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Scaling properties of fluctuations in the human electroencephalogram
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The fluctuation properties of the human electroencephalogram time series are studied using detrended
fluctuation analysis. For nearly all 128 channels in each of the 28 subjects studied, it is found that the standard
deviation of the fluctuations exhibits scaling behaviors in two regions. Topographical plots of the scaling
exponents reveal the spatial structure of the nonlinear electrical activities recorded on the scalp. Moment
analyses are performed to summarize the global variability across channels. The correlation between the two
scaling exponents in each channel is also examined. Two global measures are found that succinctly characterize
the overall properties of the fluctuation behaviors of the brain dynamics for each subject. Together they
distinguish the stroke subjects from the normal ones with 90% accuracy, suggesting the possibility that this
analysis could lead to an effective diagnostic tool.
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[. INTRODUCTION from 128 electrodes distributed uniformly over the scalp,
relative to a reference electrode located at the top of the
The scalp electroencephalogrdBEG) provides a wealth head. An open challenge is how best to analyze the large
of information about human brain dynamics. The complexamount of data coming from this many channels. We aim to
nature of the brain results in a high degree of fluctuations iffind what is universal among all channels as well as what
both the spatial and temporal aspects of the EEG signals. T¢aries among them. The former is obviously important by
extract the salient properties from the data is the primaryirtue of its universality for a given subject; how that univer-
objective of any method of analysis. We present in this papegal quantity varies from subject to subject is clearly interest-
a combination of techniques that explores the scaling behaytd. What varies from channel to channel is perhaps even
ior of the temporal fluctuations, then uses moment analysig'ore interesting, since it has implications for describing fo-
to summarize the Spatia| Vanabmty across many e|ectr0dé:al features that may have functional or clinical relevance.
channels. Our procedure is to focus initially on one channel at a time,
The most common methods of EEG time series analyse8nd determine a few parametesgaling exponenjsthat ef-
are event-related time ensemble averaging and Fourier déectively summarize the temporal fluctuations. The second
composition, both of which are based implicitly on assump-Phase of our procedure is to describe the global behavior of
tions of linearity[1,2]. Since the physiological mechanisms all channels and to arrive at two numbers that summarize the
underlying the scalp EEG are generally nonlinear, they cafyariability of the scaling exponents across the entire scalp
generate fluctuations that are not best described by line&urface. This intentional effort toward data reduction neces-
decomposition. Moreover, the resting EEG always displays &arily trades detail for succinctness, but such reduction is
broad-banded power spectrum, so in Fourier analysis on@xa_ctly what is needed to allow easy discrimination between
must arbitrarily define frequency bands, 6,«, . ..) which  brain states or between subgroups. _
may not actually delineate different dynamical mechanisms The emphasis in this paper is on the method of analysis
unless tailored to each subject functionally. Wavelet analysediore than its application. We motivate and develop the
have also been applied to examine EEG time sdfgsbut ~ analyses that extract the power-law behaviors in the EEG.
at a sacrifice of the ability to describe long-range temporafSince our approach is unconventional, it may be more per-
correlations. To quantify the nonlinear behavior of the EEG Suasive if we can provide some preliminary evidence of its
chaos ana'yses have been app'[g_d_6], but typ|ca”y re- Utl“ty. To this end, we app|y the ana|YSIS to -tWO SubjeCt
quire a long period of time to compute attractor propertiesdroups: normal and those with acute ischemic stroke. We
for a single time series. Moreover, chaos-based approach&§d that our two-parameter description for each subject ef-
assume the existence of low-dimensional attractors, and thfgctively separates the two groups. This justiiegosteriori
is probably not a valid assumption for EEG dynamics gen-our approach, although it will require a body of future work
erally. In this paper, we employ a method that analyzes thé® understand fully the dynamical origins of these scaling
temporal fluctuations in the resting EEG over a relativelylaws.
short period of time <10 s), and avoids the assumptions of
linearity and low-dimensional chaos. We demonstrate the ex-
istence of scaling behavior of the fluctuations in nearly all
channels and all subjects studied. The specific method we use in the first phase is detrended
The EEG voltage time series analyzed here were collectefluctuation analysigDFA). This analysis is not new. It was

IIl. DETRENDED FLUCTUATION ANALYSIS
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proposed for the investigation of correlation properties in 100 ——
DNA nucleotides[7] and extended to heartbeat time series Ch1
[8]. It has been applied to EEG only once to our knowledge 80 |

[9], but with somewhat different emphases than those pre- /\/\\ //\/\M//\/\jd\
sented here. 60 -

