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Subthreshold dynamics of the neural membrane potential driven by stochastic synaptic input
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In the cerebral cortex, neurons are subject to a continuous bombardment of synaptic inputs originating from
the network’s background activity. This leads to ongoing, mostly subthreshold membrane dynamics that de-
pends on the statistics of the background activity and of the synapses made on a neuron. Subthreshold
membrane polarization is, in turn, a potent modulator of neural responses. The present paper analyzes the
subthreshold dynamics of the neural membrane potential driven by synaptic inputs of stationary statistics.
Synaptic inputs are considered in linear interaction. The analysis identifies regimes of input statistics which
give rise to stationary, fluctuating, oscillatory, and unstable dynamics. In particular, | sho(i) timetre noise
inputs can drive the membrane potential into sustained, quasiperiodic oscillat@mss-driven oscillationsin
the absence of a stimulus-derived, intraneural, or network pacem{@kexcding hyperpolarizing to depolar-
izing synaptic input can increase neural activityyperpolarization-induced activity in the absence of
hyperpolarization-activated currents.
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[. INTRODUCTION where 7, and g, are the passive membrane time constant
and leak conductance, respectively, ahds the current

Cortical pyramidal cells fire action potentials at an aver-passed along the dendrites from other parts of the cell. The
age spontaneous rate of about 10 spikes/s in waking animafsembrane’s resting potential is set to zero. After a synaptic
[1,2]. At such a low spike rate, it is clear that most cortical input has been received on the considered patch of mem-
neurons spend a significant amount of time with their membrane, the potential obeys
brane potential well below the threshold for spike activation.
On the other hand, a cortical pyramidal cell receives roughly EV= _ iw_ 1 |+ s
10000 synapse$3], mostly from other cortical neurons. dt Tm TmIm  Tm9m

Since individual postsynaptic events cause transient in-

creases in membrane conductance, it follows that the dynanf/nereVs andgs are the synaptic reversal potential and con-
ics of membrane potentials is largely controlled by sub-ductance, respectively. Lafy(t) andViy(t) be solutions to
threshold stimulation from the continuous network activity. E4S- (1) and (2), respectively, withVo(0)=Vi,(0)=V(0).
Subthreshold membrane polarization is, in turn, a potenpYN@ptic ion channels are open for a brief periet 7y, [6].
modulator of stimulus-driven spike activifg,5]. At time t= 65, when synaptic channels close, the deflection

In this paper, | analyze the subthreshold dynamics of th&f the membrane potential due to the synaptic input is
membrane potential driven by stochastic synaptic activity of S5 g 5.\2
general stationary statistics. Such conditions are given in  V,(8y) —Vo(ds) = — — —S) ) 3)
neurons that do not respond to an external stimulus, but are m 9m Tm

exposed to the network’s spontaneous or stimulus-driveRryis geflection propagates along the cell's dendrites. Far
background activity. The generation of postsynaptic potengyay from its point of origin, | model the synaptic response

tials (PSP$ and their propagation along the dendrites of 855 4 psp. In a passive cable, the rise time and amplitude of a
neuron are modeled in a rather simple way to allow for apgp gepend on the time course of the synaptic current, and
thorough analytical treatment. Accordingly, the focus is onyhe relative locations of the synapse and the point on the

generic patterns of behavior rather than on quantitative rémemprane at which the PSP is observed; the decay-time con-
sults. Some of the conclusions are discussed in relation to thg, ¢ approaches, for long times [7—10. However
m . ’

(Vs—V), 2

[Vs—V(0)]+O

experimental literature. computer-simulation studies involving realistic cell mor-
phologies[11,17 and voltage-dependent dendritic conduc-
Il. MODELING SYNAPTIC RESPONSES tanced 13] have revealed that PSPs in real neurons may be

less variable than suggested by a cylindrical passive-cable

The potentiaV across a local patch of passive membranemodel. A coarse but, for the present analysis, sufficient ap-

is described by proximation to a PSP is given by the impulse response of a
second-order low-pass filter,

d | 0 . s

dt Tm TmOm ! A(71V81t01t):=Y[VS_V(t0)] T
1 t—to ® 4
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with the unit-step function itable to specify the statistics of stimulus times. Second,
making use of the Markov property, we will gain insight not
0 for t=<O, only into the dynamics of moments of the membrane poten-
O):= 1 for t>0. (5) tial, but also into the temporal pattern iofdividual trajecto-
riesV(t).

The PSP’s amplitude is[ Vs—V(tp) ], with the factor
A. Markov formulation of the dynamics

y =a§ %>0_ (6) of the membrane potential
7m Gm Introducing the notation
Thus, the PSP is initiated at tintg, has a rise time and -1 t—t
decay-time constant, is attenuated or amplified by a factor X =V(t) =7y, [Si_V(ti)]¥
a[cf. Eq.(3)], and is assumed to propagate instantaneously. ! N3 T

It qualitatively captures the basic properties of real PSPs of
having a finite rise time and an exponential decay phase. It is % exp{ 1— 4 _ti) , (9)
chosen here for its convenience for analysis. T

Postsynaptic conductance changes are very local com-

pared to the extended dendritic trees on which synapses I ti—t

make contacts. It is therefore a reasonable approximation to Yj= 7241 [si—V(t)]exp ———], (10
treat them as noninteracting. The total membrane potential

under synaptic control is hence given by the sum M=t 1t (12)

