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Hydrodynamics of pair-annihilating disclination lines in nematic liquid crystals
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The pair annihilation of straight line defects with strendtfi/2 in bulk nematic systems is studied numeri-
cally, considering a full coupling of orientational degrees of freedom and hydrodynamics. This work is based
on the generalization of the Ericksen-Leslie theory to the tensor order parameter as proposed by Qian and
Sheng[T. Qian and P. Sheng, Phys. Rev5E, 7475(1998]. The approach is particularly suited for the late
stages of the annihilation process. It is confirmed thatitlié2 disclination line moves considerably faster than
the —1/2 one(e.g., twice as fastdue to the hydrodynamic flow. Symmetries of the important stress tensor
terms upon inverting the sign of the winding number and performing a homogeneous in-plane rotation of the
Q-tensor eigensystem are discussed. The stress tensor terms that dominantly contribute to the advective flow
and to the flow asymmetry are identified.
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[. INTRODUCTION treatment of defects, in particular, it fails when studying their
dynamic properties. One might expect to remedy the prob-
The research of defects in order parameter fields corrdem by allowing a variation of the degree of order. It turns
sponding to various condensed matter systems is driven byut, however, that in the defect center the equations so ob-
many aspects of motivation. Defects can be readily observedained are ill conditioned numerically and incapable of accu-
either directly (e.g., by optical methodisor through other rately describing the hydrodynamic part of the problem.
physical properties of the system, which are crucially modi- To our knowledge, there have been only a few papers
fied in the presence of defects. In many cases of applicatiopublished on defect dynamics including hydrodynamics. The
defect-free structures are required, while in the otlferg.,  Effect of hydrodynamic flow on kinetics of nematic-isotropic
in some liquid crystal displaysstructures containing defects transition has been studied by Fukudd, a similar topic,
might be essential. In the latter case, one must know soméiwowever with a different method—the lattice Boltzmann al-
thing about static or dynamic properties of defects. Theoretigorithm, has been studied by Dennist&tral.[10]. Recently
cally, defects offer a rich playground for mathematically ori- a paper on the hydrodynamics of topological defects was
ented excursions. Their topological properties can be verpublished by Tth, Denniston, and Yeomaif$1]. They stud-
interesting and nontrivial, if only the order parameter hased the effect of back flow and elastic anisotropy on the pair
enough degrees of freedom. Defects play a decisive role iannihilation of straight line defects with strengths1/2,
any phase transition, since in the late stages the ordering &gain using the lattice Boltzmann algorithm. Their treatment,
governed exclusively by the dynamics of the defects createtlowever, is not based on the Ericksen-Leslie theory and in-
at the transition. An important part of motivation arises fromvolves only two viscous coefficients.
the universality of defects, i.e., they can occur in any system The aim of our paper is to present the solution to the pair
with a rich enough order parameter. Their major propertiesannihilation of straight disclination lines with strengths
are independent of the underlying physics, determined solely-1/2, starting from the generalization of the standard
by symmetries and dimensionalities of the order parametegricksen-Leslie(EL) theory to the tensor order parameter
the defect and the system. Lately the aim towards the explof8]. We consider an unconfined bulk system. The generalized
tation of this universality has been experienced in the areaheory involves the same number of viscous parameters as
motivating the research of laboratory-friendly condensedhe EL theory, expressed as simple linear combinations of the
matter systems such as liquid crystals in order to yield eslie viscosity coefficients. Since the Leslie coefficients

knowledge in completely different realms of physiesg., represent the standard way of materializing the viscous dis-
the physics of the universe, elementary particles, and jieldssipation in nematics and enough data is available for many
[1-3]. compounds, at least on the, and a3, we believe, that the

In order to study the statics or dynamics of defects inpresent work will be appreciated in the field.
nematic liquid crystals, the full tensorial description of the An alternative (complementary method to the lattice
nematic ordering must be considered. If one wants to includ®oltzmann algorithm used in R€fL0] is to be demonstrated,
hydrodynamic effects, normally described by the Ericksenbased on solving partial differential equations for the order
Leslie theory[4,5], a generalization of the latter is required parameter and the velocity field. Symmetry properties of the
to describe the coupling of the tensorial dynamics and theatress tensor with respect to changing the sign of the winding
flow [6—8]. The director description is not adequate for thenumber will be discussed, resulting in a simple yet accurate
identification of stress tensor terms, responsible for the ob-
served flow asymmetry and the acceleration of the annihila-
*Corresponding author. FAX+386 1 2517281. Email address: tion process. Further, it is to be shown that the hydrodynamic
daniel@fiz.uni-lj.si effect depends on the director phase angle, i.e., unlike the
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order parameter dynamics in the case of elastic isotropy corwhere
sidered here, it is not invariant under the homogeneous rota-
tion of directors. Again the corresponding stress tensor term
will be pointed out.

