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Scaling in DNA unzipping models: Denaturated loops and end segments as branches of a bloc
copolymer network
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For a model of DNA denaturation, exponents describing the distributions of denaturated loops and unzipped
end segments are determined by exact enumeration and by Monte Carlo simulations in two and three dimen-
sions. The loop distributions are consistent with first-order thermal denaturation in both cases. Results for end
segments show a coexistence of two distinct power laws in the relative distributions, which is not foreseen by
a recent approach in which DNA is treated as a homogeneous network of linear polymer segments. This
unexpected feature, and the discrepancies with such an approach, are explained in terms of a refined scaling
picture in which a precise distinction is made between network branches representing single-stranded and
effective double-stranded segments.
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I. INTRODUCTION

A DNA molecule may undergo transitions from a doub
stranded to a single-stranded state, either under the effe
an increase in temperatureT ~thermal denaturation!, or
through applied forces at one end of the chain~mechanical
unzipping! @1–3#. In the characterization of such transition
and in the determination of their universal, asymptotic fe
tures, substantial progresses have been recently by app
tions of models and methods of polymer statistics@4–8#.
Among these progresses is an extension@6# of the classical
Poland and Sheraga~PS! model @1#. In the PS model, the
partition function of a DNA chain is approximated by that
a sequence of noninteracting double-stranded segments
denaturated loops, and the thermal denaturation transitio
sults of the second order-type@1,2#. Recently, excluded vol-
ume effects between a loop and the rest of the chain w
included in the PS description in an approximate way@6#,
using results from the theory of polymer networks@9#. This
approach predicts a first-order denaturation, in agreem
with recent numerical studies of models, taking fully in
account the self-avoidance and mutual avoidance am
loops and double segments@7,8#. Quite remarkably, the ap
proximate scheme of Ref.@6# yields results that are in goo
quantitative agreement with Monte Carlo simulations@8#.
Recently, predictions based on the theory of polymer n
works were also made for the case of mechanical unzipp
@10#.

Besides confirming the expected first-order characte
thermal denaturation, the results of Ref.@8# demonstrated
that excluded volume effects alone are responsible for
character, while the difference in stiffness between doub
and single-stranded DNA, and sequence heterogeneity do
affect the asymptotic nature of the transition.

All these results give rise to interesting and debated@11#
issues and open more perspectives in the field. First of
one would like to test numerically the existing analytic
estimates, in particular, the recent ones pertaining to the
1063-651X/2002/66~2!/021804~8!/$20.00 66 0218
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of mechanical unzipping. The validity of crucial prediction
relies on such tests, which should also reveal whether
quantitative success in the case of thermal unzipping is ra
fortuitous, or there is some deep and systematic basis fo
The network picture proposed in Ref.@6#, besides allowing
some elegant and successful estimates, could constitut
important step forward in our way of representing the ph
ics of DNA at denaturation. Progress in the assessment o
validity and limitations of a network picture for denaturatin
DNA should be allowed by a more careful and systema
analysis of numerical results for specific models. The p
sible extension and improvement of previous analyses for
relevant three-dimensional case is also a main motivation
the present work.

In this paper we consider a lattice model of DNA both
two and in three dimensions~d! with excluded volume ef-
fects fully implemented. Using various numerical metho
we estimate length distributions for denaturated loops
unzipped endsegments. In particular, for the transition
three dimensions, we give here exponent estimates tha
tend and improve the results of a previous study@8#. More-
over, our results allow one to address the basic issues m
tioned above, and to clearly identify some qualitative a
quantitative limitations of the picture proposed in Ref.@6#.
The analysis also gives hints that allow us to propose a g
eralization of the polymer network representation of dena
ating DNA. Our model in two dimensions, besides deserv
some interest in connection with problems such as the un
ping of double-stranded polymers adsorbed on a subst
offers an ideal context in which to compare the predictions
Refs. @6,10# with numerical results. Indeed, ford52, those
predictions are based on exactly known network expone
while in d53 the same exponents have been approxima
determined.

