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Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input

Ulrich Hillenbrand*
Institute of Robotics and Mechatronics, German Aerospace Center, Oberpfaffenhofen, 82234 Wessling, Germany

~Received 23 April 2002; published 28 August 2002!

In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from
the network’s background activity. This leads to ongoing, mostly subthreshold membrane dynamics that de-
pends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold
membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the
subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics.
Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which
give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, I show that~i! mere noise
inputs can drive the membrane potential into sustained, quasiperiodic oscillations~noise-driven oscillations!, in
the absence of a stimulus-derived, intraneural, or network pacemaker;~ii ! adding hyperpolarizing to depolar-
izing synaptic input can increase neural activity~hyperpolarization-induced activity!, in the absence of
hyperpolarization-activated currents.

DOI: 10.1103/PhysRevE.66.021909 PACS number~s!: 87.19.La, 87.10.1e, 02.50.2r
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I. INTRODUCTION

Cortical pyramidal cells fire action potentials at an av
age spontaneous rate of about 10 spikes/s in waking ani
@1,2#. At such a low spike rate, it is clear that most cortic
neurons spend a significant amount of time with their me
brane potential well below the threshold for spike activatio
On the other hand, a cortical pyramidal cell receives roug
10 000 synapses@3#, mostly from other cortical neurons
Since individual postsynaptic events cause transient
creases in membrane conductance, it follows that the dyn
ics of membrane potentials is largely controlled by su
threshold stimulation from the continuous network activi
Subthreshold membrane polarization is, in turn, a pot
modulator of stimulus-driven spike activity@4,5#.

In this paper, I analyze the subthreshold dynamics of
membrane potential driven by stochastic synaptic activity
general stationary statistics. Such conditions are given
neurons that do not respond to an external stimulus, but
exposed to the network’s spontaneous or stimulus-dri
background activity. The generation of postsynaptic pot
tials ~PSPs! and their propagation along the dendrites o
neuron are modeled in a rather simple way to allow fo
thorough analytical treatment. Accordingly, the focus is
generic patterns of behavior rather than on quantitative
sults. Some of the conclusions are discussed in relation to
experimental literature.

II. MODELING SYNAPTIC RESPONSES

The potentialV across a local patch of passive membra
is described by

d

dt
V52

1

tm
V1

1

tmgm
I , ~1!
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where tm and gm are the passive membrane time const
and leak conductance, respectively, andI is the current
passed along the dendrites from other parts of the cell.
membrane’s resting potential is set to zero. After a syna
input has been received on the considered patch of m
brane, the potential obeys

d

dt
V52

1

tm
V1

1

tmgm
I 1

gs

tmgm
~Vs2V!, ~2!

whereVs andgs are the synaptic reversal potential and co
ductance, respectively. LetV0(t) and Vin(t) be solutions to
Eqs. ~1! and ~2!, respectively, withV0(0)5Vin(0)5V(0).
Synaptic ion channels are open for a brief periodds!tm @6#.
At time t5ds , when synaptic channels close, the deflect
of the membrane potential due to the synaptic input is

Vin~ds!2V0~ds!5
ds

tm

gs

gm
@Vs2V~0!#1OXS ds

tm
D 2C. ~3!

This deflection propagates along the cell’s dendrites.
away from its point of origin, I model the synaptic respon
as a PSP. In a passive cable, the rise time and amplitude
PSP depend on the time course of the synaptic current,
the relative locations of the synapse and the point on
membrane at which the PSP is observed; the decay-time
stant approachestm for long times @7–10#. However,
computer-simulation studies involving realistic cell mo
phologies@11,12# and voltage-dependent dendritic condu
tances@13# have revealed that PSPs in real neurons may
less variable than suggested by a cylindrical passive-c
model. A coarse but, for the present analysis, sufficient
proximation to a PSP is given by the impulse response o
second-order low-pass filter,

L~g,Vs ,t0 ;t !ªg@Vs2V~ t0!#
t2t0

t

3expS 12
t2t0

t DQ~ t2t0!, ~4!
©2002 The American Physical Society09-1
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ULRICH HILLENBRAND PHYSICAL REVIEW E 66, 021909 ~2002!
with the unit-step function

Q~ t !ªH 0 for t<0,

1 for t.0.
~5!

The PSP’s amplitude isg@Vs2V(t0)#, with the factor

gªa
ds

tm

gs

gm
.0. ~6!

Thus, the PSP is initiated at timet0, has a rise time and
decay-time constantt, is attenuated or amplified by a facto
a @cf. Eq. ~3!#, and is assumed to propagate instantaneou
It qualitatively captures the basic properties of real PSP
having a finite rise time and an exponential decay phase.
chosen here for its convenience for analysis.

Postsynaptic conductance changes are very local c
pared to the extended dendritic trees on which synap
make contacts. It is therefore a reasonable approximatio
treat them as noninteracting. The total membrane poten
under synaptic control is hence given by the sum

V~ t !5(
i 51

`

L~g i ,si ,t i ;t ! ~7!

for the whole cell. Heret1<t2<••• are the times of synaptic
input received by a neuron;g i and si are the amplitude-
related factor defined in Eq.~6! and the reversal potential o
the i th synaptic input, respectively. In Sec. III E, I will ad
dress effects of delays in the propagation of PSPs.