- we can reformulate the dynamics of E8) for the discrete
V(t)=i§1 Ay sitist) () timest=t as an iteration of a combination of two stochastic
mapsR(r) andS(s),
for the whole cell. Herg¢;<t,=<- - - are the times of synaptic
input received by a neurony; ands; are the amplitude- (XJ):R(r‘_l)oS(s._l)(xj1), X;=y;=0, (12
related factor defined in E@6) and the reversal potential of Yi : : Yi-1
the ith synaptic input, respectively. In Sec. lll E, | will ad-

dress effects of delays in the propagation of PSPs. :(X) ( X 13
Sy 7 ly+ s ) (13
Ill. ANALYSIS AND RESULTS r
. . L . X X+ ey- e—r/T
Upon inspection of Eqg4) and(7), it is clear that there is R(r):| |~ . (14)
an equivalence relation between the statistics ofythend of y ye "7

the pairs §; ,t;). Higher values ofy; have the same effect on

the dynamics ofV(t) as shorter intervals . ;—t; between The interstimulus times; and the synaptic reversal poten-

successive stimuli witrs;=s;, ;. In order to simplify the tials s; are stochastic variables, drawn independently from

analysis, without limiting the dynamic repertoire \d{t), it ~ densitiesu(r) on R, andv(s) on R, respectively. These

is preferable to restrict to one valye= y; . In this section, |  densities are determined by the neural network activity and

shall thus derive analytical results on the dynamics the number and types of synapses on the neuron considered.
Note that although there may well be statistical dependences

- t—t; betweenr; ands;, and (;,s;) and (j/,s;:) (j#]') as
V()= 721 [si—V(t)]—— sampled at onéndividual synapse, these do not show up in
the sequences; ands; for all synaptic inputs to a cortical
t—t neuron.
Xex;{ 1- T)G)(t_ti)- ) In the present formulation of the dynamics, the synaptic

input timest; are, likex; andy;, stimulus-driven stochastic

Moreover, the results will be illustrated by computer simula-variables and may be incorporated by extending the system
tions where appropriate. (12) with the equation

Arguably, the “obvious” approach to the problem is to
specify the distribution functions for the point process that
models the times; of stimulus events and write down inte- This equation can be solved independently of Ex). In
gral equations for the moments ¥{t). However, we shall particular
take a different approach. We will start by casting the dy- '
namics in the form of a M.arkov'cham. Therg are two signifi- (ty=(—1)(r)+t,. (16)
cant advantages proceeding this way. First, it will allow us to
go quite far with the analysis without being specific aboutHere and in the following, we encounter mean values of the
the stimulus process. Only at some later point will it be prof-types

tj:tj_1+rj_1. (15)
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(f(s))::fx ds'v(s’)f(s'), pR(x,ylx’,y’)=deru(r)5 x—(x’+ey’£)e‘”7}
- 0 T

” X 8(y—y'e "), (19
<f(r)>==fo driu(r)f(r’), 17

Here 6 is the Dirac delta function. Lep(x,y) be a joint
with f being some function on the real numbers for which theprobability density forx andy. Then

integrals are defined.
The dynamics(12) is a Markov chain. The transition

probability corresponding t&(s) is <Xnym>::j°c dx,fw dy’p(x’,y)x'"y'™  n,meN
ps<x,y|x’,y'>=J_ dso(s)8(x—x") 20
X 8(y—y' —y(s—x")), (18  are the moments ok andy. We want to know how the
moments change under the action7ofr)S(s). For the ac-

and the one corresponding T(r) is tion of S(s), we get

(hTJ)(_l)i,yh+i<sh><xn+iyj>,

(21)

(XY™ = J, d;f, dyf, dx,f, dy'ps(x,y[x",y )p(Xy Xy"= " X

h.i,j
h+i+j=m
with polynomial coefficients

m m! .
==m, h+i+j=m. (22

h,i.j
n er
-

n
ooym= [ x| dy[ " ax [ dymetoyin ypocy =3 [

The action ofR(r) yields

k

e (n+ m)r/r> <Xn— kym+ k> ] (23)

Let pj(x,y) be the joint probability density of andy at time (x); a—yby bi\{(x); , b,
t;. By combining Egs.(21) and (23), we can write down ( >’_ =< _ ) ( >’_ + ¥{s) a1
iteration equations for the moments, Y1 var  a\\Wj-1 !
=M
<x>1:<y>1:0’ (25)

(X"y™); = f,de, fﬁxdy’pj(x’,y’)x’”y’m. (29

with the stimulus paramete(s) and

The iterations can be solved successively forrahnd m,
starting with the first moments. We shall solve for the first
two moments, i.e., fofx);, (y);, (x?);, (xy);, and(y?);. b _<£ 1r,T> €(0,D). (26)
Note that the ensemble averag@d) are not taken at con- 1=\ 78

stant timet, but rather at a constant numbeof synaptic

inputs received, irrespective of the timeof the jth input.  The dynamics ofx); and(y); depend on the eigenvalues of
As mentioned above, the times of synaptic inputs are addiM,, and thus on the stimulus parameters and b;. The

a1:=<efr/7>

T

tional random variables obeying E@.5). eigenvalues are
- vby 1 o ———
B. Mean membrane potential Nyp=a;— Tiz ybi—4vyab;. (27)
The iteration dynamics of the mean values obtained from
Egs.(21) and(23) is For convergence of the dynamics, we require that
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b1 4 then as shown in the right graph of the figure. Not surpris-
ingly, the mean membrane potential is pulled closer to the
, Unstable mean synaptic reversal potent{@) with increasinga,, that

is, with increasing stimulus frequency, and with increasing
PSP amplitudey.