The model studied here was introduced in Ref.@7# and
further analyzed and extended in Ref.@8#. We consider two
self-avoiding walks~SAW’s! of lengthN on square and cubic
lattices, described by the vectors identifying the positions
©2002 The American Physical Society04-1
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each monomerrW1( i ) and rW2( i ), with 0< i<N. The walks,
which represent the two DNA strands, have a common or
rW1(0)5rW2(0) and only monomers with the same coordina
along the SAW’s can overlap each other@i.e. rW1( j )5rW2(k)
only if j 5k#. An overlap corresponds to a bound state
complementary DNA base pairs, to which we assign an
ergy «521, thus neglecting the effects of sequence hete
geneities. This is an acceptable approximation in view of
fact that, at the coarse grained level, each monomer~site
visited by the SAW! should represent a whole persisten
length of the single strand, which includes several ('10)
bases. A denaturated loop of lengthl occurs whenever, for
some i, rW2( i )5rW1( i ), rW2( i 1 l 11)5rW1( i 1 l 11), and rW2( i
1k)ÞrW1( i 1k), k51,2, . . . ,l .

At a temperatureT each configurationv of the two
strands appears in the statistics with a probability prop
tional to its Boltzmann’s weight exp@2bH(v)#, where b
51/T ~Boltzmann’s constant51) andH is « times the num-
ber of bound base pairs inv. The resulting behavior of the
DNA model resembles the scaling of a 2N-step SAW as long
as the inverse temperatureb is lower than a critical value
bc . For b.bc the strands are typically paired in a sequen
of bound segments alternating with denatured loops, the
ter gradually shrinking and becoming rarer for increasingb.
For b.bc andN→` the scaling of anN-step SAW holds.
Aroundbc there is a crossover from one regime to the oth
and exactly atbc peculiar scaling behaviors are expected
the distributions of loops and end segments.

II. THE TWO DIMENSIONAL CASE

We focus first on the two-dimensional case. Figure 1 pl
the logarithm ofP( l ,N), the probability distribution function
~PDF! of finding a denaturated loop of lengthl within a chain
of total lengthN, as a function of lnl at the transition point.
The behavior of this PDF at denaturation determines the

FIG. 1. lnP(l,N) vs ln l for various N values. Upper inset:
ln P(N/2,N) vs lnN; data are well fitted by a line from which w
estimatec52.44(6). Lower inset: scaling collapse of the data.
02180
in

f
n-
-

e

r-

e
t-

r,
r

s

r-

der of the transition@1,6,8#. The data are obtained from exa
enumerations for walks up toN515. For each chain length
the PDF is sampled at the temperature corresponding to
specific heat maximum. This choice offers the advanta
that, if the specific heat diverges at the transition, as in
case, the correct transition temperature is asymptotic
singled out forN→`. Thus, in this limit, the sequence o
distributions should automatically approach the critical PD
for which we expect power-law scaling.

Finite-size effects should be described byP( l ,N)
5 l 2cq( l /N), with q being a suitable scaling function. I
order to determinec, we consider, e.g.,P(N/2,N), which
should scale}N2c for N→`. Such quantity is shown in the
upper inset of Fig. 1, plotted as a function ofN in a log-log
scale. From a linear fit of the data we obtain the estimatc
52.44(6). The lower inset shows a scaling collapse of th
data, obtained withc52.44. The good quality of the collaps
indicates that the system is very close to the asymptotic
gime although the chains are quite short. We also perform
a Monte Carlo determination ofc using the pruned enriche
Rosenbluth method~PERM! @12#, through which walks are
generated by a growth procedure. In this case the crit
temperature at which the PDF was sampled was determ
by carefully monitoring the scaling withN of the average
end-to-end distancêurW2(N)2rW1(N)u& as a function of tem-
perature. The effective exponents describing the growth w
N of this quantity are plotted as a function ofb for different
chain lengths in Fig. 2@13#. The intersections of the variou
curves in a very narrow range signal the crossover expe
at denaturation for this quantity and allows one to locate
melting temperature rather accurately, i.e.,bc50.7525(3).
By fitting the initial slope of the critical PDF for chains up t
N5480 we extrapolatec52.46(9), in good agreement with
the exact enumeration results.