There is, however, an important difference between how S \fﬂ Ch?2 v
we use DFA here, and how it has been applied to, say, the = 40 MM /\\ F/J\/\/
heartbeat time serid8§]. Heartbeat information is the inter- > A
beat intervals that are discrete. As developed in R&f.the 20 | Ch3 ]
fluctuations of the intervals from their long-time average are M/\
treated as the steps taken by a random walker, and the partial 0 AN /\\ f'j\/\ /
integral of the steps becomes the random-walk time series, to N VA N
which the DFA is applied. The resulting scaling behavior can -20 S —
then be related to the nature of the correlations in the time 0 00501 01502 025 03 035 04 045 05

series and an interpretation be given to the scaling expo- £ (sec)
nents. As an example of that interpretation, one can note that FIG. 1. A sample of EEG time series in three channels. The
the stan(_jard_ deviation of the usual unbounded random—wal\l§ rtical scales of channels 1 and 2 are shifted upward by 60 and
time series increases as the square root of the number uV, respectively

steps; hence, the scaling exponent is 0.5. For that interpreta- ' '

tion to be effective the time series must be long. The heartthen the scaling exponent is an indicator of the nature of
beat problem treated in RefB] involves very long time se-  the fiyctuations in EEG. Since DFA considers only the fluc-
ries, up to 24 h. Our problem is very different. The EEG timeyyations from the semilocal linear trends, it is insensitive to
series is continuous and bounded, and the data segmen{syrious correlations introduced by slowly varying external
we analyze for most clinical applications are relatively shortyrends. This is a practical advantage since EEG acquisition
(~10 s). We therefore apply DFA to it directly without in- systems often suffer from very slow<(0.1 Hz) drifts asso-
tegration. As a consequence, we lose the availability of anyjated with gradual changes in the quality of electrode con-
simple way to interpret our results, such as in the frameworkact to the skin, for example. The analysis also liberates our
of the random-walk problem. Nevertheless, our approachesylt from the dependence on the overall magnitude of the
yields meaningful description of the flyctuations when taker\/oltagey(t) recorded by each probe, which is an advantage
in the _context of global characterlzanon. Further commentsince overall signal amplitude can vary across subjects, pre-
to clarify our approach will be made at the end of the fol- symaply due to differences in skull conductivity and other
lowing section. factors.

To be definitive, let an EEG time series be denoted by Resting EEG data were collectg0] for 28 subjects us-
y(t), wheret is discrete time ranging from 1 f Divide the  jng a 128-channel commercial EEG systétectrical Geo-
entire range oft to be investigated int® equal windows, desics, Ing, with scalp-electrode impedences ranging from
discarding any remainder, so that each window #as 10 to 40 K). The data were hardware filtered between 0.1
=floor(T/B) time points. Within each window, labeldt(b  and 100 Hz, then digitized at 250 points/s. After acquisition,
=1,... B), perform a least-square fit 9f(t) by a straight T~10 s lengths of simultaneous time series in all channels
line yy(t), i.e.,yp(t)=linear fit [y(t)] for (b—1)k<t<bk. were chosen, free of artifacts such as eye blink and head
That is the semilocal trend for theth window. DefineF2(k) movements. At each time point, the average across all elec-

to be the variance of the fluctuatior{t) from y,(t) in the  rodes was subtracted, to remove approximately the effect of

bth window. i.e. the reference electrode]. We investigate the range &
T from 3 to 500 in approximately equal steps oklnVe have
bk o verified that computind- (k) for all k from 3 to 500 simply
Fﬁ(k)z K. (bEl)k . [y(t)—yp(t) ]2 (1) interpolates these values and does not affect the computed
=(b—1)k+

scaling exponentsg; .
In Fig. 1, we show three typical time serigét) in three
dely separated channels for subjest labeled 1-3, for
brevity. While it is clear that both channels 2 and 3 have
B substantial 10-Hz oscillations after 0.2 s, it is much less ap-
F2(k) = 1 E F2(k). 2 parent that there exist any scaling behaviors in all three chan-
Byg=y P nels. The corresponding values B{k) are shown in the
log-log plot in Fig. 2. Evidently, the striking feature is that
F (k) is then the rms fluctuation from the semilocal trends inthere are two scaling regions with a discernible bend when
B windows each having time points. the two slopes in the two regions are distinctly different.
The study of the dependence k) on the window size With rare exceptions this feature is found in all channels for
k is the essence of DF[V,8]. If it is a power-law behavior  all subjects. Admittedly, the extents of the scaling regions are
not wide, so the behavior does not meet the qualification for
F(k)ock®, 3 scaling in large critical systems or in fractal geometrical ob-