M For yb,<4a,, the eigenvaluea, are complex conju-

gate. In Sec. Il C, | will show that only then will the vari-

/ ance ofV(t) converge. As depicted in Fig. 1, in this regime
1 (V(t)) converges in a damped oscillation. The dynamics is
solved straightforwardly. Let be the matrix that diagonal-
izesM,, i.e.,LM,L "1 is diagonal. Furthermore, let

1 1
FIG. 1. Space of stimulus parametersandb, that determine K’=< i ) (32)
the dynamics of the mean membrane potential. The dynamics con-
verges for @;+1)2>yb;. For yb;<4a,, the two eigenvalues
given by Eq.(27) are complex conjugate. Fora{+1)>>yb,  Then the matriKL is real and we can write the powers of
>4a,, they are real and negative. The corresponding type of meaiM; as
dynamics is depicted for these two regimes.

Nd<l &  ybi<(a;+1)% (28) Ml=all ~tk~!

cogj¢) —SMM))KL
sin(j¢) cogj¢) ’
Figure 1 shows the parameter regions of convergence and . _
divergence. In this parameter space, the vicinity of the point with  ¢:=argr,). (32)
a;=1,b;=0 is occupied by high-frequency stimuli, i.e.,

with short interstimulus times A very low network activity, = The iteration dynamicé25) is solved by

on the other hand, lies close to the poamt=0,b;=0. It
turns out that for any input statistics, the mean of the mem-

brane potentiaV converges, if the factoy, controlling PSP 005 :(<X>°C> — M11—1(<X>°°>, (33
amplitudes, is sufficiently small. Foyb,>4, on the other (¥ (¥)= (Y)=
hand, the mean dynamics will never converge.
From Eq.(25) we obtain the asymptotic values that is, a spiral motion around the attractive focus
((X)w ,{¥)-). Its angular period is, measured in the number
_ vb of synaptic input events,
lim(V(1)=(x).=—————(s), (29
t— ’yb1+(1_al)
po 2T _ (34
y(l1—a))a ~arg\y)’
(Y)o= () (30) '

yby+(1-ay)?
and averages in real time to

for the regime of convergence. A contour plot{af).. as a
function ofa; and yb, is shown in the left graph of Fig. 2. (Ty=P(r)
For the timest; of synaptic input being consistent with a '
Poisson process, it is shown in the Appendix that the stimu-
lus parameters;,b; lie on a parabola, plotted in the left Thus(T) is the mean period afV(t)). Moreover, it may be
graph of Fig. 2 for differenty. The ratio(x)../(s) behaves shown easily thaP is the period of the covariance function,

(39

(z)wll(") FIG. 2. Left: Contour plot of the asymptotic
TS mean membrane potenti@l).. . Dashed lines de-
0.8 limit the regions of different mean dynamics
shown in Fig. 1. Assuming Poisson statistics for
9s¢ stimulus times, the stimulus parametaisandb,
lie on parabolas, here plotted fory
04 =0.2,0.7...,3.7. Right: Plot of(x)../(s) for
y=02 — Poissonian stimulus times and the same values of
. v as on the left. The curves are interrupted where
(a;+1)2<yb; such that the mean dynamics is
%62 0.4 06 08 1 divergent; cf. Fig. 1.
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(Ty7) 20 (T/7) 20
175 17.5 / / FIG. 3. Mean oscillation periodT) of the
y=02— " 7=02 membrane potential in units of the rise timeof
125 PSPs[cf. Eqg. (4)], plotted as a function of the
'10 stimulus parametera; (left) and (r/7) (right).
For the curves we assume Poisson statistics for
7.3 stimulus times andy=0.2,0.7...,3.7. The
> mean oscillation period lies on the dashed curves
yogg—2 y=3 for a;<1-4/(ey) or, equivalently, (r/7)
T2z 3 £ ¢t >4/(ey—4).
{r/7)
COMX; , Xj 1) == (X = (X)) (Xj + k= (X}j +k))
=f7 dXJf dyﬁ dX’ﬁ dy’ POy Xy )Py ) (X = (041 (X = (X)), (36)
where
pl(x,VIX’,y’):f_ dXJ_ dypr(X,Y[X,¥)ps(X,y[X",y"), 37

pk(x,yIX’,y’):L deﬁ dyp:(x.y[xy)P-a(xyIx'y')  for  k>1.

In particular, the asymptotic covariance functionlimcov(x; ,x;) alternates between phases of correlation and anticorre-
lation with periodP. In Sec. Il D, | will show that under certain stimulus conditions these oscillations of the membrane
potential never die out fandividual realizationsof the stochastic process. The damping ofrieanoscillation is then due to
a loss of phase coherence with time.