The value ofc for loops with l !N was predicted analyti-
cally @6# using exact results for entropic exponents of n
works of arbitrary topology@9,14#. For a network of fixed
topologyG @see example in Fig. 3~a!#, with n self-avoiding
and mutually avoiding segments, Duplantier@9#, on the basis
of renormalization group arguments, postulated the follo
ing scaling form for the total number of configurations:

GG;mNNgG21f S l 1

N
,
l 2

N
,..,

l n

ND , ~1!

where l i is the length of thei th segment,N5( i l i , and f a
scaling function. The value ofgG depends on the number o
independent loops,L, and on the number of vertices withk
legs,nk , as

gG512Ldn1(
k

nksk , ~2!

where n is the radius of gyration exponent andsk , k
51,2,.., are exactly known exponents ind52 @9#,

sk5
~22k!~9k12!

64
. ~3!
4-2
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SCALING IN DNA UNZIPPING MODELS: . . . PHYSICAL REVIEW E 66, 021804 ~2002!
This general scaling framework was applied to the DN
unzipping by considering relevant network topologies for
problem@6,10#. For example, in order to study the denatu
ated loop length PDF, one can assimilate the situation o
typical loop within DNA to that of the loop in Fig. 3~b!. This
amounts to assuming that the action of the rest of the D
molecule is the same as that of two long linear tails, th
totally disregarding the presence of other loops. According
Eq. ~1!, for G corresponding to the topology in Fig. 3~b!, one
has@6#

G loop;m2NN2dn12s112s3h~ l /N!. ~4!

FIG. 2. ~a! Effective exponentn of the end-to-end distance
for NPA5$80, 120, 160, 240% ~dashed curve!, NPB5$160, 240,
320, 480% ~dotted curve!, and NPAøB ~continuous curve!, as a
function ofb in d52. The horizontal dotted line marks the exact
known SAW n53/4, while the vertical line is our estimatebc

50.7525(3)~the error is indicated by the gray band!. ~b! Similar
plots for d53; A5$80,120,160,240%,B5$120,160,240,320%. In
this case the intersections are even better localized around th
pected SAWn'0.5877. The transition temperature determined
this way is almost coincident with the estimatebc51.3413(4)@7#
indicated by the vertical line and the gray band.
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In this equation we explicitly assume that while the conn
tivity of a loop step is equal tom, that of a step of the tails is
m2. This assumption is consistent with the thermodynam
of the denaturation transition and follows from the continu
of the canonical free energy of the system, and from the
that each step of the tails corresponds, in fact, to two step
the loops. In this way thel dependence of the rhs of Eq.~4!
does not enter to the exponential growth factor, an import
requisite for the derivations below@15#. ForN@ l the number
of configurations should reduce to that of a single doub
stranded chain of lengthN, i.e., G;m2NNg21 with g51
12s1, according to Eq.~1!. This requiresh(x);x22n12s3,
for x!1. So, thel dependence in Eq.~4! becomes; l 2c,
with @6#

c5dn22s3 . ~5!

Clearly, in this approximation,c is also the exponent by
which the loop length PDF,P, scales. In reality, the segmen
departing from the two sides of the loop replace more co
plex fluctuating structures containing denaturated bubble
all sizes, separated by short linear double stranded segm
In d52, n53/4, ands35229/64, thereforec52113/32
'2.41, which is a value consistent within error bars with o
numerical estimates. As already known ind53 @8#, this
agreement implies that the sequences of loops which ‘‘dre
the two segments departing from the loop in Fig. 3~b! have
very little effects on the value ofc.

