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Entropic tightening of vibrated chains
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We investigate experimentally the distribution of configurations of a ring with an elementary topological
constraint, a “figure-8” twist. Using a system far from thermal equilibrium, a vibrated granular chain, we show
that configurations where one loop is small and the second is large are strongly preferred. Despite the highly
non-equilibrium nature of the system, our results are consistent with recent predictions for equilibrium prop-
erties of topologically-constrained polymers. The dynamics of the tightening process weakly vidlziassa-
grained detailed balance, indicating that the unexpected correspondence with an equilibrium entropic approach
is not exact.
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Extending the concept of entropy to nonequilibrium sys-tightening. The microscopic degrees of freedom, the beads,
tems remains an important challenge with only a few scatexperience periodic drive and dissipative collisions with the
tered examples where an effective statistical mechanics cgplate, rods, and other beads, as well as frictional forces. Re-
be constructed1,2]. Recently, vertically vibrated granular markably the macroscopic observable, the loop size, obeys
media consisting of spherical particles have been studie@n effective statistical mechanics. Detailed balance is only
from the perspective of kinetic theory and statistical mechanweakly violated and the empirical loop-size distribution is
ics [3,4]. Granular chains composed of spherical beads contclose to that conjectured on entropic grounds.
nected by rods were suggested as a model for polymers Tightening of knots in polymers can be understood by
driven far from equilibrium[5,6]. In this study, we use this considering the simplest cap#5], in which electrostatic in-
system to test the relevance of statistical measures, particteractions are perfectly screened. Let a knot be considered as
larly entropy, to nonequilibrium systems, by analyzinglocated at a point, with several loops of lengtiis,N,, . . .
steady-state conformations of topologically constrained?rojecting from the knot. Ignoring hard-core interactions, the
chains. total number of configurations is then proportional to

In equilibrium polymers and biomolecules such as DNA,eMIiN; %2, whered=2 is the spatial dimension, amds a
topological constraints constantly form and relgg&12].  constant. Therefore, assuming all microscopic configurations
Whereas the role entanglements play in chain dynamics igre equally likely, the probability of having a given
well appreciated 13,14, their effect in systems far from Ni,Nj, ... is maximized wheiN;~N andN,, ... are all
equilibrium received much less attention. Moreover, directas short as possible. That is, the knot spontaneously tightens
dynamical experiments are lacking. Theoretical studies, nudue to entropic effects.
merical simulations, and scaling analysis predict that in equi- A ring with a figure-8 constraint is natural for studying
librium, a knotted polymer will generally favor configura- this effect as it simply contains two loops of sizig, N,
tions where the knot is “tight,” i.e., localized to a small with the overall size&N=N;+ N, fixed. The argument above
region of the chaif15-18. predicts a power-law divergence in the loop-size probability

We experimentally examine the applicability of this inter- distribution
esting prediction to vertically vibrated granular chains. A vi-
brating plate supplies the system with energy, balancing the p(n)een™«, (1
energy dissipation due to inelastic collisions experienced by
beadd 3,19-21. This system is well suited for studying to-
pological constraints as demonstrated by experiments on dif-
fusive relaxation5] and spontaneous formatid@] of knots.
Indeed, it allows control of the chain size and the constraint
type, as well as direct observations of the chain conforma-
tion.

We considered the simplest possible topology, a “figure-
8”: a once-twisted ring consisting of two loops, separated by
a single crossing point, which functions as the topological
constraint(see Fig. 1 Under appropriate vibration ampli-
tude, the system is effectively two-dimensional and the
crossing point hops along the chain without flipping open the
figure-8. Surprisingly, despite the highly nonequilibrium
drive applied to the system, we observed strong entropic FIG. 1. A vibrated ring with a figure-8 twist.
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with n=N;,N, for 1<n<N. The exponentr= % ~2.7 can 8
be obtained even when excluded volume interactions are
taken into accounf18,22. Although this is obtained from
largen,N asymptotics, an enumeration for smaller sizes only
leads to small corrections.