For Poissonian stimulus timesg, the mean oscillation period is given by

<r>/ %Jey(r/r}[(4—ey)<r/r)+4]
2 p arcta

(2—ey)(rimy+2

T
<7>_ 2W<r;>/[W+arcta+Jey<r/r>[(4—ev)<r/f>+4]

(2—ey)(riTy+2

r
for (2—ey)<;> +2>0,

(39
elsewhere;

cf. the Appendix. Figure 3 shows plots ¢F/7) for different y, both as a function ofr/7) anda;. For(r/7)>4/(ey—4) or,
equivalently,a; <1—4/(ey), the stimulus enters the regime wharg, are real and negative, and the mean period ends up on

the curve,
T r
(5)-2{3)-2
T T

plotted with the dashed lines in Fig. 3. Ror 7)— 0 or, equivalentlya;— 1, we find tha{ T/ 7) approaches zero. In particular,
(T) can be much shorter than the rise timef PSPs.

1)
a1 (39)

C. Variance of the membrane potential

To estimate whether the trajectorig§t) stay bounded when their mean converges to a finite value, we have to check
whether their variance converges as well. We will now analyze the dynamic map for the second momearid pfiefined
in Sec. lll A. From Eqgs(21) and(23), we obtain

a,—yb,+ 7’252 by=2yc, ¢,

<x2>j " <x2>j71 Uj—q
<xy>j = _'}/a2+7b2 aZ_be Ebz <xy>j*1 + vjfl s <x2>l:<xy>l:<y2>l:0’
2
(%), Y’a, —2vya, a, SR Wit
—M, (40
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with the stimulus parameters

a2:=<e—2r/r>

- 2_r l—2r/7>
bz'_< 7 ° (0,1, (41)

r 2
2-2rlt
Coi=l |—| e
and

Uj=(ybp—272C)(S)(X); + 2yCo(S)(Y); + y*Cx(s?) 1(42)

1
vji=(yaz— ¥?b2)(s)(X); + yo(S)(Y); + 5 ¥*ba(s?),
(43

W= — 29%a,(S)(X); + 27ax(S)(Y); + Y2ax(s?).  (44)

The (x); and(y); converge to the values given in EqR9)

and (30) such that ¢;,v;,w;) will become constant. To
check convergence of the second moments, it is thus neces
sary and sufficient to consider the eigenvalued$/of These

are the roots of the characteristic polynomial

23— (3a,— 2yb,+ y%c,) v?

1
+ 3a§—y2azc2—2yazb2+§y2b§ v—a3=0,

(49)

and are rather lengthy expressions which need not be spellec
out here. Depending on the stimulus parame#grsh,, and

C,, there are one real and two complex conjugate eigenval-
ues, or three real eigenvalues. Lgtbe the eigenvalue that

is always real and,;3 the other two that may be complex
conjugate or real. Stimulus parameters b,, ¢, that yield

a convergent second moment\¢ft) are those that obey the
constraints

|va| =:f1(az, ¥b,, ¥%cr) <1,
max(|v,|,|v3]) =:fa(az, ¥b,, ¥?cy) <1, (46)

with continuous functiong; and f,. The two surfaces de-
fined by

fi(az,vby,9°co)=1, fay(ay,vby,7°c)=1 (47

are shown in Fig. 4. Since convergence is obviously ensured
for y=0, which yieldsx;=y;=0 [cf. Eq. (12)], the param-
eter region that results in convergence of the second mo-
ments is the spadeetweerthe two surfaces that includes the

PHYSICAL REVIEW E 66, 021909 (2002

axis (a,,yb,,y%c,)=(a,,0,0)a,e(0,1). In the region be-
yond the intersection of the surfaces, i.e., for roughfe,

FIG. 4. Three different views of the two surfaces defined in Eq.
(47) in the space of stimulus parametexs b,, andc,. The region

>9, there are no combinations of parameters that yield consf parameters that result in convergence of the second moment of

vergent second moments.

For Poisson statistics of the stimulus tintes the stimu-
lus parameters,,b,,c, lie on the curves plotted in Fig. 4
for different values ofy; cf. the Appendix. The curves run

the membrane potential is the space between the two surfaces that
includes thea, axis. Parameters for Poissonian stimulus times lie
on the thick curves fory=0.2,0.7 .. .,3.7. The graphs show that
convergence is ensured for all Poissonian stimuliysf1.2.
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from (a,,yb,,y%c,)=(0,0,0), the limiting point for low in-  shows that at least fop<1.2 the second moments converge
put activity (r)y==), to (a,,yb,,y?c,)=(1,0,0), the limit  for all 0<(r/7)<oe, corresponding to the entire curves run-
of high-frequency stimulation{¢)=0). For y sufficiently  ning between &,,yb,,y?c,)=(0,0,0) and &,,yb,,y*c,)
small, the curves lie completely within the region of conver-=(1,0,0) in the parameter space.