We consider now the distribution of endsegments. W
the assumed boundary conditions, denaturated end segm
of length m occur in configurations whererW1(N2m)
5rW2(N2m) while rW1(k)ÞrW2(k) for k.N2m. The statisti-
cal geometry of denaturated endsegments is expected t
relevant for situations occurring in mechanical unzipping e
periments@10#. Indeed, as a rule, this unzipping is induce
by applying forces that separate the strand extremesrW1(N)
and rW2(N) by micromanipulation techniques@16#. In the
same spirit as in the case of denaturated loops, one can
sider now the network geometry of Fig. 3~c! @10#, for which

ex-

FIG. 3. ~a! Configuration of a polymer network withL52, n1

55, n351, andn453. ~b! Loop of lengthl embedded in a chain o
length N2 l and ~c! chain of lengthN2m with bifurcating end
segments of lengthm.
4-3
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G fork;m2NN3s11s3g~m/N!. ~6!

By matching again, form!N, with the partition function of
a SAW of lengthN, one gets for the distribution of the en
segment lengths,Pe(m,N);m2 c̄ with @10#

c̄52~s11s3!. ~7!

One should note that this last result holds also in case
tries to match the behavior ofG fork with that of a simple
SAW of length 2N in the limit (N2m)!N. In this case the
PDF results;(N2m)2 c̄.

Figure 4 shows a plot of the logarithm of the PDF for e
segments of lengthm, ln Pe(m,N), as a function of~a! ln m
and ~b! ln(N2m). The data obtained from the PERM sho
coexistence of two distinct power-law scaling behaviors, i
Pe(m,N);m2c1 and Pe(m,N);(N2m)2c2 where a linear
fit yields c150.23(1) andc250.35(1), respectively. The
slope determinations are rather sharp in this case, and
fact, the criterion of selecting the denaturation temperatur
correspondence with the simultaneous manifestation of
power law behaviors ofPe is very efficient, and consisten
with that based on monitoring the behavior of^urW2(N)
2rW1(N)u&.

The existence of two distinct slopes and the values of
exponents are in disagreement with what one expects on
basis of the network approximation, i.e.,c̄59/32'0.28 in
d52. Thus, for some reason, onPe(m,N) the effects of the
structure of the double-stranded part of the chain are not
able and the schematization through a simple polymer
work topology is not fully adequate to represent the phys
In the caseN2m!N the number of single chain configura
tions is indeed that of a simple linear SAW of length 2N,
which is asymptotically exactly known in two dimension
@4#. On the other hand, form!N, the configurations to coun
are those of an effective linear SAW chain of lengthN,

FIG. 4. Plot of lnPe(m,N) vs lnm ~a! and ln(N2m) ~b! at the
estimated critical pointbc50.7525 and forN580, 120, 240, 320,
and 480~from top to bottom!.
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whose internal structure contains loops at all scales. I
conceivable that not only the connective constants, but a
the entropic scaling properties of such effective walk dif
from those of a standard SAW. The difference must conc
the power-law correction to the exponential growth factor
the number of configurations as a function ofN. Indeed, as
already remarked above, the connectivity constant of the
fective, double-stranded walk at the transition, must be
the square of the simple SAW connectivity constant. T
follows from an obvious requirement of free energy contin
ity and from the fact that in the high temperature region
two strands behave as unbound simple SAW, with a to
length twice that of the effective double-stranded walk, ind
pendent of temperature@17#.

To investigate this issue further, we determined direc
on the basis of PERM data, also the overall entropic beha
of the DNA chain. We considered two types of bounda
conditions:~1! the extremes@rW1(N) andrW2(N)# of the chain
are free and~2! are forced to join in a single point@rW1(N)
5rW2(N)#, while in both cases, the strands still have a co
mon origin @rW1(0)5rW2(0)#.

Condition ~1! is the one applying to the effective wal
discussed above. We indicate withZN

(1) and ZN
(2) the corre-

sponding partition functions. In the spirit of the network a
proximation, if we neglect the contribution of denaturat
loops within the double stranded phase, one hasZN

(2)

;m2NNg(2)21, with g (2)5112s1. We estimate alsoZN
(1)

within the same general framework, by integrating the pa
tion function G fork of Eq. ~6! over all possible end-segmen
lengths. This integration gives

ZN
(1);E

0

N

dmG fork;m2NN3s11s311, ~8!

as the integration of the scaling functiong(m/N) yields an
extra factor proportional toN. Defining ZN

(1);m2NNg(1)21

one eventually gets

g (1)5213s11s3 . ~9!