Our apparatus consists of an anodized aluminum plate,
driven sinusoidally by an electromechanical vibrator. The
bead and rod chains consist of hollow nickel-plated stainless
steel spheres of radius 148.01 mm connected by thin

(o]

Normalized probability
H

rigid rods of radius 0.260.01 mm. The rods constrain both 2

the bending and stretching of the chain. In particular, the

rods must lie within a cone of a half-angle of roughly 45° 0

about the axis of either of the two adjacent rods, and the

separatiorb between two adjacent beads lies in the range 0 Scaled loop size

=b=0.94 mm. The chains were connected end-to-end to
form rings, and then twisted with a single crossing point
thereby forming a figure-8. For the experiments reporte

FIG. 2. The observed loop size distribution for chains of length
=99 (solid line), N=149 (dashed ling To compare the two dis-

. . . ibutions, the range of possible loop sizes;i8<N—8, is scaled to
here, the number of beads in the figure-8 ring was betweeéI N georp P s

69 and 219, much larger than the tightest possible eight-bea(ylty'
loop. The plate was oscillated harmonically at a frequency of We first sampled the loop size at a much slower rate of
16 Hz. 0.25 Hz. Starting with two equal-size loops at each run we
The dynamics of the crossing depend on the rms accelerabtained the loop-size distributions shown in Fig. 2 for
tion of the plate,y (this dimensionless quantity is in units of chains of sizeN=99,149. The distributions both have sharp
the gravitational acceleratiog). For y=<1.35, the crossing peaks located at the smallest possible loop size. We repeated
does not move along the chain. Fpe1.55, the vertical the experiments using larger beads, changing the driving fre-
motion of the chain is large enough that the number of crossgquency to 13 Hz, and using chains of length 49, 69, and 219,
ings in the ring is not fixed: a loop of the figure-8 can easilyas well as using a plate with different roughness. Further,
flip, untwisting the ring, or creating additional crossings. Wemany sets of images at arbitrary phase with respect to the
chosey=1.5, for which flipping events remained rare, oc- driving were analyzed. In all these cases, the same qualita-
curring roughly every 1boscillation cycles, while the cross- tive loop-size distribution emerged. Hence, the loop is tight.
ing remained mobile, with a 50% chance of the loop size There were, however, some quantitative differences with
changing in agsth second cycle. The probabilities of the loop the peak height varying by about 20%. Since the number of
size changing by 1,2,3 in a single cycle were 37%,9%, andhopping events before flipping<(10*) happens to be of the
2%, respectively, with larger jumps rare. The acceleratiorsame order as the number required for the loop size to reach
was constant and uniform across the plate to better than 1%ts minimum (~N?), the observed distribution depends on
The 27.2 cm plate diameter, corresponding to approximatelyhe initial loop size. This effect is more pronounced for larger
115 beads, was large enough so that collisions with thehains as seen in Fig. 2, where tRe=-149 chain exhibits a
sloped acrylic wall were rare. small maximum at the symmetric configuration, a remnant of
Digital images of the chain were obtained to determinethe initial conditions. Although the Rouse time of an ideal
the loop size distribution. Image analysis requires a two-stephain also scales d$?, the chain conformation relaxes on a
procedure involvingi) monomer recognition an@i) chain  much faster time scale than the loop size, so the dependence
reconstruction. To obtain the monomer positions, images obn the initial chain conformation is negligible.
resolution 100& 1016 pixels were acquired. At this resolu-  To find the true peak heighyith flipping events removed
tion, the reflected light from a bead appears in the images ase measured the loop size at a much faster frame rate of 16
a bright spot of about 55 pixels, even though the bead has Hz, and experimentally determined the transition probability
a diameter of just over eight pixels. The positions of thet; ; from a loop of sizé to a loop of sizg. To sample; ; for
beads were determined by fitting the intensity pattern generll i, the twisted ring was started manually at various equally
ated by each bead to a Gaussian, with the peak position takeipaced loop sizes, and then allowed to run for 200 cycles to
as the bead position. We estimate the positional accuradgt the chain equilibrate, after which 200 frames were taken
obtained using this procedure as 0.05 bead diameters. to measure; ; . By taking 20 000 total frames over 100 sepa-
Given these positions, the order of the monomers alongate runs, we obtained an accuracy of 10% on individual
the chain was determined using an efficient greedy algorithrfter equilibration, correlations between successive transi-
which requires onlyN? operations for arN-bead ring. This  tions were negligible, implying a Markov process.
algorithm utilizes the aforementioned geometrical restric- Given Markovian dynamics, it is possible to calculate the
tions on stretching and bending imposed by the r@igen  steady state probability, , of the loop having sizefrom the
two connected beads, the third was searched only in a prop; ; by performing a Monte Carlo simulation of the transition
erly restricted neighborhogd Once the ring was recon- process. For a chain of length 149, we found the distribution
structed, the crossing point was identified, thereby determinshown as the solid line in Fig. 3. Compared to that measured
ing the two loop sizes. directly, this histogram is characterized by a sharper peak
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0.08 — - - - hood. Thisp-independent quantity was positive, demonstrat-
ing violation of detailed balance directly from thg; . Fur-
thermore, we tested detailed balance using 0.25 Hz transition