gence. For largery, they are in the region of divergence  As shown in the Appendix, the conditiop<<4/e is for
except near the pointag,yb,,y?c,)=(0,0,0). For(r/r) Poisson statistics of the timésequivalent to 4,> yb, for
<1, which is the realistic regime for cortical neurons, theall a; € (0,1). In the following, we will assume this condition

eigenvalues,,; are complex conjugate and we get to hold. The system is thus always in the regime of damped
2o oscillations of(V(t)); cf. Fig. 1.
; :1_(2_ e /r L0 r ) 48) After some lengthy but straightforward algebra, we find
! 2 )\ 7 ' for the asymptotic variance of and hence o¥(t),
ey\/r r\ %2 i - =(x2) —(x)2 =(52) p, —(s)2
(50)
It follows that for (r/7)<<1, it is necessary and sufficient for
the second moments to converge that4/e. In fact, Fig. 4  with coefficients
|
Y2(b3+2c,—2a,C5) -
L (1= a,)3+ 4y(1—ay)b,+ 22— 2721+ ay)c,’
b3 2y*(ay(1—ay)(b3+2¢,— 285C;) + by (b~ a5b,— 2y¢,) ] -
p2= - .
[(1-a)?+yb;]?  [(1-ay)?+ ybi][2(1—ay)%+4y(1—-ay)b,+ y?b5—2y*(1+a,)c,]
|
For Poisson statistics of the stimulus timgs the coeffi- Q=—1/In( min |»]). (56)
cientspq, simplify to i=1,23
2
01 (ey) >0, (53) We have to compar® to the periodP of the oscillation of

:4ey—(ey)2+4<r/7-> the mean values(k);.(y);) in order to see whether this

oscillation shows up in individual realizationz;(y;). From
(ey)3(ey+2(rl7)) Egs.(34), (48), and(49) we obtain

:[4ey—(ey)2+4<r/r>](ey+(r/r>)2
P (8+tey)m[r|\'? ( )
cf. the Appendix. Q 2yt \7 +O[\ 7/ /- (57)

D. Stationary states, fluctuations, and noise-driven oscillations

>0; (59

P2

Thus for (r/7) sufficiently small, we ge/Q<1 and the
We have seen in the two previous sections that there is ascillation of the meanéx); ,(y); is fast as compared to the
region of stimulus parameters where the mean and varianggowth time of the fluctuations vgK),var(y) around the
of V(t) converge to finite values. Averages do not tell us,means. Individual realizationsxf,y;) are then well de-
however, whaindividual trajectoriesV(t) look like. In this  scribed by their means for several periods of the oscillation.
section we want to gain insight into the temporal pattern ofPut differently, an oscillation with a mean period given by
individual trajectories. Eqg. (38) then shows up in individual realizatioh&t). With
Let us first deal with the short-time behavior of individual longer interstimulus time& /), fluctuations increasingly in-
trajectories ;,y;). We ask what they look like for the first terfere with the oscillation. The transition from an
few j, that is, the first few synaptic inputs. The variances oscillation-dominated to a fluctuation-dominated dynamics
5 ) 5 ) of V(t) is depicted in Fig. 5.
varn(x)=(x“);—(x)i, va(y)=(y9);—(y); (59 It remains to establish the long-time behavior of trajecto-
ries (xj,Y;). The dynamicg33) of their mean value spirals
are zero initially. They increase to finite values no faster tharinto the point (x)..,(y)..). Without damping of the oscilla-
the fastest-growing linear combination of second momentstjon, the trajectories would lie on orbits defined lyx
i.e., like e J/Q with —(X)s,Y—(Y)..) =const, with the quadratic form
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As=0.1 (s) As=(s) Ao 10y
Al oo
e R LA |

M AA!}W"\VAAJ\V (r/) =001

() """""""""""""""" [ B r/T)=0.
30 {r/m) =01

20 40 60 20 40 60 20 40 60
t/T

FIG. 5. Typical trajectories of the membrane poteniét), simulated for various stimulus conditions as indicated by the row and column
labels of the array of graphs. The unit of time is the rise timef PSPHcf. Eq. (4)]. Synaptic reversal potentials are uniformly distributed
in the intervalq (s)—As,(s)+As]. The membrane potentialé=0 (resting potentialandV=(s) are indicated in each graph by the solid
and dashed lines, respectively. The graphs show the transitions between stationary, fluctuating, and oscillatory dywiginas difcussed
in the main text. The PSP-amplitude factpr 0.1 for all graphs.

a(é,m):=((&,7),(KL)TKL(&,7)) currents have all the same reversal potential. On the other
2 hand, for varg)/(s)>>1, hence (s?)/(s)>>1, we get
_ 4yaié (9/qg).>1 and there is no damping of individual trajecto-

b, —4yaEn+da;n?. (58

ries (xj,y;). Since the dynamics is a temporally homoge-

, ] S _neous Markov chain, at any time we then find qualitatively
To estimate the true degree of damping of individual trajecyhe same situation as at the start of the process. Thus there is
tories (;,y;), we calculate the mean asymptotic ratio no qygjitative change in the trajectories; {y;) on a long
(a/qo)- with the initial valuedo:=q((x).. ,(y)-) of the qua- ine scale, and the pattern of evolution, random fluctuations
dratic formzq. From Eq. (40 gve Ob.tam the three second or oscillations, that dominates initialisee abovewill also
mome“?(x ) {XY)e: , and(y®)., which are needed for the prevail at all times. Figure 5 summarizes the types of dynam-
calculation of(q).... After some lengthy but straightforward ics of V(t), illustrating our results on short- and long-time

algebra, we find behavior by computer simulations.