III. ANALYSIS AND RESULTS

Upon inspection of Eqs.~4! and~7!, it is clear that there is
an equivalence relation between the statistics of theg i and of
the pairs (si ,t i). Higher values ofg i have the same effect o
the dynamics ofV(t) as shorter intervalst i 112t i between
successive stimuli withsi5si 11. In order to simplify the
analysis, without limiting the dynamic repertoire ofV(t), it
is preferable to restrict to one valueg[g i . In this section, I
shall thus derive analytical results on the dynamics

V~ t !5g(
i 51

`

@si2V~ t i !#
t2t i

t

3expS 12
t2t i

t DQ~ t2t i !. ~8!

Moreover, the results will be illustrated by computer simu
tions where appropriate.

Arguably, the ‘‘obvious’’ approach to the problem is t
specify the distribution functions for the point process th
models the timest i of stimulus events and write down inte
gral equations for the moments ofV(t). However, we shall
take a different approach. We will start by casting the d
namics in the form of a Markov chain. There are two sign
cant advantages proceeding this way. First, it will allow us
go quite far with the analysis without being specific abo
the stimulus process. Only at some later point will it be pr
02190
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itable to specify the statistics of stimulus times. Seco
making use of the Markov property, we will gain insight n
only into the dynamics of moments of the membrane pot
tial, but also into the temporal pattern ofindividual trajecto-
ries V(t).

A. Markov formulation of the dynamics
of the membrane potential

Introducing the notation

xjªV~ t j !5g(
i 51

j 21

@si2V~ t i !#
t j2t i

t

3expS 12
t j2t i

t D , ~9!

yjªg(
i 51

j 21

@si2V~ t i !#expS 2
t j2t i

t D , ~10!

r jªt j 112t j , ~11!

we can reformulate the dynamics of Eq.~8! for the discrete
timest5t j as an iteration of a combination of two stochas
mapsR(r ) andS(s),

S xj

yj
D5R~r j 21!+S~sj 21!S xj 21

yj 21
D , x15y150, ~12!

S~s!:S x
yD°S x

y1g~s2x! D , ~13!

R~r !:S x
yD°S S x1ey

r

t De2r /t

ye2r /t
D . ~14!

The interstimulus timesr j and the synaptic reversal poten
tials sj are stochastic variables, drawn independently fr
densitiesu(r ) on R1 and v(s) on R, respectively. These
densities are determined by the neural network activity a
the number and types of synapses on the neuron consid
Note that although there may well be statistical dependen
betweenr j and sj , and (r j ,sj ) and (r j 8 ,sj 8) ( j 5” j 8) as
sampled at oneindividual synapse, these do not show up
the sequencesr j and sj for all synaptic inputs to a cortica
neuron.

In the present formulation of the dynamics, the synap
input timest j are, likexj andyj , stimulus-driven stochastic
variables and may be incorporated by extending the sys
~12! with the equation

t j5t j 211r j 21 . ~15!

This equation can be solved independently of Eq.~12!. In
particular,

^t j&5~ j 21!^r &1t1 . ~16!

Here and in the following, we encounter mean values of
types
9-2
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^ f ~s!&ªE
2`

`

ds8v~s8! f ~s8!,

^ f ~r !&ªE
0

`

dr8u~r 8! f ~r 8!, ~17!

with f being some function on the real numbers for which
integrals are defined.

The dynamics~12! is a Markov chain. The transition
probability corresponding toS(s) is

pS~x,yux8,y8!5E
2`

`

dsv~s!d~x2x8!

3d„y2y82g~s2x8!…, ~18!

and the one corresponding toR(r ) is
rs

-

dd

om

02190
e

pR~x,yux8,y8!5E
0

`

dru~r !dFx2S x81ey8
r

t De2r /tG
3d~y2y8e2r /t!. ~19!

Here d is the Dirac delta function. Letp(x,y) be a joint
probability density forx andy. Then

^xnym&ªE
2`

`

dx8E
2`

`

dy8p~x8,y8!x8ny8m, n,mPN,

~20!

are the moments ofx and y. We want to know how the
moments change under the action ofR(r )+S(s). For the ac-
tion of S(s), we get
^xnym&S5E
2`

`

dx̄E
2`

`

dȳE
2`

`

dx8E
2`

`

dy8pS~ x̄,ȳux8,y8!p~x8,y8!x̄nȳm5 (
h,i , j PN

h1 i 1 j 5m

S m
h,i , j D ~21! igh1 i^sh&^xn1 i y j&,

~21!

with polynomial coefficients

S m
h,i , j Dª m!

h! i ! j !
, h1 i 1 j 5m. ~22!

The action ofR(r ) yields

^xnym&R5E
2`

`

dx̄E
2`

`

dȳE
2`

`

dx8E
2`

`

dy8pR~ x̄,ȳux8,y8!p~x8,y8!x̄nȳm5 (
k50

n S n
kD K S er

t D k

e2(n1m)r /tL ^xn2kym1k&. ~23!
f

Let pj (x,y) be the joint probability density ofx andy at time
t j . By combining Eqs.~21! and ~23!, we can write down
iteration equations for the moments,

^xnym& jªE
2`

`

dx8E
2`

`

dy8pj~x8,y8!x8ny8m. ~24!

The iterations can be solved successively for alln and m,
starting with the first moments. We shall solve for the fi
two moments, i.e., for̂x& j , ^y& j , ^x2& j , ^xy& j , and^y2& j .
Note that the ensemble averages~24! are not taken at con
stant timet, but rather at a constant numberj of synaptic
inputs received, irrespective of the timet j of the j th input.
As mentioned above, the times of synaptic inputs are a
tional random variables obeying Eq.~15!.