This is a theoretical expression for the entropic exponent
DNA molecule as a whole, and can be directly compa
with numerical estimates, one of which already exists ind
53 @7#, as we discuss in the sections hereafter.

In order to calculate the entropic exponentsg (1) andg (2)

we estimated the quantity (Z2N
( i ) /ZN

( i ))1/2N by PERM sampling
for reasonably long chains. ForN→` one expects

S Z2N
( i )

ZN
( i ) D 1/2N

;mS 11 ln 2
g ( i )21

2N D , i 51,2. ~10!

Sincem must coincide with the SAW connective constan
which in d52 is very precisely known (m
52.638 158 529 27(1)@18#!, largeN data for the quantity on
the lhs of Eq.~10! can be fitted by keepingg ( i ) as the only
fitting parameter. Alternatively, one can assume a value
g ( i ) and check whether data appear consistent with the
4-4
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SCALING IN DNA UNZIPPING MODELS: . . . PHYSICAL REVIEW E 66, 021804 ~2002!
sumed correction term in the same rhs expression. This
sistency test is best applied to the sets of data pertainin
different temperatures close to the transition, as illustrate
the following section. Since the correction term is rather s
sitive to the choice of the temperature, this offers also a w
of locating the transition. Here we just mention that t
slopes predicted on the basis of the network approxima
in d52 appear slightly, but definitely, inconsistent with th
data, as discussed in the following section.

III. DENATURATING DNA AS A COPOLYMER NETWORK

The polymer network representation of denaturating D
@6# was originally proposed as a useful, but definitely a
proximate tool, without the possibility of controllable an
systematic improvements. For example, the environm
seen by a single fluctuating loop within the molecule was
proposed as something unique, and choices slightly diffe
from that discussed above were also discussed@6,10#. With
these alternative choices, leading to slightly different resu
the portions of the molecule surrounding the loop were
necessarily treated as made up of simple double segme

Even if the approximate character remains, all the d
crepancies and inconsistencies discussed in the prece
section can be resolved by a refinement of the whole pic
and an improvement of the approach, which could all
more accurate predictions in the future. In the changed
spective that we propose, the rules for associating a netw
schematization to loops or end segments should be rega
as unique. This follows from the fact that the polymeric e
tities one defines are supposed to account, at an effec
level, for all the complications arising from the fluctuatin
geometry of the model.

The legs of the network are either simple self-avoidi
chains, in case they are really made of single strands
effective, dressed segments, when they represent fluctu
double-stranded portions of the molecule present betw
two given bound base pairs. This clear cut distinction s
gests that the exponentssk , associated with the networ
vertices, should be modified with respect to the ‘‘bare’’ va
ues considered so far, as soon as, at least, one outgoing
of the double-stranded, dressed type. Indeed, within
framework of a continuum Edwards model description of
inhomogeneous polymer network, and of renormalizat
group ideas, one can postulate the validity of homogen
laws and exponent relations analogous to Eqs.~1! and ~2!,
with modified s ’s where appropriate. Something like th
was already done in Ref.@19# where explicit field theoretica
calculations were performed in the case of copolymer
networks~no loops!. These stars were composed of mutua
excluding branches made, either of random walks, or of s
avoiding walks. In the case considered here the copolyme
made of two kinds of segments which do not differ as far
metric scaling exponents are concerned~samen), but can
have different entropic scaling properties. It is indeed qu
conceivable that an effective linear structure, which sho
be resolved into a sequence of denaturated segments
loops of all sizes, could have an entropic scaling differ
02180
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from that of a simple SAW on the lattice, even if the elo
gation grows in the same way withN.