It is a measure of the semilocally detrended fluctuation ini

window b. The average oFf,(k) over all windows is
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o FIG. 3. Scatter plot ofw, versusa, for subjectA. The three
FIG. 2. F(k) versusk for the three channels in Fig. 1. The channels exhibited in Figs. 1 and 2 are shown as circles.
vertical scales of channels 1 and 2 are shifted upwards by 1.0 and

0.5 units, respectively.

f= (4)

r

jects. However, since the behavior is so universal across "

channels and subjects, and since the temporal scales involvegyy our data acquisition we have=250 points/s. For the

are physiologically relevant, this scaling behavior is a featureycross-subject average of #=3.1, we get from Eq(4) f

of EEG that conveys a unifying property of the dynamics=11.3 Hz. That is in the middle of the traditional (8—13

across temporal scales and warrants further investigation. Hz) EEG frequency band. Thus the dominant periodic oscil-
lation apparent in Fig. 1 does reveal itself in the study of the
scaling behavior.

I1l. SCALING AND NONSCALING PROPERTIES Now that we have noted the relationship between the

_ ) ) “bend inF(k) and the dominant frequency of sinusoidal os-
To quantify the scaling exponents, we perform a linear fitgjjation in the data, a word of caution is in order. One may

in region | for 1<Ink<2.5 and denote the slope la, and  pe tempted to think that if, instead of considering the fluc-
similarly in region Il for 3.5<Ink<5.75 with slope denoted y,a4ions from the linear semilocal trengig(t), one studies
by a,. Visual inspection for each of the 28 subjects verifiesie flyctuations from periodic oscillations, then the bend
that fitting this way does a remarkably good job of charac-might disappear and the two scaling regions might be joined
terizing the slopes in the two regions. Knowing the twotg hecome one. Even if that were true, such a procedure
straight lines in each channel allows us to determine the loshould not be used for two reasons. First, not all channels
cation of their intercept Ir, which gives a good approxima- exhibit obvious oscillatory behaviors with definite frequen-
tion for the position of the bend in k We find that, whereas cies. Whatever detrending one chooses should be universally
a; andea;, can fluctuate widely from channel to channelis  applied to all channels in order to avoid introducing discrep-
limited to a narrow range in most subjects. The averagencies across the channels due to external intervention. Sec-
value of Ink for each subject ranges from 2.6 to 3.6, with aond, to determine the frequency of the oscillatory trend re-
grand average across subjects to be approximately 3.1. duires a Fourier analysis, which is precisely what our
should, however, be noted that when and a, are nearly approach attempts to circumvent. To decide on a sinusoidal
the same, as is the case for channel 1 in Fig. 2, the determivave of a particular frequency as reference for detrending
nation of k by the intersection of the two straight lines is not involves arbitrariness and is unlikely to lead to any simplifi-
reliable. Nevertheless, it is visually clear that the bend occursation in the global picture. The simplest and least biased
in the vicinity of Ink=3.1. approach is to use the semilocal linear trends, as we have
Since scaling behavior means that the system examinedbne. If one’s interest is in the sinusoidal frequency content
has no intrinsic scale, scale noninvariance anplies that«  of the EEG time series, then Fourier analysis is direct. Alter-
is related to a characteristic time scale in the data. From Figiatively, if one’s interest is in the fluctuations generally and
1 one indeed sees roughly periodic oscillations in channels their relationshipsacrosstime scales, then DFA allows a
and 3. It is at this point that a contact can be made with thenore succinct parametrization. Hereafter, frequency plays no
usual Fourier analysis. Although our analysis focuses oressential role in this paper.
scale invariant quantities, i.e., the dimensionless scaling ex- For each subject we have 128 pairs of valuesaf, ¢,),
ponents, it is worth digressing momentarily to establish thisvhich summarize the temporal fluctuations in terms of scal-
contact. To do this, we loosely associate the time seale ing exponents. In Fig. 3, we exhibit by scatter plot the values
with the period of a sine wave with frequentylf the data  of «; and«, of all channels for subjed\. The three points
acquisition rate is denoted by then the frequency corre-  marked with circles correspond to the channels shown in Fig.
sponding tox is 2. Overall, for subjecth, the scaling exponents are in the
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ranges: 0.19 a4 <1.44 and 0.018 «,<0.489. Whereag,

is widely distributed,«, is sharply peaked at 0.1 and has a
long tail. Region | corresponds to fluctuations over short
time scales, region Il over long time scales, withgiving a
guantitative demarcation between the two. In most channels
we find a;> a,, although there are a few channels where
a1~ a,. The scatter plots of all other subjects are similar in
general features to the one shown in Fig. 3, but vary in detail
from subject to subject. It is impractical to show them all in
this paper. Evidently, it is desirable to find a way to quantify
succinctly these 128 pairs of numbers so that one can effec-
tively compare the results across subjects.