B. Mean membrane potential

The iteration dynamics of the mean values obtained fr
Eqs.~21! and ~23! is
t

i-

~25!

with the stimulus parameters^s& and

a1ª^e2r /t&

b1ª K r

t
e12r /tL J P~0,1!. ~26!

The dynamics of̂ x& j and^y& j depend on the eigenvalues o
M1, and thus on the stimulus parametersa1 and b1. The
eigenvalues are

l1/2ªa12
gb1

2
6

1

2
Ag2b1

224ga1b1. ~27!

For convergence of the dynamics, we require that
9-3
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ul1/2u,1 ⇔ gb1,~a111!2. ~28!

Figure 1 shows the parameter regions of convergence
divergence. In this parameter space, the vicinity of the po
a151,b150 is occupied by high-frequency stimuli, i.e
with short interstimulus timesr. A very low network activity,
on the other hand, lies close to the pointa150,b150. It
turns out that for any input statistics, the mean of the me
brane potentialV converges, if the factorg, controlling PSP
amplitudes, is sufficiently small. Forgb1.4, on the other
hand, the mean dynamics will never converge.

From Eq.~25! we obtain the asymptotic values

lim
t→`

^V~ t !&5^x&`5
gb1

gb11~12a1!2
^s&, ~29!

^y&`5
g~12a1!a1

gb11~12a1!2
^s& ~30!

for the regime of convergence. A contour plot of^x&` as a
function of a1 andgb1 is shown in the left graph of Fig. 2
For the timest j of synaptic input being consistent with
Poisson process, it is shown in the Appendix that the stim
lus parametersa1 ,b1 lie on a parabola, plotted in the le
graph of Fig. 2 for differentg. The ratio^x&` /^s& behaves

FIG. 1. Space of stimulus parametersa1 andb1 that determine
the dynamics of the mean membrane potential. The dynamics
verges for (a111)2.gb1. For gb1,4a1, the two eigenvalues
given by Eq. ~27! are complex conjugate. For (a111)2.gb1

.4a1, they are real and negative. The corresponding type of m
dynamics is depicted for these two regimes.
02190
nd
t
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-

then as shown in the right graph of the figure. Not surpr
ingly, the mean membrane potential is pulled closer to
mean synaptic reversal potential^s& with increasinga1, that
is, with increasing stimulus frequency, and with increas
PSP amplitudeg.

For gb1,4a1, the eigenvaluesl1/2 are complex conju-
gate. In Sec. III C, I will show that only then will the vari
ance ofV(t) converge. As depicted in Fig. 1, in this regim
^V(t)& converges in a damped oscillation. The dynamics
solved straightforwardly. LetL be the matrix that diagonal
izesM1, i.e., LM1L21 is diagonal. Furthermore, let

KªS 1 1

i 2 i D . ~31!

Then the matrixKL is real and we can write the powers o
M1 as

M1
j 5a1

j L21K21S cos~ j f! 2sin~ j f!

sin~ j f! cos~ j f!
DKL,

with fªarg~l1!. ~32!

The iteration dynamics~25! is solved by

S ^x& j

^y& j
D5S ^x&`

^y&`
D2M1

j 21S ^x&`

^y&`
D , ~33!

that is, a spiral motion around the attractive foc
(^x&` ,^y&`). Its angular period is, measured in the numb
of synaptic input events,

P5
2p

arg~l1!
, ~34!

and averages in real time to

^T&5P^r &. ~35!

Thus^T& is the mean period of̂V(t)&. Moreover, it may be
shown easily thatP is the period of the covariance function

n-

n

s
or

of
re

is
FIG. 2. Left: Contour plot of the asymptotic
mean membrane potential^x&` . Dashed lines de-
limit the regions of different mean dynamic
shown in Fig. 1. Assuming Poisson statistics f
stimulus times, the stimulus parametersa1 andb1

lie on parabolas, here plotted forg
50.2,0.7, . . . ,3.7. Right: Plot of ^x&` /^s& for
Poissonian stimulus times and the same values
g as on the left. The curves are interrupted whe
(a111)2,gb1 such that the mean dynamics
divergent; cf. Fig. 1.
9-4
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cov~xj ,xj 1k!ª^~xj2^x& j !~xj 1k2^x& j 1k!&

5E
2`

`

dxE
2`

`

dyE
2`

`

dx8E
2`

`

dy8pk~x,yux8,y8!pj~x8,y8!~x2^x& j 1k!~x82^x& j !, ~36!

where

p1~x,yux8,y8!ªE
2`

`

dx̄E
2`

`

dȳpR~x,yux̄,ȳ!pS~ x̄,ȳux8,y8!, ~37!

pk~x,yux8,y8!ªE
2`

`

dx̄E
2`

`

dȳp1~x,yux̄,ȳ!pk21~ x̄,ȳux8,y8! for k.1.

In particular, the asymptotic covariance function limj→`cov(xj ,xj 1k) alternates between phases of correlation and antico
lation with periodP. In Sec. III D, I will show that under certain stimulus conditions these oscillations of the memb
potential never die out forindividual realizationsof the stochastic process. The damping of themeanoscillation is then due to
a loss of phase coherence with time.

