-
hydrodynamical system.g., Rayleigh-Beard convectiop sponse function of the Coulomb gas local. There is, however,
chemical reactionge.g., Turing systemscrystal growthithe 5" myriad of situations where long-range interactions play a
Mullins-Sekerka instability, and so on. Despite the fact that gecisive role at all scales, and where it is hardly believable
the underlying physical and chemical mechanisms are diga¢ the above equatiofor a similar equationshould arise
verse in these systems, sufficiently close to the instability,en in the long-wavelength limit. Typical situations with
threshold they all fall within the same universality class. '—etlong-range interactions are electrostatic and magnetic sys-

qc denote the wave number of the emerging ordered patterjems problems with elastic fields, and so on. These systems
andh(x,t) a field describing the pattexwhich can stand for  4re devoid of an intrinsic length scale and it is highly desir-
a component of the velocity field in hydrodynamics, or an

interface position in crystal growth, etalong thex direc- | | | |
tion. Close to the threshold it is knowf9] that h g ~
~A(x,t)e'%, where e'9* describes the(rapid periodic
variation of the field due to the birth of order, whikeis a
slowly varying (slow with respect toe'9<) amplitude. A
obeys the following equation:

At:A+AXX_ |A|2A, (64) 0 20 40 80 80

where coefficients can always be set to unity by an appropri- FIG. 3. Coarsening of the interface profile. The fourth groove of
ate rescaling. This equation is universal in the sense that itse initial interface has been made deeper by 1£4.0.90 and
form depends only on translational and rotational symmeinitial wavelength is 2r. Time interval between curves it
tries. It is usually referred to as tlenplitude equatior the  =10.0.
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able to derive the appropriate generic form of the corre- ' ' ' ' '
sponding evolution equation in the long-wavelength limit. A B g
derivation on the basis of a gradient expansion of an appro-
priately chosen general nonlinear operator in the spirit of
Ref.[22] will be given elsewhergl5].

Here we argue that we can essentially read off the form of
that equation from our resu(62). To this end, we simply
expand to second order ify and drop all higher-order terms.
As noted before, the kept terms are exact to that order. The
“generic” evolution equation with long-range interaction ob-
tained this way reads

2 o éz (X,) o] 10 20 30 40 50 60
é’t:—ag-i-gxx—;f XX,—_XdX'_Zgi hle
o FIG. 4. Evolution according to the generic equati@Y). «
1[2 (= & (x) 2 =0.8, B=1.0. The initial interface is a random structurgsible
— — _y X dx’ (66) near z=0). Time interval between curves i&t=1.0 up tot
2\ m]_, x' —x =20.0, thereafterAt=0.1, and the evolution is shown up to