Since our application of DFA differs from that of previous
authors, in that we do not integrate the EEG time series,
some comments are in order on the theoretical significance
of the a; values obtained here. Since the EEG time series is
bounded, one should expect thatkas«, F(k) becomes
a constant, and that the asymptotic slape becomes zero.
Since we find that usually,< a4, one may be tempted to
regard the changes of slopes in Fig. 2 as preludes toward the
asymptotic behavior just noted, and to dismiss the signifi-
cance of the two scaling regions. There are several argu-
ments against such a view. First, the bend separating the two
scaling regions occurs at a physiologically meaningful time
scale and is usually abrupt. In contrast, the bend toward con-
stancy due to the asymptotic requirement can occur gradu-
ally over any range ok and has no obvious physiological ,
significance beyond the fact that the EEG is bounded. Sec- F'G: 4. Topographical plots at, (top) anda, (bottom. In each
ond, most of the values af, are far from zero, and in some figure, ten contour lines a_re drawn within the data range: solid lines

. above the mean, dotted lines below.
casesy;~ a, Or a1 <ay. They fluctuate widely across chan-

nels, as is evident from the scatter plot in Fig. 3. Indeed, we , . . .
. . . . which EEG changes are known to be not spatially localized
give appropriate weight to the large valuesagfin the mo- . ; . :
. : with the site of pathology. Ischemic stroke is one such ex-
ment analysis below. The fact that in some channejs ; .
~ . implies that there is little bending between redions Iample[ll]. It is therefore of great interest to develop few-
andlll aﬁd that the asvmptotic behav@gHO ask s o %as parameter descriptions of global brain state, to facilitate
no effect in the data anyal ged Third. knowing the asvm toticcomparisons across subjects, and to quantify brain state with-
yzed. ' 9 ymplouc,, necessarily presuming spatial localization. To this end,
contained in the nonasymptotic behavior. To extract such irr}-Ne develop here an approach for analyzing the variability of
o onasymp ; o the scaling exponents with the aim of getting global mea-
formation is especially important when there are clinical red res
sons for the |mpract|ca_llty_ Of. obtaining very Iong time series, We propose to consider the moments of the scaling expo-
in which the asymptotic limit may become evident. Finally,

A . nents. In general, if we hawé numbersz;,j=1,... N, we
alth_ough 'Fhe |nd|V|d_uaI values @i, and a; cannot be_ given .. calculate the moments
a simple interpretation, as one could with the scaling expo-

nents of long random-walk time series, thgs should be 1 N
regarded as the bricks in the building of a global structure G.=— 2 2 (5)
that can characterize the general brain state of a subject. N

whereq is a positive integef12]. The information contained
in the firstN moments(i.e., g=1, ... N) is enough to re-
A scatter plot such as in Fig. 3 reveals very well how theproduce all thez; by inversion. However, we may be inter-
a; exponents of all the channels are related to one anothegsted in only a few of th&, with lower orderq, each of
However, it shows nothing about the locations of the chanwhich contains some information of all tlag. In our present
nels on the scalp. To show that, we can make topographicg@iroblem we havé=128, and we shall consider the first ten
plots of ; anda, separately, as in Fig. 4. It is seen that eachorders kq=<10. That is a significant step in data reduction,
plot varies systematically over the scalp, and that the range process worth investigating.
of their variability is large compared to the errors in their Before calculating the moments af;, let us see how
calculation. Such plots may be useful for attempting to lo-those values are distributed. Lebe eithera; or a,. Since
calize focal features, e.g., associated with particular braimo value ofa; has been found to exceed 1.5 in the subjects
functions and/or pathologies. However, there are cases iwe have examined, we consider the interval0<1.5. Di-

IV. MOMENTS OF THE SCALING EXPONENTS
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FIG. 5. The distribution®,, for @; anda,. The window size in

« for this plot is 0.02. FIG. 6. Theq dependence of IMy’ for subjectA. The straight

lines are linear fits of the points far=5.