For Poissonian stimulus timest j , the mean oscillation period is given by

K T

t L 55 2p K r

t L Y arctanFAeg^r /t&@~42eg!^r /t&14#

~22eg!^r /t&12 G for ~22eg!K r

t L 12.0,

2p K r

t L Y H p1arctanFAeg^r /t&@~42eg!^r /t&14#

~22eg!^r /t&12 G J elsewhere;

~38!

cf. the Appendix. Figure 3 shows plots of^T/t& for differentg, both as a function of̂r /t& anda1. For ^r /t&.4/(eg24) or,
equivalently,a1,124/(eg), the stimulus enters the regime wherel1/2 are real and negative, and the mean period ends u
the curve,

K T

t L 52K r

t L 52S 1

a1
21D , ~39!

plotted with the dashed lines in Fig. 3. For^r /t&→0 or, equivalently,a1→1, we find that̂ T/t& approaches zero. In particula
^T& can be much shorter than the rise timet of PSPs.

C. Variance of the membrane potential

To estimate whether the trajectoriesV(t) stay bounded when their mean converges to a finite value, we have to c
whether their variance converges as well. We will now analyze the dynamic map for the second moments ofx andy defined
in Sec. III A. From Eqs.~21! and ~23!, we obtain

~40!

FIG. 3. Mean oscillation period̂T& of the
membrane potential in units of the rise timet of
PSPs@cf. Eq. ~4!#, plotted as a function of the
stimulus parametersa1 ~left! and ^r /t& ~right!.
For the curves we assume Poisson statistics
stimulus times andg50.2,0.7, . . . ,3.7. The
mean oscillation period lies on the dashed curv
for a1,124/(eg) or, equivalently, ^r /t&
.4/(eg24).
021909-5



c

el

va
t
x

e

-

re

m
e

o

n

q.

nt of
that

lie
t

ULRICH HILLENBRAND PHYSICAL REVIEW E 66, 021909 ~2002!
with the stimulus parameters

a2ª^e22r /t&

b2ª K 2r

t
e122r /tL

c2ª K S r

t D 2

e222r /tL 6 P~0,1!, ~41!

and

ujª~gb222g2c2!^s&^x& j12gc2^s&^y& j1g2c2^s
2&,

~42!

v jª~ga22g2b2!^s&^x& j1gb2^s&^y& j1
1

2
g2b2^s

2&,

~43!

wjª22g2a2^s&^x& j12ga2^s&^y& j1g2a2^s
2&. ~44!

The ^x& j and ^y& j converge to the values given in Eqs.~29!
and ~30! such that (uj ,v j ,wj ) will become constant. To
check convergence of the second moments, it is thus ne
sary and sufficient to consider the eigenvalues ofM2. These
are the roots of the characteristic polynomial

n32~3a222gb21g2c2!n2

1S 3a2
22g2a2c222ga2b21

1

2
g2b2

2D n2a2
350,

~45!

and are rather lengthy expressions which need not be sp
out here. Depending on the stimulus parametersa2 , b2, and
c2, there are one real and two complex conjugate eigen
ues, or three real eigenvalues. Letn1 be the eigenvalue tha
is always real andn2/3 the other two that may be comple
conjugate or real. Stimulus parametersa2 , b2 , c2 that yield
a convergent second moment ofV(t) are those that obey th
constraints

un1u5: f 1~a2 ,gb2 ,g2c2!,1,

max~ un2u,un3u!5: f 2~a2 ,gb2 ,g2c2!,1, ~46!

with continuous functionsf 1 and f 2. The two surfaces de
fined by

f 1~a2 ,gb2 ,g2c2!51, f 2~a2 ,gb2 ,g2c2!51 ~47!

are shown in Fig. 4. Since convergence is obviously ensu
for g50, which yieldsxj[yj[0 @cf. Eq. ~12!#, the param-
eter region that results in convergence of the second
ments is the spacebetweenthe two surfaces that includes th
axis (a2 ,gb2 ,g2c2)5(a2,0,0),a2P(0,1). In the region be-
yond the intersection of the surfaces, i.e., for roughlyg2c2
.9, there are no combinations of parameters that yield c
vergent second moments.

For Poisson statistics of the stimulus timest j , the stimu-
lus parametersa2 ,b2 ,c2 lie on the curves plotted in Fig. 4
for different values ofg; cf. the Appendix. The curves ru
02190
es-

led

l-

d

o-

n-

FIG. 4. Three different views of the two surfaces defined in E
~47! in the space of stimulus parametersa2 , b2, andc2. The region
of parameters that result in convergence of the second mome
the membrane potential is the space between the two surfaces
includes thea2 axis. Parameters for Poissonian stimulus times
on the thick curves forg50.2,0.7, . . . ,3.7. The graphs show tha
convergence is ensured for all Poissonian stimuli, ifg<1.2.
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SUBTHRESHOLD DYNAMICS OF THE NEURAL MEMBRANE . . . PHYSICAL REVIEW E 66, 021909 ~2002!
from (a2 ,gb2 ,g2c2)5(0,0,0), the limiting point for low in-
put activity (̂ r &5`), to (a2 ,gb2 ,g2c2)5(1,0,0), the limit
of high-frequency stimulation (^r &50). For g sufficiently
small, the curves lie completely within the region of conv
gence. For largerg, they are in the region of divergenc
except near the point (a2 ,gb2 ,g2c2)5(0,0,0). For ^r /t&
!1, which is the realistic regime for cortical neurons, t
eigenvaluesn2/3 are complex conjugate and we get

n1512S 22
eg

2 D K r

t L 1OS K r

t L 3/2D , ~48!

un2/3u512S 21
eg

4 D K r

t L 1OS K r

t L 3/2D . ~49!