> 0.08 rates for other chain lengths, and again found that short
= jumps tighten the loop more than long jumps. As a final
I 004 1 check, we have tested this procedure using surrogate data
e from a simulated process which satisfies detailed balance to
. 0.02 | verify that the violation is not an artifact of the reconstruc-

tion of p from thet; ;.

Since it is surprising that an argument based on counting
of states should be relevant in a nonequilibrium system, we
now consider a simplified model. We show that, even out of
equilibrium, there are entropic tightening forces, despite vio-

FIG. 3. Loop-size distribution obtained from transition rates lation of detailed balance and possible quantitative changes
(solid line), and equilibrium resultdashed ling in the size distribution. We consider a chain with linear elas-

tic interactions between neighboring beads and ignore self-
and considerable curvature at the center because fIippir(n?VOidan_ce' We will first consider _the equilibrium case, with
e chain subject to thermal forcing and damping, and then

events and dependence on initial conditions were eliminate . .
) . ) generalize to athermal drive. Number the beads from I, to
respectively. The dashed line shows the theoretical cprve . ) - ]
and label the position of beaidby x(i). Let the crossing

«[i7%(N—i)~%], with a=72. The two curves are consis- bead q ” h
tent, although the peak is more sharply defined in the soli¢“CY' atbeads,,ny + 1 andny,n,+ 1. We will compute the
orces on the crossing, and from this derive an effective dy-

line. Making quantitative statements about the relation be-"_ ~~

100 150
Loop size

tween the curves would require much larger chain lenths mics.
to obtain a sufficient scalig region Fur?her the statistical Assumen; <n,, and consider the loop formed by beads
g region. ' n,+2,...n,—2. This loop exerts a force on bead+ 1

error in p; is most pronounced in the center of the histogram

where p; is small. Other chain lengths have similar histo- tighten the | S . | mod fthe |
grams, in this case using 0.25 Hz transition rates. tlhge ene eec}gp'e g{narqg‘(? O(;ce{e,r:ormafomﬁdis ck))ekTecoop,
The transition rates enable us to check detailed balance, a average forc PO gm|s_ und fo (
—1/n), with ¢>0. The fluctuations in this force introduce an

sharp test of the nonequilibrium nature of the system. For &tactive noise into the dynamics of,. There is also an