=21.6. Note the spectacular acceleration of the “winning groove.”
Comparing this equation with the KS one, E5), we see
that it is not exactly a generalization. Since the nonlocal term  on physical grounds, a nonsaturating amplitude is to be
drives the instability, the diffusive term need not be negativeaypected in some situations involving the Grinfeld instability
and hence there is no need for a fourth-order term. Rathe[ig]_ Nevertheless, even in such a case one shaypori
Eq. (66) is complementaryo the Kuramoto-Sivashinsky re- pot pelieve that a long-wave equation predicting an ever-
sult. Of course, the analog of E@6) with a negative sign of  increasing amplitude correctly describes the long-time as-
{xx may also appear and then the dispersion relation woulgmptotics, because the interface eventually leaves the do-
need a different ultraviolet stabilization. If this term were main of validity of the long-wave assumption. This happens
fourth order ing, we would obtain a linear term {y,xxand  when the amplitude becomes larger than the wavelength.
an equation that is a common generalization of the KS equarherefore, an equation, such as E&j7) should be expected
tion and Eq.(66). . . to describe some intermediate-time asymptotics at best.
Closer inspection shows that this equation can be only a Things are different for other universal equations such as
particular case of the generic equation. For, in general, thghe Ginzburg-Landau equatioi64) and the (damped
amplitude equation will have coefficients in front of each of Kuramoto-Sivashinsky equatic65), which usually do work
its six terms. Four of these can be made equal to one Vig, the long-time limit. But this is due to the fact that in these
division by a common prefactor and rescaling of space, timegases the finalaverage amplitude does saturate and is pre-
and the amplitudg itself. So our final equation should con- gicted to be small. However, if the cubic term in Eg4) is
tain two independent nondimensional parameters, but it hasositive, which necessitates a fifth-order description to ob-
only one,a. We suspect that this is due to a hidden symme+ajn saturation of the amplitude, the final asymptotics cannot
try, and a natural candidate for this symmetry is the variaprdinarily be trusted either, because then the amplitude may
tional nature of the basic evolution dynamics, EGS—(3).  not be small contrary to the original assumptions.
In the fully generic equation, the additional parameter would Qn the other hand, while any amplitude description lead-
be the ratio of the coefficients of the two nonlinear terms. |t|ng to nonsaturating a_mp“tudes may seem Se|f-defeating in
is therefore easy to conjecture the form of this equation:  thijs sense, there appear to be systems, where the domain of
, validity of the amplitude equation extends beyond that of the
li=—al+ Ly E[C dx(x )dx’—2§2 assumptions made in its derivation. Recently, a singular
t *om) L x—x X long-wave equation was derived for step-flow growth with-
out desorptiorf24]. It predicts an amplitude growing as the
Bl 2 (= LX) square root of time, i.e., without bounds. Currently available
Bl de , (67)  evidence on the basis of numerical solutions _of_the exact
- model equations seems to corroborate that prediction. Hence,
it is imperative to compare the long-time limit of the ampli-
where we have introduced a second paramgtéfhe corre-  tude description to whatever information is available about
sponding universal equation for conservative dynamicshe long-time behavior of the full system, in order to assess
would be obtained by preceding the complete right-hand sidgs validity.
of this equation by the operater 2. Equation(67) should be thought of as being the first in a
We have simulated E@66) and find that it still describes hierarchy of generic equations describing the initial and in-
coarsening, this time without saturation. An example of atermediate stages of evolution of a number of different sys-
simulation is displayed in Fig. 4. We see a single groove otems. It is relevant to systems the linear dispersion relation of
“finger” survive after a long time. which is quadratic. For other systems, such as the Saffman-
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Taylor system, where the dispersion relation is cubic, we willtion, requiring that the dispersion relation can be transformed
have a different linear term in the equatiihe Laplacian of to long-wave form, should be always satisfiable. The gener-
a Hilbert transforny, and it is an interesting question whether alization to three dimensions is straightforward, in prmm_ple.
the appearing nonlinearities will remain the same. FollowingOur approach opens up the road to a realm of amplitude

the same strategy for the Saffman-Taylor problem, we arrivéquations constituting a hitherto unknown type, the investi-
at the following equation: gation of which seems worthwhile both from the mathemati-

, , cal and physical points of view; a new line of research
__onc gX(X) _'Y_Bfw gxxx(x)d

= dx’ should be stimulated.

m) . x'—x ™ The fact that the inner expansion produces only polyno-
mials in Z (and hence the outer solution is identical to the
uniform approximation25]) strongly suggests that the deri-

, . ) ) vation may even be achieved without the detour via a long-
whereV |§ the fla_t-lnterface _veIocnyy the surface tension, | 4ve approach, using a regular perturbation expansion of the
and B=b"/12u with b the thickness of the Hele-Shaw cell e equations. This would seem to indicate that we are not
and u the fluid viscosity. Of course the linear terms are al-g4|ly dealing with an equation that is valid only in the long-
ways quite trivial, but what is noteworthy is that=0, i.e.,  \ave limit but rather with an ordinargbut strongly nonlin-

the nonlinear terms are local, like in the KS equatinder  oap amplitude equation valid at all wavelengths for small
the usual assumptions for long-wave equations, the secongd,ugh amplitudes, thus posteriori justifying the formal
local nonlinearity is small in comparison with the KS one. geyice of rescaling to large wavelengths. On the other hand,
We call this limit the Sivashinsky limit where nonlocality is e first of our approximations corresponds to setiigtf
presen_t in the linear terms only, as was _derived origina_lly byequal to zero in the exponents of EGR7) and (28), which,
Sivashinsky for flame propagatid@]. This contrasts with  fer taking into account all rescalings, means that the am-
our Eq. (67) that involves in the long-wavelength limit a plitude is small compared to the wavelength.

nonlinear and nonlocalerm. Therefore, this equation should Finally, the amplitude equation is much fastand easier
introduce a new universality class with long-range interacy, handle numerically than previous schemes. Like the KS
tions. equation, for example, its leading behavior described by Eq.
(67) should be generic for systems undergoing long-
wavelength instabilities with long-range interactions.

2
% X'+ V¢

+ ¥Bxxxx (68)

VI. CONCLUSIONS

To summarize, our method of derivation is applicable
whenever the general solution of the bulk equations can be
found by a transformation method. Usually this means they We are grateful to Peter Kohlert for help with the com-
must belinear (with constant coefficienisA second condi- puter algebra.
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