It follows that for ^r /t&!1, it is necessary and sufficient fo
the second moments to converge thatg,4/e. In fact, Fig. 4
is
n
s

o

al
t

a
nt

02190
-

shows that at least forg<1.2 the second moments converg
for all 0,^r /t&,`, corresponding to the entire curves ru
ning between (a2 ,gb2 ,g2c2)5(0,0,0) and (a2 ,gb2 ,g2c2)
5(1,0,0) in the parameter space.

As shown in the Appendix, the conditiong,4/e is for
Poisson statistics of the timest j equivalent to 4a1.gb1 for
all a1P(0,1). In the following, we will assume this conditio
to hold. The system is thus always in the regime of damp
oscillations of^V(t)&; cf. Fig. 1.

After some lengthy but straightforward algebra, we fi
for the asymptotic variance ofx, and hence ofV(t),

lim
t→`

var@V~ t !#5var̀ ~x!ª^x2&`2^x&`
2 5^s2&r12^s&2r2 ,

~50!

with coefficients
r15
g2~b2

212c222a2c2!

2~12a2!314g~12a2!b21g2b2
222g2~11a2!c2

, ~51!

r25
g2b1

2

@~12a1!21gb1#2
2

2g2@a1~12a1!~b2
212c222a2c2!1b1~b22a2b222gc2!#

@~12a1!21gb1#@2~12a2!314g~12a2!b21g2b2
222g2~11a2!c2#

. ~52!
s

e

on.
y

n
ics

to-
For Poisson statistics of the stimulus timest j , the coeffi-
cientsr1/2 simplify to

r15
~eg!2

4eg2~eg!214^r /t&
.0, ~53!

r25
~eg!3~eg12^r /t&!

@4eg2~eg!214^r /t&#~eg1^r /t&!2
.0; ~54!

cf. the Appendix.

D. Stationary states, fluctuations, and noise-driven oscillations

We have seen in the two previous sections that there
region of stimulus parameters where the mean and varia
of V(t) converge to finite values. Averages do not tell u
however, whatindividual trajectoriesV(t) look like. In this
section we want to gain insight into the temporal pattern
individual trajectories.

Let us first deal with the short-time behavior of individu
trajectories (xj ,yj ). We ask what they look like for the firs
few j, that is, the first few synaptic inputs. The variances

varj~x!ª^x2& j2^x& j
2 , varj~y!ª^y2& j2^y& j

2 ~55!

are zero initially. They increase to finite values no faster th
the fastest-growing linear combination of second mome
i.e., like e2 j /Q with
a
ce
,

f

n
s,

Q521/ln~ min
i 51,2,3

un i u!. ~56!

We have to compareQ to the periodP of the oscillation of
the mean values (^x& j ,^y& j ) in order to see whether thi
oscillation shows up in individual realizations (xj ,yj ). From
Eqs.~34!, ~48!, and~49! we obtain

P

Q
5

~81eg!p

2~eg!1/2 K r

t L 1/2

1OS K r

t L D . ~57!

Thus for ^r /t& sufficiently small, we getP/Q!1 and the
oscillation of the meanŝx& j ,^y& j is fast as compared to th
growth time of the fluctuations varj (x),varj (y) around the
means. Individual realizations (xj ,yj ) are then well de-
scribed by their means for several periods of the oscillati
Put differently, an oscillation with a mean period given b
Eq. ~38! then shows up in individual realizationsV(t). With
longer interstimulus timeŝr /t&, fluctuations increasingly in-
terfere with the oscillation. The transition from a
oscillation-dominated to a fluctuation-dominated dynam
of V(t) is depicted in Fig. 5.

It remains to establish the long-time behavior of trajec
ries (xj ,yj ). The dynamics~33! of their mean value spirals
into the point (̂ x&` ,^y&`). Without damping of the oscilla-
tion, the trajectories would lie on orbits defined byq(x
2^x&` ,y2^y&`)5const, with the quadratic form
9-7



umn
ed
id

ULRICH HILLENBRAND PHYSICAL REVIEW E 66, 021909 ~2002!
FIG. 5. Typical trajectories of the membrane potentialV(t), simulated for various stimulus conditions as indicated by the row and col
labels of the array of graphs. The unit of time is the rise timet of PSPs@cf. Eq. ~4!#. Synaptic reversal potentials are uniformly distribut
in the intervals@^s&2Ds,^s&1Ds#. The membrane potentialsV50 ~resting potential! andV5^s& are indicated in each graph by the sol
and dashed lines, respectively. The graphs show the transitions between stationary, fluctuating, and oscillatory dynamics ofV(t) as discussed
in the main text. The PSP-amplitude factorg50.1 for all graphs.
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q~j,h!ª^~j,h!,~KL !†KL~j,h!&

5
4ga1

2j2

b1
24ga1jh14a1h2. ~58!

To estimate the true degree of damping of individual traj
tories (xj ,yj ), we calculate the mean asymptotic rat
^q/q0&` with the initial valueq0ªq(^x&` ,^y&`) of the qua-
dratic form q. From Eq. ~40! we obtain the three secon
momentŝ x2&` , ^xy&` , and^y2&` which are needed for the
calculation of^q&` . After some lengthy but straightforwar
algebra, we find

K q

q0
L

`

5
^s2&

^s&2
r̄12 r̄2 , ~59!

where the coefficients are for Poisson statistics of syna
input timest j ,

r̄15
2~eg1^r /t&!2

4eg2~eg!214^r /t&
.0, ~60!

r̄25
2eg~eg12^r /t&!