q (sH— _— With synaptic reversal potentialg having a high vari-
<q_> =5 P17 P2, (59 ance, we have seen individual trajectonés) to oscillate or
of = (s) fluctuate persistently around the value |lim(V(t))
where the coefficients are for Poisson statistics of synaptie (X)= - ,It IS interesting to compare th,e mean of the intervals
input timest; , A=t—t’ between successive timest’ defined by
— 2(ey+(rl7))?
p1= <2 ) >0, (60 d d
dey—(ey)*+4{rl7) V(t)=V(t")=(X), aV(t)>0, aV(t’)>0,
(63)
— 2evy(eyt+2(rlT
_ 2ey(ey+2(rlm)) 0. 61

P2 dey—(ey)?+4(rlT)
the mean “jitter period,” with the mean oscillation period
cf. the Appendix. For vag) =(s?) —(s)*=0, it follows that  (T) [cf. Eq.(38)] of (V(t)). | have measured jitter periods in
computer simulations o¥(t). As can be seen in Fig. 6, the
<ﬂ> - match between the two periods is perfect for snallr),
P17 P2 L . I
Qo/ .. that is, in the regime where oscillations are rather regular.
For increasing interstimulus timés/ ), when the random-
walk component of membrane dynamics grows stroriger
Fig. 5, the mean jitter period drops below the mean oscilla-
tion period, indicating that fluctuations cauggt) to jitter
Hence there is strong damping, and individual trajectoriesaround its asymptotic mean value faster than the oscillatory
(xj,y;) converge close to the steady mean state, if synapticomponent of the dynamics alone.

B 2(rl7)? E<£><1 62
_4ey—(ey)2+4<r/7'> 2\ '
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E. Delays cf. Eq. (7). A reformulation as a Markov chain as in Sec.

The conduction of synaptic currents in neuronal dendrited!! Ais now pot possible. This fact calls for a recon_sideratipn
leads to delays relative to the time of the synaptic input. Leff our previous results. Here | am concerned with proving
us assume here that we can assign a dd|ay0 to a PSP structural stability of the dynamics analyzed above with re-
initiated at timet;, such that at time; +d; the response is spect to small delay perturbations. To this end, we may ex-
spread out across the whole neuron. Of course, such a delégnd the previous dynamics to incorporate first-order delay
does not properly describe gradual PSP propagation. In @ffects. The issue of delays is covered in detaillis] for a
sense, it is the opposite extreme of the instantaneous PS#ghtly more general class of dynamical system. In this pa-
propagation that we have considered so far. The dynamics gfer, | only sketch the way to proceed.
the membrane potential with such delayed PSPs is given by Expanding Eq.(64) to first order in the delays;/r, we
have to note that\(vy;,s;,t;;t) is not differentiable att
=t;; cf. Eq.(4). We can take advantage of the fact, however,
thatd;>0 and write

[

V<t>=21 A(y,s,tst—dy); (64)

A(yi, st ) —A(y,s,t;t—=d)

A(yiositiit=d)=A(yi,s, bt +d; lim 5 +0(d?) (65)
d—0+
. di t 1-t/7 di 2
=A('yi,si,ti,t)+7 1_; e ®(t—t,)+O 7 s
|
that is, we take the derivative of(v;,s;,t;;t) from lower It can be showrj14] that the dynamics for the first and

values oft. Equation(65) is substituted into the dynamic Eq. second moments of andy is stable with respect to small
(64) and only terms up to first order id;/r are kept. As delay perturbations, provided that
before, we use/= vy, to obtain a model with a minimal set of
variables. We can now transform to new dynamic variables yb,<2(a,+1)>2. (69
x;:=V(t;), y;, andz; that obey the stochastic iteration

In general, this is a condition for convergence in the delayed

X] Xj-1 system that is additional to those derived for the undelayed
Yi | =R'(rj—1)e8"(sj-1,dj-1)| Yi-1 |,
2 2, T/,
(A/7)
X1=Y1=2;=0, (66) 5 iiiiiiiiiiiiiii
FELES
X - iﬂii!i
d 2 o
+y(s—x)| 1+ — z
S'(s,d): |y yrvis=x) T/ |, (67
d 1
_|._ — —
Z+ y(s—X) .
r 0.02 0.04 0.06 0.08 0.1
X (x+ ey_—ez e " (r/7)
RI(r): | Y]|— ye 'l (68) FIG. 6. Comparison of the mean oscillation periot) of the
z e membrane potential as given by Eg8) (solid line; cf. Fig. 3 with
ze the mean jitter periodA) defined in Eq.(63) as observed in com-