SySt.e"? in thermal equilibrium, detailed palance !mplles %effective dissipation: if the crossing moves to tighten a given
vanishing net flux betW(_aen any two microscopic Statesloop, the force exerted by that loop temporarily increases
namelypit; ;= pjtj,i, or f;()=In[(pitii+)/(pi+ti+})]=0. In- 15tk these contributions are determined by short distance
terestingly, we have found that(i)>0 and f5(i)<0,  effecty. We then make an approximation that,n, can be
namely, short jumps tend to tighten the loop more than longreated as particles of masé subject to the above forces.
jumps. This is shown in Fig. 4, where we plot a moving The resulting dynamics fan=n,—n, whenn<N is
average off (i) as the solid line and a moving average of
fo(i) as the dashed line. The averagefefi) is 0.1+0.02 -
for i>100. 20

As this is an important point, we have made several ad- Mdin= n van+(t), @
ditional checks. We also considerdel(i)+ (i +1)—f,(i

+2), which measures the flux around a three-point neighbor- ) o ) .
wherev is the dissipation parameter andis the noise. By

the fluctuation-dissipation theorem, noise and dissipation in

02 ' ' Eq. (2) are such thah also behaves as a thermal particle at
tem%(/azratureT, giving an equilibrium distributionp(n)
«n

Suppose instead that the chain is subject to athermal forc-
ing with large, non-Gaussian fluctuations at short distances, a
reasonable assumption given the collisions with the plate.
The average force will remain proportional to61/n, but the
noise in Eq.(2) also becomes athermal. The effect of this is
most easily understood in the overdamped limit of E).
Then,n executes a biased random walk with a drift of order
1/n, with additional random jumps of varying size due to
noise. As a result, large jumps are less biased than small
jumps, and detailed balance is violated as in the experiment.

FIG. 4. Plot of smoothed, (i) (solid line), and smoothed,(i) At large n this gives biased diffusion, with the diffusivity
(dashed ling determined by the mean-square step size. This vyields

proportional to x(n;+2)—x(n,+1). This force tries to

£,(0),1,(1)

75 10 125
Loop size, i
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pxn~ % a+#d/2. For smallen, the probability distribution is In conclusion, we have observed spontaneous tightening
determined only by the smaller, more biased jumps, sharper®f topological constraints in vertically vibrated granular
ing the peak in the distribution at a width of order the largestchains so that the presence of the constraint merely reduces
jump size, consistent with observations. This behavior is infhe chain length by a fixed amount, rather then leading to an

dependent of the precise form of the noise, as confirmed b9x§ensiv_e size reduction. For equilibrium polymers, the tight-
our numerical simulations of Eq2). ening arises from entropy. Here, because of the strongly non-

Finally, we consider the dynamics of constraints in linear€quilibrium drive applied to the system, the bead dynamics
chains instead of rings. In this case, knots can open at th@® athermal and the crossing dynamics break detailed bal-
ends of the chain. Consider a linear chain which crosse@Nce: Nevertheless, the loop-size distribution remains close
itself at one point. Let the crossing occur at limkgn,, with 0 €auilibrium. This system provides further possibilities for
0<n,<n,<N. The pointsn, .n, describe a random walk, experimental examination of the role of entropic forces in

ith bound diti - d a bi tional t nonequilibrium statistical mechanics. For example, it can be
with boundary conditionsi; =N, and a bias proportional 10 - ,seq to probe fluctuation-dissipation relations by a quantita-

1/(n;—ny). Fora>1, the two walkers form a bound state, {je comparison between the forces on the crossing point and
and the time for the knot to open will behave for lal§@s  the velocity fluctuations in the beads, namely the granular
for a single random walker. This contrasts with the behaV'Ortemperature. Furthermore, monitoring steady-state chain

found in a larger acceleration regime, for which experimentatonformations may illuminate the ergodic properties of the
measurements of knot opening times showed a purely d'ﬁUSystem.

sive behavior[5], with negligible entropic interaction be-

tween walkers. We speculate that the reason for the reduced We thank Charles Reichhardt for useful discussions. This
interaction in the larger acceleration regime is that the inwork was supported by U.S. DOEontract No. W-7405-
creased drive takes the system further out of equilibrium. ENG-36 and by the Canadian NSERC.
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