The above considerations lead us to introduce two n
exponents:s̄15s11Ds1 for an isolated vertex with a
dressed segment, ands̄35s31Ds3 for a vertex joining a
dressed segment and two self-avoiding walks, as schem
cally illustrated in Fig. 5. As discussed above, the introdu
tion of suchs̄ ’s amounts to postulating a generalization
the scaling in Eq.~1! to copolymer networks with two dif-
ferent types of segments. Following the same argume
leading to Eqs.~5!, ~7!, and~9!, and using now the modified
exponents wherever appropriate, one finds:

c152~s11s3!2Ds31Ds1 , ~11!

c252~s11s3!2Ds32Ds1 , ~12!

c5dn22s322Ds3 , ~13!

g (2)5112s112Ds1 , ~14!

g (1)5213s11s31Ds11Ds3 , ~15!

which is a set of five equations with only two unknow
parameters,Ds1 and Ds2. These equations should be r
garded as consistency requirements in order to test the v
ity of the proposed copolymer picture. Notice that within t
copolymer network scheme the exponents associated to
distributions of short and long endsegments are distinctc1
Þc2, as soon asDs1Þ0. By solving the first two equations
Eqs.~11! and ~12!, with the numerical values forc1 andc2,
we find Ds3520.01(1) andDs1520.06(1). While the
former is actually compatible with zero, the latter is no
Once the values ofDs1 and Ds3 have been fixed, we can
check for the consistency of the other exponents using E
~13!–~15!. Inserting the calculatedDs3 into Eq.~13! we find
c52.43(2), i.e., a value slightly higher than that predicte
from Eq.~5!. Indeed, our numerical estimates suggest forc a
slightly higher value than that predicted on the basis of

FIG. 5. Representation of the geometries relevant to the D
problem by copolymer networks. Thick lines denote branches of
network composed of an alternating sequence of bound segm
and denaturated loops, while thin lines are genuine single-stran
segments. Only the latter have the same metric and entropic sc
properties as a SAW.
4-5



ve
q
t
l-

m

ic

t

he

t-

e

ta
e
en

n-
we
the

ro-
ving
the

on
x-
lts,

t-

-

t a
sis

m-

is

be
ra-
ents

n
ate
er

ea

m

a

MARCO BAIESI, ENRICO CARLON, AND ATTILIO L. STELLA PHYSICAL REVIEW E66, 021804 ~2002!
bare network approximation, although the error bars co
both values. Next we consider the last two equations, E
~14! and~15!; as bothDs1 andDs3 are negative we expec
that g (1) andg (2) would be somewhat smaller than the va
ues predicted from the homogeneous network approxi
tion. Substituting the above numerical values ofDs1 and
Ds3 into Eqs. ~14! and ~15! we find g (2)'1.22(2) and
g (1)'1.99(2) ~recall that the homogeneous network pred
tions areg (2)51111/32'1.34 andg (1)5211/16'2.06).
We first examine case 1. Since the differences between
bare and dressed values ofg (1) are small, in order to magnify
the asymptotic details we considered the quantity

f ~N![S Z2N
(1)

ZN
(1)D 1/2N

2
~g* 21!m ln 2

2N
, ~16!

with g* 533/16. The coefficient of the 1/N term in the rhs of
the previous expression has been chosen, such that ifZN

(1)

would scale with the homogeneous network exponent t
f (N) should approach the connectivity constantm with zero
slope when plotted as a function of 1/2N @as follows from
Eq. ~10!#. A g (1) larger ~smaller! than its homogeneous ne
work value would imply af (N) approachingm with a posi-
tive ~negative! slope, equal to (g (1)2g* )m ln 2. Figure 6
shows a plot off (N) vs 1/2N for five different temperatures
around the estimated critical one. Clearlyf (N) approachesm
in the limit of largeN with a negative slope. The solid lin
represents the slope for the value ofg (1)51.99 as obtained
from Eq.~15!, which apparently fits reasonably well the da

In the case ofZN
(2) , of all configurations generated by th

PERM, only those where the two strands have common

FIG. 6. The functionf (N), defined in Eq.~16!, for N→` should
approachm with zero slope if theg (1) exponent would be correctly
determined by the homogeneous network approximation. Inst
the trend predicted by the copolymer theory~continuous line! fits
rather well the data@b50.7520,0.7523,0.7526,0.7529,0.7532, fro
below. We recall that we estimatebc50.7525~3!#.
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points@rW1(N)5rW2(N)# are considered and this reduces co
siderably the statistics available. The numerical results
find are consistent with both the proposed pictures, since
low precision of data, due to the insufficient sampling, p
duces large statistical errors. So, the case 2, while also gi
meaningful data, does not help in the determination of
right scenario.