. ) . . L puter simulationgbox symbols; bars indicate standard eryofhe
The dimension of the stocha;tlc dynamic map is increased byt of time is the rise timer of PSPs[cf. Eq. (4)]. The match
one compared to the case without delays; cf. @@). Treat-  peween the two periods is perfect for sméil ), when oscilla-
ing Eq. (66) analogous to Eq(12), we can derive dynamic tons are rather regular. As oscillations are increasingly degraded by
maps for the moments of y, andz These will have accord-  fluctuations for largefr/7) (cf. Fig. 5, the mean jitter period drops
ingly higher dimensions than those for the moments afid  below the mean oscillation period. In the simulations, synaptic re-
y without delays. This underlines the necessity to check thgersal potentials are uniformly distributed in an interval wig)
structural stability of the dynamics derived previously. =0; the PSP-amplitude factar=0.1.
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system. For Poisson statistics of synaptic input times, how- A. Oscillations in stochastic systems

ever, we know thata, and b, lie on the paraboleb, ¢ js 3 common example in textbooks on stochastic dy-
—eay(1-ay); see the Appendix. Together with the condi- hamical systems to calculate stationary densities for a
tion y<4fe derived in Sec. Il C for the convergence of the gamped harmonic oscillator subject to an external stochastic
variance ofV(t), this implies condition69). . force; see, e.g[17]. If the damped oscillator is in the peri-
By continuity of eigenvalues and asymptotic values in theygic regime, the intrinsic oscillations are sustained by the
delays within the extended model, it follows that for small siochastic force. In the context of biological systems, sto-
delays there is only a small quantitative and no qualitativeshastically sustained oscillations have been analyzed, some-
change in membrane dynamics. All that has been concludegpat heuristically, for the population dynamics of an epi-
on patterns of the dynamics hence remains true for smallemic model [18]. This system is autonomous and an
delays. Moreover, it can be shown that small delays decreasgyrinsic oscillator. The stochastic nature of the dynamics
the asymptotic attraction ¢fV(t)) to the mean synaptic re- prevents asymptotic convergence to a steady state.
versal potentiaks) and increase the mean peri¢@/7) of It is thus a known generic property of periodic relaxation
membrane oscillationfsl4]. systems to exhibit oscillations at their intrinsic frequency;,
sustained by some stochastic influence. The dynamics ana-

lyzed in this paper, however, represents a different type of

IV. SUMMARY AND DISCUSSION phenomenon. The system studied is not an intrinsic oscillator

but exhibits oscillations at a mean period that is, up to a
?emporal scale, determined by the stochastic drive alone. The
system can be formally viewed as a control loop where a

In this paper, | have analyzed the subthreshold dynamic
of the neural membrane potential driven by stochastic syn
aptic input of stationary statistics. Conditions on the input ief si Hi | potenti
statistics for stability of the dynamics have been derivedSequence of brief signalhe synaptic reversal potentiaig

Regimes of input statistics for stationary, fluctuating, and Os'controls via a slow respongéhe PSPsa dynamic variable
. . . o ’ .S[the membrane potential(t)]. The theme of the control

cillatory dynamics have been identified. For the case of Poi loop is fully developed if14,19
sonian stimulus times, that is, temporal noise, it has turned®P y P =
out that persistent oscillations can develop with a mean pe-
riod that depends nontrivially on the mean interstimulus
time. In particular, noise-driven oscillations occur in the ab-  Oscillations of membrane potential and spiking activity
sence of any pace-making mechanism in the stimulus, in thare quite ordinary in the neural systems of the brain. They
intrinsic neural dynamics, or in a recurrent neural network. arise under various conditions, with varying degree of corre-

What does it mean for a real neuron, if its membranelation between neurons, and in a wide range of frequencies.
potential is “unstable” under stimulation by the network’s Their functional implications may be equally various and are
synaptic input? As the analysis has shown, instability of themuch debated today.
first or second moments implies excursions \ft) with Explanations of oscillations have been basically of two
growing positive and negative amplitudes. After some stokinds. One is in terms of intrinsic oscillator cells that act as a
chastic period of time, therefore, the membrane potential wilbacemaker for rhythmic activity in the netwofR0,21. The
certainly cross the threshold for firing. The neuron will thenother makes reference to the fact that recurrent neural net-
be set to a post-spike potential that depends in some way omorks have a natural tendency to produce rhythmic and syn-
the stimulus history and the process will resume. chronized activity{ 22,23

| have neglected many effects in the modeling for the sake Some of neural oscillations are most probably generated
of analytical feasibility. Most notably, PSPs have been giverby the intrinsic neural dynamics of ion channels. Others are
a shape that does not properly reflect conduction in neurongropagated by synaptic potentials and are of less certain ori-
dendrites. One shortcoming is a lack of variability of PSPgin. A prominent example of the latter kind are cortical os-
shape; see, howevdl1-13. Another is that real neuronal cillations in the gamma frequency bafrdughly 20-90 Hx.
membranes contain ionic conductances which are voltagezortical gamma oscillations are mostly evoked by a sensory
gated[15]. Their effect is to modify the shape of PSPs in astimulus. Thus, spontaneous activity in the visual cortex of
voltage-dependent manner as they are propagated alongasvake cats and primates is rarely oscillatory, whereas visual
dendrite; see, e.g[16]. Moreover, with voltage-gated chan- stimuli of increasing speed of motion produce subthreshold
nels, PSPs do not simply add up but interact nonlinearly. Thand suprathreshold oscillations of increasing freque2dy-
conclusions drawn in the present paper, therefore, can onig9].
be on qualitative system behavior and should not be under- The results presented here suggest that oscillations of the
stood quantitatively. neural membrane potential can arise from the network’s