vide that interval intoM equal cells, which for definiteness
we take to beM =150 here. Let the cells be labeled hy
=1,... M, each having the sizéx=1.5M. Denote the
number of channels whosevalues are in thenth cell by
ng,. Define

tered out, and the sampling rate=250 Hz does not allow
meaningful scaling analysis for shorter time scales. In this
paper, therefore, we restrict our study to only the positjve
values. For highg, the largem/m parts of P{+? dominate
M2,
P=nn/N. (6) In Fig. 6 theq dependences of M{? are shown for the

) ) ) distributions exhibited in Fig. 5 for2g=<10. They are ap-
Itis the fraction of channels whosevalues are in the range proximately linear except for the low values qf The same
(m—1)éx<x<méx. By definition, we haveXn,_,Pn=1.  type of dependences arare found for all subjects. In Fig. 6,
In Fig. 5, we show as an illustration the two graphsgffor  we show two straight lines that can fit very well the nearly

subjectA. The two graphs correspond & anda;, and are, |inear behaviors of IM{ versusq for q=5. Thus for large
in essence, the projections of the scatter plot in Fig. 3 ont@ we have

the ¢, and «, axes. From Fig. 5, we see thaj is widely

distributed, whilea, is not (in absolute valugs but has a M{cexpmia), g=5. 9
long tail relative to its mear(G; gives the average, ar@, is
related to the width. The linear extrapolations of the lines to lower valuesgof

Since the variance and other moments typically increasshow the degree of deviation of the calculated values of
with the mean of a distribution, the fluctuationafin Py, is  InM{-? from linearity. Since IM{? and InM{?) behave so
best measured relative to its mean. Let us therefore consideimilarly in their departures from their linear dependences on

the normalized momen{4.3] g, we plot InM$) versus IVI{" in order to exhibit their
" " a direct relationship without explicit dependence@ie find

MO—G (,)/ ())a 2 map) S mpl) tha}t tr_\ey are 'Iinearly related over a wider range of values.

q = m = mjo This linearity is found to be true for all subjects. The plots

(7)  for three of them are illustrated in Fig. 7, where the straight
lines are the linear fits. Thus the implication is that there

where i=1 or 2. Since these moments are averages oéxists a universal power-law behavior
(m/m)9, wherem is the averagen, they are not very sensi-
tive to m itself. They contain the essence of the fluctuation
properties ofa; , in all channels. In terms of the scaling
exponents explicitly, let us use;(j) to denote the value of
a; for channelj so that Eq.7) may be rewritten as

MPoc(M{P)7 (10)

valid for all subjects examined. From Ed9) and (10), we
obtain

11

1 N 1 N q n=polpy,
[ — _ (i
Mq N 2 / (N ,Zl a'(J)) ' ® but now % is meaningful for allq (except for the lowest
pointg and in that sense independent @@f Thus we have

In principle, it is possible to examine also the momentsdiscovered a global measurgethat characterizes all; val-
for g<0, which would reveal the properties &, at low ues of a subject, and varies from subject to subject. We post-
values ofm. However, the accuracy of our data is not too pone the display of they values for all subjects until later.
reliable for lowk analysis, since the 60-Hz noise due to am- To understand the exponential behavior in E®), we
bient electric and magnetic fields has not been cleanly filnote thatG, is dominated by large; whenq is large, as is
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) FIG. 8. The distributions of thg values of the subjecta, B,
FIG. 7. Alog-log plot ofM{? versusM{" for three subjectd,,  andc.

B, andC. The solid lines have the slopes given by Etfl).

) ) ) distributions for the same three subjects as those in Fig. 7.
self-evident in Eq(5). For asymptotically large, we have  gypjectB is chosen for display because it has the larggst

Gq*exp(qInZma), Wherezn,=maxz;;. For intermediate \yhjle subjectC is chosen because it has sevegalalues that
g, all large values ofz; can make important contributions, exceed 1.

and the exponential dependence @ean still prevail. The 1o summarize the 128 values g for each subject, we
denominator in Eq(7) is GI=z%=exp(qInz), wherez is  apply to them the moment analysis that is developed in Sec.
the average of;, so it is also exponential for ang. It is  IV. Let us therefore define

therefore clear that Eq9) follows, and thatu; depends on

all z; with more weight on the large; values. The power-

law behavior of Eq(10) implies that the exponeny is in- 1 N 1 N q

dependent of] and that alle; values are relevant contribu- Ng=— >, B9 (—E ,3') (13)
. . . . . a— N &~ P N&, Pl

tors to the universal behavior. This is an important point =1

worth emphasizing: the independencezobn q implies that

the whole spectra oft, and a, are summarized by the one The q dependence of IN, for the same three subjects are

index 7. The fact thaty varies from subject to subject is @ shown in Fig. 9. Again, linear fits are very good. Thus we
consequence of the variability of all 128 pairs af( «>) have

across the subjects, and offers the possibility thatan be
used as a discriminating representation of the brain state.