We conclude that the improved representation based
the idea of a copolymer network with modified entropic e
ponents allows us to match well all our numerical resu
with just two adjustable parameters.

IV. THE THREE-DIMENSIONAL CASE

We now consider thed53 case, where homogeneous ne
work exponents can be deduced from estimates ofg51
12s1 @20# (s1'0.079) or from«-expansion results com
bined with resummation techniques (s3'20.175) @21#.
From Eqs.~5! and ~7! one getsc'2.11 andc̄'0.095. Pre-
vious Monte Carlo simulations yieldedc52.10(4) @8#. In
the present work we made an extra effort in order to ge
reliable estimate of the various exponents. With an analy
of the scaling behavior of̂urW1(N)2rW2(N)u&, we get here a
very precise estimate of the melting temperature@see Fig.
2~b!#, consistent with that of Ref.@7#. Extensive PERM sam-
pling of the loop distribution at the estimated transition te
perature yieldsc52.18(6) ~see Fig. 7!. This refined value,
confirming the first-order character of the transition,
slightly higher than that reported in Ref.@8#, although com-
patible within the uncertainties. The discrepancy could
imputed to a slight overestimation of the transition tempe
ture made in that reference. An analysis of the end segm
distribution yields, as ind52, two slightly different expo-
nents,c2.c1, signaling again a deviation from the predictio
of the homogeneous network approximation. We estim
c250.16(1) andc150.14(1). These estimates are rath
sharp, and implyDs150.01(1) andDs350.055(10). By
inserting these values for theDs ’s into our expression forc,
Eq. ~11!, we getc'2.22, which is well compatible with the
last mentioned estimate illustrated in Fig. 7.

Causoet al., @7# determined ind53 the exponentg (1)

d,

FIG. 7. Log-log plots of the loop’s PDF at the critical point as
function of their length, for chains of various lengths.
4-6



er

s,
cu

e

et
W

ne
i-
er
s.
e
e

st
ol
is
na

th
te
F

nite
r

the

cor-
rs,
gs.
ork
oly-
g
is
ded

opic
f a
DF

o-
es-
he

be
ic
sis-

ith

on
is

ays

sed
ui-

ld
res
ed

d-
i-
o
the

of
nt
ies
o-
ect

ion
pli-
del

the

d
ive

e

SCALING IN DNA UNZIPPING MODELS: . . . PHYSICAL REVIEW E 66, 021804 ~2002!
52.09(10), a value that should be compared with Eqs.~9!
and ~15! derived in this paper. Inserting the above det
mined values forDs1 and Ds3 in Eq. ~15! we obtaing (1)

'2.00, to be compared with a valueg (1)'2.06 if one sticks
to the homogeneous network prediction given by Eq.~9!. As
theg (1) of Ref. @7# is compatible with both the above value
we made an effort to estimate it again with improved ac
racy.

Figure 8 shows a plot off (N) vs 1/2N for five different
temperatures, of which three are aroundbc ~as for thed
52 case, we setg* equal to the value derived within th
homogeneous network picture forg (1), g* 52.06). The
value of the connectivity constant ism54.684 04(9) for the
cubic lattice@22#, a value indeed approached by all data s
for b<bc . At high temperatures the data clearly show SA
scaling as expected, while at the transition pointf (N) seems
indeed to approach a slope given by the dressed expo
g (1)52.00~solid line!. To confirm this, at the estimated crit
cal point, we performed a series of calculations up to v
long chains (N52000), but with somewhat lower statistic
The latter data are plotted in gray in Fig. 8: indeed they se
to follow quite closely the solid line, as predicted by th
inhomogeneous network theory.