It should be stressed that although the tensorial approach
works very well at small defect separations, the passage twith the material time derivative dQ;; /dt=4dQ;;/dt
1 um length scales that can be resolved experimentally is-(v-V)Qj; and the symmetric and antisymmetric parts of
hindered by enormous computational complexity of thethe velocity gradientA;;=3(dv;+djv;) and W;;=3(dv;

do;,
Nij:_dtIJ + Wi Qi — QikW; 8

problem and the largéseveral orders of magnitugeatio of ~ —d;v;). Only those terms have been included that in the
the defect separation to the size of the defect core. uniaxial limit with a constant degree of order reduce to the
standard Leslie viscous termg. Thus, the viscous coeffi-
Il. DYNAMIC EQUATIONS cients in Egs.(6) and (7), linked by the relationu,= B4

) o ) — Bs, can be expressed in terms of the Leslie coefficients and
The starting point is the bulk free energy density expresthe constant value of the scalar order paramgger

sion in terms ofQ ([12], p. 156, Finally, the equation of motion for th€ tensor is the
f= $(Q)+ 1L 401801 ) symmetric traceless part of
2 Lo jk0ijk »
he v_—
where the homogeneous part is given by h=+h"=0, ©)
#(Q)=3AQ;;Q;i +3BQ;;QiQxi+3C(Q;Q;)% (2 with the constraints
Qi=0, €kQjk=0. (10

It was taken into account that Cl(QiJ-jS)2
— 2

+C2Qi QjkQuQii = (C1 +1/2C5)(Q;Q;)“ and a new con- The generalized Navier-Stokes equation within the low-

stantC=C, + C,/2 was introduced. In the elastic part of EqQ. Reynolds-number approximatigomitting the nonlinear ad-

(1), only the term withL,=L is retained, resulting in isotro- - yective derivative term\- V)v], regularly made for the or-

pic elasticity. Terms of third order i@ are needed to reach ger narameter elasticity driven dynamics in liquid crystals
the splay-bend elastic anisotrop¥3], the effects of which [14,15, reads

have been studied in Refl1].

Requiring theQ tensor to be traceless and symmetric, the Jv; . e
Euler-Lagrange equation for the functional p o = —dip+ (gt o), (13)
F=j dV[f(Q,VQ)—AQii — i€k Q; 3 with the densityp and the viscous and elastic stress tensors
LFQ.VQ) =M= A€ Qud ® given in Egs.(6) and (5). Usually, also the steadiness ap-

oximation is made, omitting the time derivative term
4,15. The pressure fielgp must be such that the incom-
pressibility condition

gives the homogeneous and elastic part of the generaliz
force on the tensor order parame@r

I -
hne:L‘?EQu__"')\aJ"')\kfku . (4) a|U| 0 (12)

dQjj
: is satisfied. Equatiori9) and the stationary version of Eq.
The Lagrange-multiplier terms merely state that the isotropig11) can both be put to a dimensionless form by introducing
and antisymmetric components of Eg) are not specified g characteristic length, e.g., the correlation length, a couple
and have to be determined by the constraints, i.e., the isotr@f nanometers usually,

pic and antisymmetric parts must be subtracted from the
force hﬂe. The elastic stress tensor is obtained in a standard 3
manner as §&=\7 (13

of
of=- W%Qm : ) with Q;=5/2(3n;n;— ;) and ¢"|s, the equilibrium value
of the second derivative of EQ2) with respect to the scalar
The viscous stress tensor and the viscous generalized forogder paramete$, and a characteristic time
on theQ tensor are given by a tensorial generalization of the