In the analyzed model, there is no representation of théackground activity. Let us assume that a stimulus evokes
spatial dimensions of a neuron. For a neuron where spatiabsponses in neurons of a coupled system at a rate that in-
conduction times are significant, the present results suggesteases with stimulus speed, because more neurons in the
that spatiotemporal waves of membrane potential develop inetwork are stimulated per time at higher spef. The
the regime of noise-driven oscillations. For the generation obbserved dependence of oscillations on a stimulus is then
action potentials, however, all that matters is the potential apredicted by Sec. Il D, the relation between oscillation pe-
the cell's soma. riod and stimulus speed by E(8). Note that the conditions

B. Oscillations in neural systems
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FIG. 7. Demonstration of hyperpolarization-induced activity. The three graphs show long-time simulations of the membrane potential

V(t). Transients at the start of the simulation are cut off. The unit of time is the risertish®SP{cf. Eq.(4)]. Depolarizing synaptic input

is applied with mean interstimulus tinge/ 7) =0.1 and reversal potentia}e,>0 as indicated by the upper dashed line in each graph. There

is no hyperpolarizing synaptic input for the left graph; for the central graph there is hyperpolarizatiofr wjtk 0.5; for the right graph

with (r/7)=0.1. The hyperpolarizing reversal potentialsig,= —Sqe;<0 as indicated by the lower dashed line in each graph. If the
threshold for spike generation is assumed closgdg there will be no spikes for the case without hyperpolarizing irffait), a few spikes

for weak hyperpolarizing inpufcentej, and again no spikes for equal hyperpolarizing and depolarizing imjglhtt). The PSP-amplitude

factor y=0.1 for all graphs.

(ri7y<1 and var(s)/<s>2>1 for the development of noise- trolled. Whether it is actually used in the brain is unexplored

driven oscillations are probably fulfiled under external today.

stimulation of a network of cortical neurons, each receiving

roughly 10 000 synapses of both an excitatory and inhibitory APPENDIX
kind [3]. The degree of correlation between neurons that is to

be expected from noise-driven oscillations increases with the It is reasonable to assume the tintesat which synaptic
P . . . Inputs are received by a cortical neuron from other cortical
extent to which they share common input from the network’s

background activity. Correlations should, therefore, decreasgﬁrl:]rglzz tt?moeb;%hﬁs'rSnSeO;n:tat'St'CS' For the densayinter-
with distance between neurons, in agreement with what i

generally observed. In a network of spike-exchanging neu- L)
rons, however, correlations can even arise between neurons u(r)= (A1)
that do not share any input. (r)

The present analysis draws attention to a phenomenorph order to transform the stimulus parametaysb. .. intro-
noise-driven oscillations, that should be very common in imulus p F30i,Ci 1

neural systems and may be the cause of some of the observg'dCed in Eqs(26) and (41), and to reveal dependences be-

membrane-potential oscillations. tween them, we calculate the mean values

k k
C. Hyperpolarization-induced activity <(r;) e_”T> =( — %) (e ™| 1
There is an interesting consequence of the analytical re- "
sults. It is, at first sight, somewhat counterintuitive. Consider | i fmdr ~ar/|
a neuron that receives depolarizing synaptic input at a fixed B dal Jo u(rje a=1
average rate. Let us assume that at this level of depolariza-
tion the membrane potential remains mostly below the B AN
threshold for spike generation. Now, if we add sohyper-  da) 1+a(rlT) L (A2)
polarizing synaptic input, it turns out that the neuron may “
actuallystart spiking Further increase of the hyperpolarizing Hence the stimulus parameters turn out to be
input rate eventually shuts neural activity off. This scenario
is demonstrated in computer simulations shown in Fig. 7. 1 e(r/7)
The effect seems to be at odds with the usual notion of alz—/, 1= (A3)
hyperpolarizing synapses itghibit neural activity rather than 1+(r/7) (1+(r/7))
promoteit. Exceptions have only been reported for cases
where a hyperpolarization-activated current repolarizes the 1 2e(rl7)
cell, giving rise to a rebound burst of action potentials; see, az:m’ 2=m’

e.g.,[31,32. The effect demonstrated here is of a different
nature. It results from an increase of membrane fluctuations ) )
with the addition of hyperpolarizing synaptic input; cf. Eq. _ 2eXrl7)

(50). For a range of hyperpolarizing input rates, increased 2 (1+ 2<r/7))3'

fluctuations are likely to spontaneously overcome the associ-

ated drop in mean membrane potential; cf. E29). The  Dependences between these parameters are now explicit. In

result is fluctuation-driven spike generation. particular, we have
The phenomenon of hyperpolarization-induced activity
offers a subtle way in which neural spiking may be con- bi=ea(l—a), i=1,.2. (A4)

021909-11



ULRICH HILLENBRAND PHYSICAL REVIEW E 66, 021909 (2002

In Sec. lll C, we have established that for Poisson statis- ybi<4a(1—a;)<4a; for a;e(0,1),i=1,2. (A5)
tics and smalkr/r) the necessary and sufficient condition

for the second moment &f(t) to converge isy<4/e. Mul- Conversely, yb;<4a; for all a;(0,1) together with Eq.
tiplying Eq. (A4) by y, we see that this bound implies (A4) implies y<4le.
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