4eg2~eg!214^r /t&
.0; ~61!

cf. the Appendix. For var(s)5^s2&2^s&250, it follows that

K q

q0
L

`

5 r̄12 r̄2

5
2^r /t&2

4eg2~eg!214^r /t&
,

1

2 K r

t L !1. ~62!

Hence there is strong damping, and individual trajector
(xj ,yj ) converge close to the steady mean state, if syna
02190
-

ic

s
ic

currents have all the same reversal potential. On the o
hand, for var(s)/^s&2@1, hence ^s2&/^s&2@1, we get
^q/q0&`@1 and there is no damping of individual traject
ries (xj ,yj ). Since the dynamics is a temporally homog
neous Markov chain, at any time we then find qualitative
the same situation as at the start of the process. Thus the
no qualitative change in the trajectories (xj ,yj ) on a long
time scale, and the pattern of evolution, random fluctuati
or oscillations, that dominates initially~see above! will also
prevail at all times. Figure 5 summarizes the types of dyna
ics of V(t), illustrating our results on short- and long-tim
behavior by computer simulations.

With synaptic reversal potentialssj having a high vari-
ance, we have seen individual trajectoriesV(t) to oscillate or
fluctuate persistently around the value limt→`^V(t)&
5^x&` . It is interesting to compare the mean of the interv
D5t2t8 between successive timest.t8 defined by

V~ t !5V~ t8!5^x&` ,
d

dt
V~ t !.0,

d

dt
V~ t8!.0,

~63!

the mean ‘‘jitter period,’’ with the mean oscillation perio
^T& @cf. Eq. ~38!# of ^V(t)&. I have measured jitter periods i
computer simulations ofV(t). As can be seen in Fig. 6, th
match between the two periods is perfect for small^r /t&,
that is, in the regime where oscillations are rather regu
For increasing interstimulus times^r /t&, when the random-
walk component of membrane dynamics grows stronger~cf.
Fig. 5!, the mean jitter period drops below the mean oscil
tion period, indicating that fluctuations causeV(t) to jitter
around its asymptotic mean value faster than the oscilla
component of the dynamics alone.
9-8
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E. Delays

The conduction of synaptic currents in neuronal dendr
leads to delays relative to the time of the synaptic input.
us assume here that we can assign a delaydi.0 to a PSP
initiated at timet i , such that at timet i1di the response is
spread out across the whole neuron. Of course, such a d
does not properly describe gradual PSP propagation.
sense, it is the opposite extreme of the instantaneous
propagation that we have considered so far. The dynamic
the membrane potential with such delayed PSPs is given

V~ t !5(
i 51

`

L~g i ,si ,t i ;t2di !; ~64!
.

f
le

d

-

th
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cf. Eq. ~7!. A reformulation as a Markov chain as in Se
III A is now not possible. This fact calls for a reconsideratio
of our previous results. Here I am concerned with provi
structural stability of the dynamics analyzed above with
spect to small delay perturbations. To this end, we may
tend the previous dynamics to incorporate first-order de
effects. The issue of delays is covered in detail in@14# for a
slightly more general class of dynamical system. In this
per, I only sketch the way to proceed.

Expanding Eq.~64! to first order in the delaysdi /t, we
have to note thatL(g i ,si ,t i ;t) is not differentiable att
5t i ; cf. Eq.~4!. We can take advantage of the fact, howev
that di.0 and write
L~g i ,si ,t i ;t2di !5L~g i ,si ,t i ;t !1di lim
d→01

L~g i ,si ,t i ;t !2L~g i ,si ,t i ;t2d!

d
1O~di

2! ~65!

5L~g i ,si ,t i ;t !1
di

t S 12
t

t De12t/tQ~ t2t i !1OXS di

t D 2C,
d
ll

ed
yed

d by

re-
that is, we take the derivative ofL(g i ,si ,t i ;t) from lower
values oft. Equation~65! is substituted into the dynamic Eq
~64! and only terms up to first order indi /t are kept. As
before, we useg[g i to obtain a model with a minimal set o
variables. We can now transform to new dynamic variab
xjªV(t j ), yj , andzj that obey the stochastic iteration

S xj

yj

zj

D 5R8~r j 21!+S8~sj 21 ,dj 21!S xj 21

yj 21

zj 21

D ,

x15y15z150, ~66!

S8~s,d!: S x

y

z
D °S x

y1g~s2x!S 11
d

t D
z1g~s2x!

d

t

D , ~67!

R8~r !: S x

y

z
D °S S x1ey

r

t
2ezDe2r /t

ye2r /t

ze2r /t

D . ~68!

The dimension of the stochastic dynamic map is increase
one compared to the case without delays; cf. Eq.~12!. Treat-
ing Eq. ~66! analogous to Eq.~12!, we can derive dynamic
maps for the moments ofx, y, andz. These will have accord
ingly higher dimensions than those for the moments ofx and
y without delays. This underlines the necessity to check
structural stability of the dynamics derived previously.
s

by

e

It can be shown@14# that the dynamics for the first an
second moments ofx and y is stable with respect to sma
delay perturbations, provided that

gb2,2~a211!2. ~69!