Ngecexp(vq) (14)
V. CORRELATIONS OF THE SCALING EXPONENTS

The analysis in the preceding section treats the momenfﬁ’ith a distincty for each subject. Clearly, the ones with wide
of a; and a, separately. Only in the last step are the globalﬂ distributions relative to their means have higher values of

properties embodied iM{" and M) related through the "
exponenty in Eq. (10). In that approach the pairing @f,

with a, in each channel is not taken into account. However,
we know that there are channels, such as channel 1 in Figs. 1
and 2, where the absence of a dominant mode of oscillation
results ina;~ a,. Thus the correlation between the two scal-
ing exponents is an important feature that should be explored
and quantified. To that end we define

25 ¢

InN,

B=azla;y 12

for each channel. In most cases we h@#«1, butg>1 is
possible and, by its rarity, noteworthy.

From a scatter plot, such as Fig. 3, it is possible to visu-
alize the g distribution, sinceg is just the slope of a line
from the origin to each point. We show in Fig. 8 ti§e FIG. 9. Theq dependence of IN, for subjectsA, B, andC.

12
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45 of one exception. We emphasize instead that, based upon
4l . these results, the approach seems very promising. To be sure,
more subjects in both groups must be studied to confirm the
utility of this approach as a clinical discriminator of the
stroke. It is likely that the measures developed here will find
wider utility when applied to diverse data sets and subject

35+ °

3 |

25
> conditions. Our objective in this paper is mainly to describe
I the method that gives rise to an interesting and useful result.
L5 ¢ We believe that the existence of scaling behavioF (k) as
1 computed here, and its apparent success in this clinical ap-
plication, are sufficient to justifp posteriori our unconven-
05 tional application of DFA to continuous EEG time series.
0 L
0 2 4 6 8 10 12 14
n VIl. CONCLUSION
FIG. 10. Scatter plot ol versus# for all 28 subjects. Open Recognizing that the brain is a highly complex system, we

circles indicate 18 normal subjects. Closed circles indicate 10 subhave explored a way of analyzing the EEG time series that
jects with acute ischemic stroke. The significance of the wedgeyyoids the assumptions of linearity and low-dimensional
region is discussed in the text. chaos. By studying the fluctuations from linear trends de-
fined over varying time scale, we have found two scaling
regions in which the rms fluctuations can be characterized by
Up to this point we have deliberately chosen not to dis-two dimensionless scaling exponents and a,, for each
cuss the conditions of the subjects so that attention could behannel. We then performed moment analyses to reduce the
focused on the method of analysis and the existence of scdRrge number of pairs ofd; ,«a;) to simple summary statis-
ing behavior in EEG generally. Now we state that among thdics. The two types of independent momems’ and N,
28 subjects, eighteen are normal and ten have acute ischemjield two indicesy» and v, which provide concise signatures
stroke. Both subject groups exhibit these scaling behavior®f the nonlinear behavior of all channels of the EEG signals.
We have analyzed their EEG time series in identical ways Our emphasis in this paper has been on the method of
and determined the two indiceg and v for each subject. analysis more than on the clinical study of the subjects. Nev-
Figure 10 shows a scatter plot ofy(v) for all 28 subjects. ertheless, working with 28 subjects is sufficient to demon-
The normal subjects are labeled by open circles and thetrate the effectiveness of the method, to show the universal-
stroke subjects by filled circles. The values of,{) are ity of the scaling behaviors, to reveal the range of variability
widely distributed for the 28 subjects, and with one excep-of the indices derived, and to offer the possibility of a new
tion the two subject groups are distinctly separated. The noway of thinking about global human brain dynamics. The
mal subjects are all restricted to a narrow wedge region innitial indication that our analysis can lead to categorization
the (n,v) plot. The stroke subjects are scattered over a largef the subjects according to their locations in thg ) plot
area outside the wedge. There is one stroke subject whosdfers realistic hope that the method proposed has possibili-
»-v values lie inside the wedge for reasons that are not yeties of becoming an effective diagnostic tool.
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