Ericksen-Leslie theorys], =71 8IK=u, EIL, (14
¥ = B1Qi; QA+ BaAij + BsQucAi + BeQjkAxi %MzNij vv_here vy IS t.he director rotatiqna! viscosity anid _is .the
director elastic constant. The timeis the characteristic re-
= 1Qik Ny + 1 QjiNi s (6)  laxation time of the order parameter deformation on the

length scale o€, which is typically tens of nanoseconds. In
—h-”:E A+ uN- % the following, dimensionless quantities will be used, ire.,
i~ K2R T A «—r/¢& for length, t«<t/7 for time andv+«uv 7/ ¢ for the ve-
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locity. After doing so, the material parameters enter the equaminimum of the trace;; Q;; -
tions only through combinations given in Eq$7) and(18). The velocity was set to zero at the boundary. In order to
Let us estimate the Reynolds number and the unsteadineggeet the situation present in a bulk system, the defect sepa-
parameter of the flow, i.e., the ratio of characteristic dynamigation was small compared to the size of the computational
times of the flow field and the order parameter field. Thearea(the ratio of the two was 3/3@nd the derivatives of the
estimate differs from those made in Ref44,15, in that  order parameter normal to the boundary were set to zero.
now there is no simple relation between the characteristignitially, the Q tensor was set toQ;; = 1/2(3min; — &),
deformation lengtt{13) of the order parameter field and its where n=(cos¢,sing) and ¢=32_,m, arctam(y—y/(x
relaxation time. Instead, one can empirically identify the Iat-_xk)]' which is the one elastic constant equilibrium director
ter with the annihilation time. This yields the Reynolds NUM- configuration with two defects of strength, positioned at

ber and the unsteadiness parameter of (Xq,Yi). Afterwards, enough computing steps without the
K R2 R? hydrodynamics were performed to first establish the full ten-
Re= p_z_ 0108x -2 (15  sorial configuration. The initial defect separation was above

it t 70 correlation lengths, Eq13), in order to reach the far

5. o ] o regime of motion, where the defects are well isolated. As one
whereR; is the initial defect separation ards the annihi-  regjizes, there are three length scales in the system, which
lation time. The isotropic viscosity was put equal¥ for  should be well enough separated: the correlation length and
brevity. The value ofRg/t, obtained empirically, is of the the defect spacing as the relevant physical scales, plus the
order of a few units. What is more, following the phenom- container size as the technical one.
enological equation of motion given by Pleir{é6,17,11, The viscosity coefficients in Eq$6) and (7) were ob-
tained from the standard Leslie coefficients corresponding to
MBBA (4-methoxybenzyliden‘4butylanilin) ([20], p. 231
as described in Ref.8]. Numerical values of the relevant
ratios are

: (16)

whereR(t) is the actual defect separation afldscales with

¢, the value ofR3/t exhibits only a weak logarithmic depen- palpy~=1.92, B1lus~0.17, Balp,~1.99,
dence orR. Thus, for large enough defect separations com- Bs/u,~0.70, PBglui~—0.79. (17)
pared with&, the empirical estimate is quite general in va-

lidity. In conclusion, the Reynolds number and theThe Landau coefficients,B,C and the elastic constahtin

unsteadiness parameter are tiny indeed, so that in(B9.  Egs.(1) and(2) were taken from Ref21]. Numerical values
both the advective and partial time derivatives can be omitpf the relevant ratios are

ted.
A& L~—0.064, B&/L~—-1.57, C&/L~1.29,
Il. NUMERICAL APPROACH (18

The coupled partial differential equatiof® and(11) are  with the correlation length, Eq13), é£~2.11 nm. The char-
solved using finite difference discretization. The outline ofacteristic time, Eq(14), 7~32.6 ns completes the set of
the method is as follows. At a given tensor field and its timematerial parameters.
derivative, the linear generalized Navier-Stokes equation

(12) is explicitly iterated in time until the velocity field be- IV. RESULTS AND DISCUSSION
comes stationary to a good enough accuracy. After that,
knowing the velocity field, the tensor equati@®) is explic- The results for the pair annihilation of 1/2 defectqFig.