In general, this is a condition for convergence in the delay
system that is additional to those derived for the undela

FIG. 6. Comparison of the mean oscillation period^T& of the
membrane potential as given by Eq.~38! ~solid line; cf. Fig. 3! with
the mean jitter period̂D& defined in Eq.~63! as observed in com-
puter simulations~box symbols; bars indicate standard errors!. The
unit of time is the rise timet of PSPs@cf. Eq. ~4!#. The match
between the two periods is perfect for small^r /t&, when oscilla-
tions are rather regular. As oscillations are increasingly degrade
fluctuations for larger̂r /t& ~cf. Fig. 5!, the mean jitter period drops
below the mean oscillation period. In the simulations, synaptic
versal potentials are uniformly distributed in an interval with^s&
50; the PSP-amplitude factorg50.1.
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system. For Poisson statistics of synaptic input times, h
ever, we know thata2 and b2 lie on the parabolab2

5ea2(12a2); see the Appendix. Together with the cond
tion g,4/e derived in Sec. III C for the convergence of th
variance ofV(t), this implies condition~69!.

By continuity of eigenvalues and asymptotic values in
delays within the extended model, it follows that for sm
delays there is only a small quantitative and no qualitat
change in membrane dynamics. All that has been conclu
on patterns of the dynamics hence remains true for sm
delays. Moreover, it can be shown that small delays decre
the asymptotic attraction of̂V(t)& to the mean synaptic re
versal potential̂ s& and increase the mean period^T/t& of
membrane oscillations@14#.

IV. SUMMARY AND DISCUSSION

In this paper, I have analyzed the subthreshold dynam
of the neural membrane potential driven by stochastic s
aptic input of stationary statistics. Conditions on the inp
statistics for stability of the dynamics have been deriv
Regimes of input statistics for stationary, fluctuating, and
cillatory dynamics have been identified. For the case of P
sonian stimulus times, that is, temporal noise, it has tur
out that persistent oscillations can develop with a mean
riod that depends nontrivially on the mean interstimu
time. In particular, noise-driven oscillations occur in the a
sence of any pace-making mechanism in the stimulus, in
intrinsic neural dynamics, or in a recurrent neural networ

What does it mean for a real neuron, if its membra
potential is ‘‘unstable’’ under stimulation by the network
synaptic input? As the analysis has shown, instability of
first or second moments implies excursions ofV(t) with
growing positive and negative amplitudes. After some s
chastic period of time, therefore, the membrane potential
certainly cross the threshold for firing. The neuron will th
be set to a post-spike potential that depends in some wa
the stimulus history and the process will resume.

I have neglected many effects in the modeling for the s
of analytical feasibility. Most notably, PSPs have been giv
a shape that does not properly reflect conduction in neur
dendrites. One shortcoming is a lack of variability of P
shape; see, however,@11–13#. Another is that real neurona
membranes contain ionic conductances which are volta
gated@15#. Their effect is to modify the shape of PSPs in
voltage-dependent manner as they are propagated alo
dendrite; see, e.g.,@16#. Moreover, with voltage-gated chan
nels, PSPs do not simply add up but interact nonlinearly.
conclusions drawn in the present paper, therefore, can
be on qualitative system behavior and should not be un
stood quantitatively.

In the analyzed model, there is no representation of
spatial dimensions of a neuron. For a neuron where sp
conduction times are significant, the present results sug
that spatiotemporal waves of membrane potential develo
the regime of noise-driven oscillations. For the generation
action potentials, however, all that matters is the potentia
the cell’s soma.
02190
-

e
l
e
ed
ll
se

cs
-

t
.
-

s-
d

e-
s
-
e

e

e

-
ll

on

e
n
al

e-

a

e
ly
r-

e
ial
st

in
f

at

A. Oscillations in stochastic systems

It is a common example in textbooks on stochastic d
namical systems to calculate stationary densities fo
damped harmonic oscillator subject to an external stocha
force; see, e.g.,@17#. If the damped oscillator is in the peri
odic regime, the intrinsic oscillations are sustained by
stochastic force. In the context of biological systems, s
chastically sustained oscillations have been analyzed, so
what heuristically, for the population dynamics of an ep
demic model @18#. This system is autonomous and a
intrinsic oscillator. The stochastic nature of the dynam
prevents asymptotic convergence to a steady state.

It is thus a known generic property of periodic relaxati
systems to exhibit oscillations at their intrinsic frequenc
sustained by some stochastic influence. The dynamics
lyzed in this paper, however, represents a different type
phenomenon. The system studied is not an intrinsic oscilla
but exhibits oscillations at a mean period that is, up to
temporal scale, determined by the stochastic drive alone.
system can be formally viewed as a control loop where
sequence of brief signals~the synaptic reversal potentialssj )
controls via a slow response~the PSPs! a dynamic variable
@the membrane potentialV(t)#. The theme of the contro
loop is fully developed in@14,19#.

B. Oscillations in neural systems

Oscillations of membrane potential and spiking activ
are quite ordinary in the neural systems of the brain. Th
arise under various conditions, with varying degree of cor
lation between neurons, and in a wide range of frequenc
Their functional implications may be equally various and a
much debated today.

Explanations of oscillations have been basically of tw
kinds. One is in terms of intrinsic oscillator cells that act a
pacemaker for rhythmic activity in the network@20,21#. The
other makes reference to the fact that recurrent neural
works have a natural tendency to produce rhythmic and s
chronized activity@22,23#.