Thus, even if the error bars on some exponents are
relatively large, the corrections suggested by a block cop
mer network representation of DNA seem to be well cons
tent with the numerical scenario, as in the two-dimensio
case.

V. CONCLUSION

We investigated a lattice model of DNA denaturation bo
in d52 andd53 and determined the exponents associa
to the decays of the PDF’s for loops and end segments.

FIG. 8. As in Fig. 6: from below,b50.293~SAW regime, evi-
denced by the dotted line, i.e.,g* 5g, with gamma representing th
SAW exponent ind53 @20#!, 1.335,1.3407,1.3413(bc),1.3419. The
gray band shows data atbc and longerN ~up to 2000!, but with
lower statistics.
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the loop PDF exponent we findc.2, which implies a first-
order denaturation as the average loop length remains fi
at the transition point@1,2#. In d52 the first-order characte
is even more pronounced than ind53 and the values ofc
are quite consistent with those predicted analytically on
basis of the entropic exponent of homogeneous networks@6#.
An analysis of the end-segment lengths reveals that the
responding PDF displays two distinct power-law behavio
one applying at small, and the other at large fork openin
This unexpected feature, not predicted within the framew
of the approximate description based on homogeneous p
mer networks@6#, suggests to describe the DNA fluctuatin
geometry as a copolymer network, in which a distinction
made between single-stranded and effective double-stran
segments. The latter are assumed to have different entr
exponents than SAW’s, which lead to the introduction o
generalization of the previously known expression, for P
and entropic exponents@see Eqs.~11!–~15!#. We tested the
compatibility of the observed results with this effective c
polymer network picture, which is assumed to catch the
sential physics of the transition. Within this framework, t
different scaling behaviors of the end-segment PDF can
qualitatively explained, and the notion of an overall entrop
scaling of the macromolecule acquires a precise and con
tent meaning. Especially ind52, the numerical evidence
that a block copolymer network picture is compatible w
the overall data, is rather clear and convincing.

A main reason why the copolymer network descripti
turns out to be well compatible with the observed scalings
probably the fact that the PDF of loop length scales alw
with a sufficiently largec exponent. So, even forN→`, the
average width of the loops, and thus also of the dres
segments, remains finite. This could be an important req
site for the validity of the network picture. Indeed, it wou
be interesting to test whether similar copolymer pictu
work also for other unzipping transitions of double-strand
polymers with a smallerc @10#. A natural candidate is the
unzipping, occurring for the diblock copolymer model stu
ied in Ref. @23#. The physics of that system can be assim
lated to that of a DNA molecule in which each of the tw
strands is made exclusively of one type of base, and
bases of the two strands are complementary@10#. Of course,
in such a model the loops can be formed with portions
different lengths of the two strands. Moreover, differe
loops can also bind and form more complicated topolog
than those in the DNA case. By applying the simple hom
geneous network picture to such a model, one would exp
a second-order transition with@10# c5dn22s321'1.4 in
d52. The results for the copolymer model of Ref.@23# sug-
gest a slightly, but definitely higher valuec5119/16
'1.56, which is supported by a connection with percolat
theory. This discrepancy could be due to the more com
cated topology of the loops and could indicate that the mo
is less favorable for the application of a network picture.

Homogeneous networks are very interestingper seand
recently were recognized as important tools also for
study of the topological entanglement of polymers@24#.
Block copolymer networks are still a relatively unexplore
subject, in spite of the obvious fundamental and applicat
4-7
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interest. Thus, the realization that such networks could a
be very relevant for a description of system like DNA
denaturation, at the moment, can not yield quantitative p
dictions based on field theory results. Indeed, even the p
lem of identifying which kind of copolymer model in th
continuum, if any, could represent correctly our discr
DNA in the scaling limit, is far from trivial and completely
open. For sure the identification of DNA as a system pot
tially connected to the copolymer network physics adds f
ther interest to these intriguing objects, which are alrea
known to be somehow related to multifractal aspects of po
e

-

n,

ri,

th

02180
o

-
b-

e

-
r-
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mer statistics@19# and, in thed52 case, could realize inter
esting examples of conformal invariance.
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