itly iterated in time to yield the new tensor field. Then the 1) are presented in Fig. 2. It should be pointed out that due to
velocity is updated again, and so forth. The variables ar¢he high computational complexity of the problem and the
discretized on a staggered grifll8], p. 331 in order to  broad range of length scales involved, only defect separa-
prevent the occurrence of the well-known oscillatory pres-ions of less than 1um and annihilation times of less than 1
sure solution. Hereby the tensor components are discretizeds can be reached. This means that for the time being there
in the central(pressurg points of the staggered grid. The still exists a large gap between numeric capabilities and pos-
incompressibility condition is satisfied in a standard way bysible experimental observations.

solving a Poisson equation for pressure correctiph8], p. In Fig. 2 one notices two distinct features: due to the
340 at every velocity iteration step via a simultaneous over-hydrodynamic flow the annihilation is faster and asymmetric.
relaxation method[19], p. 659. At the boundaries, normal Figure 3 shows that it is particularly the1/2 defect whose
pressure correction derivatives are specified in order to meahotion is affected by the flow. Also clearly demonstrated by
the incompressibility condition there. The calculations wereFig. 3 (see also Figs. 5 and & the nonmonotonic behavior
done on an inhomogeneous square mesh, consisting of a filé the defect velocities at early stages of the annihilati8ih
mesh of 16 160 points in the center containing both de- p. 58. It is a consequence of starting with the equilibrium
fects, and a coarser inhomogeneous grid with increasingonfiguration of fixed defects rather than with a dynamic
spacing around it to yield the total of 28@80 points. The one, which is being approached by the system in the course
position of the defects was determined by finding a localof annihilation. Since our simulations represent only the very
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FIG. 1. A schematic representation of a pair Dfl/2 defect

lines: the eigenvectors corresponding to the largest absolute eigen- gig. 3. Velocity of the defects as a function of the interdefect
value of Q (directors are depicted in the cross-sectional p""me'distance[isomorph(a)]. For comparison, the same is shown for the
perpendicular to the disclination lines. Two isomorggisand (b)  case without the hydrodynamic flow. The velocity of thel/2 de-

are shown, differing only in a homogeneous rotation of the direc+gct js strongly increased by the flow. Note the nonmonotonic be-
tors. For clarity, the number of mesh points has been reduced by gqyior at early stages of the process, where the initial equilibrium
factor of 4 in each dimension and the correlation length has bee@-tensor configuration is adapting to a dynamic dfg, p. 59.
increased _by a factor of @nly the central homogeneous region of The distance and the velocity are measured relativé~@.1 nm

the mesh is shown and &/ 7~65 nmjus, respectively.

late stage of an actual annihilation process, this nonmono-
tonic behavior should be viewed as an unphysical artifact o ) . ) - .
the initial condition. In a separate work to follow, we show hem in strlvmg.tq gain a qualitative p'CtU.”e- On the other
that it can be eliminated by starting with a proper dynamichand' the remaining., and K2 terms, which contain the
configuration, even without throwing away computational re-order parameter time derivativ@, and also the elastic stress
sources for simulating larger defect separations. tensor(5), represent the source driving the flow and therefore
First, let us concentrate on qualitative features of thehave to be analyzed carefully.
flow-driving mechanism by inspecting the stress ten$bys
and(6). One is tempted to explain the easily perceived char-
acteristic of the flow fieldFig. 4(@)]: due to advection the
+1/2 defect is sped up, while the flow is much weaker At this stage, we are interested only in symmetries, i.e.,
around the—1/2 defect. the behavior of the stress tensor terms considered upon
As hinted by the previous worKL4] and verified numeri- changing the order parameter field locally as to transform the
cally, the “passive” B, Bs, and Bz terms in the viscous +1/2 and—1/2 defects one into the other. In one elastic
stress tensor(6) (or their counterparts in the standard constant approximation, this can be achieved by mirroring
Ericksen-Leslie theoryy,, as, andag), describing the de- the Q tensor on the axis joining the defectthe y axis,
pendence of the fluid viscosity on the order parameter, givé&ig. 1) [10]: Q,,— —Q,y, since the free energy density)
is left unchanged by this procedure. Any stress tensor terms,
' : ' invariant with respect to this transformation, treat both de-
30+ ] fects equally, and clearly do not contribute to the flow asym-
metry. On the other hand, any noninvariant terms must be
identified as the flow symmetry-breaking components.
(b) By definition (5) the elastic stress tensor is invariant,
Yy 0 @) b which is a direct consequence of the elastic isotropy. As a
s result, the flow field is the same for both defeldtay. 4(b)].
o In addition, its direction is such as to reduce the interdefect
. separation and thereby the free energy of the system. This
30+ et +1/2 ] follows immediately from the definition of any stress tensor.
T . N St 172 The viscous terms will be analyzed for the caseQ, i.e.,
0 1000 2000 only the driving Q-dependentpart in Eq.(8) will be con-
t sidered. Theu, term has no definite symmetry for some of
FIG. 2. Position of the defects as a function of time, measuredtS cn_)mponents transform Symmetrlcally.and Som? am'sy.m_
from the initial middle point between the defects. Three situationsmemca”y' At the defect spots the f'OV.V drliven by this term is
are displayed: the two isomorplia) and (b) (see Fig. 1 and the rather weak compared to.the contribution from the other
case without the flowic), where the isomorphs become degeneratet€rms in question, becaus@ is extremal there yielding a
We remember that length is measured relativé4e2.1 nm, and  vanishing divergence. Hence, the term does not give a
time is measured relative to~33 ns. dominant contribution to the advective motion of the defects.