Some of neural oscillations are most probably genera
by the intrinsic neural dynamics of ion channels. Others
propagated by synaptic potentials and are of less certain
gin. A prominent example of the latter kind are cortical o
cillations in the gamma frequency band~roughly 20–90 Hz!.
Cortical gamma oscillations are mostly evoked by a sens
stimulus. Thus, spontaneous activity in the visual cortex
awake cats and primates is rarely oscillatory, whereas vis
stimuli of increasing speed of motion produce subthresh
and suprathreshold oscillations of increasing frequency@24–
29#.

The results presented here suggest that oscillations o
neural membrane potential can arise from the netwo
background activity. Let us assume that a stimulus evo
responses in neurons of a coupled system at a rate tha
creases with stimulus speed, because more neurons in
network are stimulated per time at higher speeds@30#. The
observed dependence of oscillations on a stimulus is t
predicted by Sec. III D, the relation between oscillation p
riod and stimulus speed by Eq.~38!. Note that the conditions
9-10
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FIG. 7. Demonstration of hyperpolarization-induced activity. The three graphs show long-time simulations of the membrane
V(t). Transients at the start of the simulation are cut off. The unit of time is the rise timet of PSPs@cf. Eq. ~4!#. Depolarizing synaptic input
is applied with mean interstimulus time^r /t&50.1 and reversal potentialsdep.0 as indicated by the upper dashed line in each graph. Th
is no hyperpolarizing synaptic input for the left graph; for the central graph there is hyperpolarization with^r /t&50.5; for the right graph
with ^r /t&50.1. The hyperpolarizing reversal potential isshyp52sdep,0 as indicated by the lower dashed line in each graph. If
threshold for spike generation is assumed close tosdep, there will be no spikes for the case without hyperpolarizing input~left!, a few spikes
for weak hyperpolarizing input~center!, and again no spikes for equal hyperpolarizing and depolarizing input~right!. The PSP-amplitude
factor g50.1 for all graphs.
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^r /t&!1 and var(s)/^s&2@1 for the development of noise
driven oscillations are probably fulfilled under extern
stimulation of a network of cortical neurons, each receiv
roughly 10 000 synapses of both an excitatory and inhibit
kind @3#. The degree of correlation between neurons that i
be expected from noise-driven oscillations increases with
extent to which they share common input from the networ
background activity. Correlations should, therefore, decre
with distance between neurons, in agreement with wha
generally observed. In a network of spike-exchanging n
rons, however, correlations can even arise between neu
that do not share any input.

The present analysis draws attention to a phenome
noise-driven oscillations, that should be very common
neural systems and may be the cause of some of the obse
membrane-potential oscillations.

C. Hyperpolarization-induced activity

There is an interesting consequence of the analytical
sults. It is, at first sight, somewhat counterintuitive. Consi
a neuron that receives depolarizing synaptic input at a fi
average rate. Let us assume that at this level of depola
tion the membrane potential remains mostly below
threshold for spike generation. Now, if we add somehyper-
polarizing synaptic input, it turns out that the neuron m
actuallystart spiking. Further increase of the hyperpolarizin
input rate eventually shuts neural activity off. This scena
is demonstrated in computer simulations shown in Fig. 7

The effect seems to be at odds with the usual notion
hyperpolarizing synapses toinhibit neural activity rather than
promote it. Exceptions have only been reported for cas
where a hyperpolarization-activated current repolarizes
cell, giving rise to a rebound burst of action potentials; s
e.g., @31,32#. The effect demonstrated here is of a differe
nature. It results from an increase of membrane fluctuati
with the addition of hyperpolarizing synaptic input; cf. E
~50!. For a range of hyperpolarizing input rates, increas
fluctuations are likely to spontaneously overcome the ass
ated drop in mean membrane potential; cf. Eq.~29!. The
result is fluctuation-driven spike generation.

The phenomenon of hyperpolarization-induced activ
offers a subtle way in which neural spiking may be co
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trolled. Whether it is actually used in the brain is unexplor
today.

APPENDIX

It is reasonable to assume the timest j at which synaptic
inputs are received by a cortical neuron from other corti
neurons to obey Poisson statistics. For the densityu of inter-
stimulus timesr this means

u~r !5
e2r /^r &

^r &
. ~A1!

In order to transform the stimulus parametersai ,bi ,ci intro-
duced in Eqs.~26! and ~41!, and to reveal dependences b
tween them, we calculate the mean values

K S r

t D k

e2r /tL 5S 2
]

]a D k

^e2ar /t&ua51

5S 2
]

]a D kE
0

`

dru~r !e2ar /tua51

5S 2
]

]a D k 1

11a^r /t&
U

a51

. ~A2!

Hence the stimulus parameters turn out to be

a15
1

11^r /t&
, b15

e^r /t&

~11^r /t&!2
, ~A3!

a25
1

112^r /t&
, b25

2e^r /t&

~112^r /t&!2
,

c25
2e2^r /t&2

~112^r /t&!3
.

Dependences between these parameters are now explic
particular, we have

bi5eai~12ai !, i 51,2. ~A4!
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In Sec. III C, we have established that for Poisson sta
tics and small̂ r /t& the necessary and sufficient conditio
for the second moment ofV(t) to converge isg,4/e. Mul-
tiplying Eq. ~A4! by g, we see that this bound implies
l.
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02190
- gbi,4ai~12ai !,4ai for aiP~0,1!,i 51,2. ~A5!

Conversely,gbi,4ai for all aiP(0,1) together with Eq.
~A4! implies g,4/e.
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