nly minor quantititative effects. Therefore one can ignore

A. The flow asymmetry
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FIG. 5. Velocity of the defects without the contribution of ad-
vection as a function of the interdefect distance. Without the hydro-
dynamic flow, both defects move symmetrically. Note that the part
of the velocity coming from the order parameter dynamics is larger
for the — 1/2 defect. Also note the difference between the isomorphs
originating from the different coupling to flow and different flow
field itself, both of which are due to the, viscous term.

concord near the- 1/2 defect, whereas for the 1/2 defect
they combine destructively. This explains the different veloc-
ity magnitudes in the vicinity of the defecsig. 4a)].

A
e

Y

©) p1 term, vpma, = 0.0085 d) po term, vpmay = 0.
o e o B. Reorientation-driven defect motion vs flow advection
FIG. 4. Flow fields resulting from different driving stress tensor It is also of one’s interest to quantify the ratio of defect
terms: (a) the complete stress tensdh) elastic stressic) the u, motion due to advection as opposed to the motion propelled
viscous term, andd) the u, viscous term. In all cases the isotropic by the order parameter dynamics. Figures 5 and 6 show that
B“.V'SCOUS term is also included. For chnty, the .numb?r (_)f meShthe velocities in question are quite comparable in magnitude.
points has been reduced by a factor of 4 in each dimension; only th@)nce again this reflects the importance of the flow in defect
central homogeneous region of the mesh is shown. The approxima namics as compared with the limited perturbing effects it
positions of defects are marked with circles; the radius of the defecﬁgrma”y has, e.g., in LC cellil4]. Furthermore, one must
core is roughly four grid points. The maximum velocity magnitude realize that aiso. é’secondary ﬂoW effect beside,s advection is
Umax gorrespoqding to the longest velocity vector is given for eaChimportant namely, the influence of the flow on the order
flow field (relative to¢/7). parameter dynamics. It is clear from Fig. 5 that the order
) ) _ parameter dynamics itself is faster because of the coupling to
~On the other hand, the., term is fully antisymmetric he flow, Comparing Figs. 5 and 6 one can state that the
with respect to the transformation, yielding exactly the op-contripytion of this coupling to the flow asymmetry is less

posite flow for the—1/2 defect as compared with that near jmnorant than that of the advection, whereas its accelerating
the +1/2 defectFig. 4(c)]. One notices that the flow is the gffect is just as important.

strongest at the defect positions in this case. Thus, due to
advection this term alone can give rise to the flow asymme- 0.00-
try observed. One can verify by inspecting E¢®. and (7)

that the relative magnitude of this antisymmetric contribution

to the advective derivative termv{V)Q in Eq. (9) is ap-
proximately proportional tquq, provided that all other ma-

terial parameters are kept fixed. On the other hand, scaling v
all viscosities equally with respect to the elastic constant
leaves the dynamics unchanged completely and merely alters

the characteristic timél4), a statement based purely on di-
mensional groundésee Sec. )L

-0.02+

-0.04 1

isomorph (a)
----- isomorph (b)

" I -0.06 .
In addition to the flow asymmetry, the annihilation pro- . - . - . . .

10 20 30 40 50 60 70

cess is also significantly sped up when compared to the an- ,

nihilation without the flow. Following the previous discus-
sion, this effect is caused mostly by the elastic stress driven fiG. 6. The advective contribution to the velocity of the defects
flow. Thus, the annihilation dynamics offers a nice examplésor the two isomorphic cases. The surprisingly large difference be-
showing the importance of the elastic stress in liquid crystalsween the velocities of the-1/2 defect is mainly due to thg,
(LC), which is usually considered less significant, e.g., in LCviscous term. At small separations not shown, the motion driven by
cells. Additionally, the elastic angk; viscous terms act in the order parameter dynamifBig. 5 becomes dominant.
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C. Influence of the director orientation angle on the flow accustomed to in this area of research. It has been shown that

In one elastic constant approximation, the free energ)gue to the hydrodynamic flow, the annihilation is faster and

density(1) and thus the order parameter dynamics are inVarig;\symmetric. Further, we have identified the governing stress

ant with respect to a homogeneous rotation of the eigensyg;(-ansor terms: th.wl e;nﬁ f2 VISCOUS terms and ;he .elastflch
tem of theQ tensor in every space point. Consequently de_st_res.s. Symmetries of the terms upon inverting the sign of the

X e . ; : '~ winding number and performing a homogeneous in-plane ro-
fect pairs, differing only in this constant phase angle of

di o hs(Fia. 1. beh v in th tation of the Q-tensor eigensystem have been discussed.
irector rotatlonf—lsorr]norp S( 'fg' )'d G;: ave e>;]af:ty n the Both theuw term and the elastic stress are invariant upon the
samehwa}(g_.gl., o(r:jt € case c: :% efect SUC" ISomorp Sh rotation and hence identical for all isomorphs. Theterm is
?re the radia r;]m tang?ﬂt"’; fF ects, as Wi as any h‘?t &ntisymmetric with respect to changing the sign of the de-
orm between the two With the flow present, however, this o15" thereby contributing dominantly to the annihilation
symmetry is broker(Fig. _2)' It is quite instructive to study asymmetry. On the other hand, the elastic stress is symmet-
the hdependgnce of the |rrr\]portlant_ siress tﬁnsor te'rmsf UPQRE, so that it causes the annihilation process to go on faster.
such a rotation. Besides the elastic tei®n the 1, pair of 15 on)y terms distinguishing between different isomorphs
terms is also left unchanged by the rotation. This is why thedre theu, terms in Egs.(6) and (7) (they also distinguish
effect of advection should be roughly similar for all iso- between thet 1/2 and— 1/2 defect. Thus, one can conclude
morphs. It is worth mentioning that also t_he ianuenpe of thehat the difference in dynamics between the isomorphs is
flow on theQ tensor given by thg.; term in Eq.(7) is not governed by the ratip., /. The remainings; , Bs, andg
affected by the rotation. . . . terms in the viscous stress teng6y introduce only inferior
On the other hand, the, stress tensor term is not invari- corrections to the flow field

ant. One can see in Fig. 6 that it introduces significant dif- One should emphasize once more that due to length scales
ferences even as far as the advection of the defects is coQg\eral orders of magnitude apart and enormous computa-
cerned. For general isomorphs t,{zgterm yields .af!oyv.ﬁeld tional complexity of the problem, with the present method
lacking the symmetry of reflection on the axis joining the oq is ynaple to reach the 1um range of interdefect dis-
d.efeCtS' Addlt_lonally, .thm? term in '_[he viscous force?) IS tances, which can be resolved in experiments. Nevertheless,
different for different isomorphs. It is due both to the differ- j; j5 q,jite reasonable to believe that the hydrodynamic effects
ent coupling of the flow to the order parameter dynamics an@iescribed in this paper, i.e., the flow asymmetry and the re-

to the differences in advection that the isomorphs are nofj,ction of the annihilation time, will be present also at larger
equivalent dynamically. As verified numerically, tBe, Bs,  gefect separations.

and B¢ terms again bring only a very small difference.
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