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Density-functional study of the nematic-isotropic interface of hard spherocylinders
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The Somoza-Tarazona density-functional theory is applied to the isotropic-nematic interface of hard sphero-
cylinders with length I)-to-diameter D) ratios in the rangé& /D =5-20. Properties such as the density and
orientational order-parameter profiles and the variation of interfacial tension with bulk nematic tilt angle agree
qualitatively with results of previous studies at larger valuet /@ using both computer simulation and the
Onsager second-virial approximation. The minimum interfacial tension is obtained at a tilt angle of 90°. For
values ofL/D~5, it is found that the Onsager approximation predicts a spurious minimum in the interfacial
tension at small tilt angles.
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I. INTRODUCTION freely rotating hard spherocylinder$13]. The hard-
spherocylinder model is considered here rather than other
Understanding surface effects in liquid crystals continuegossible models such as hard ellipsoids, due to the absence
to be a topic of both fundamental and technological impor-0f smectic phases in the latter. In the present work, we ex-
tance. Recently there has been a resurgence of interest in tid our analysis of the ST theory to the isotropic-nematic
interfacial behavior of the most elementary model for liquidinterface. As in previous work based on the Onsager approxi-
crystals, namely, a fluid of rigid hard rods. Using both Mmation, we examine the properties of the density and orien-

computer-simulation and density-functional theory, recenf@tional order-parameter profiles at the interface, including
works have examined the static properties of the interfac&feCtS of interfacial biaxiality. We also study anchoring be-
between coexisting isotropic and nematic phaiess| as havior |_nd|cated b_y the variation of the |nterfa<_:|al _ten5|on as
well as interfaces of the fluid near a single hard wall ord f“!"C“O” of the tilt angle between thg nematic director gnd
confined between two parallel hard wallg,7]. The latter the mterfa_cg normal. In agreement ‘.N'th oth_er worI§, we find

. . o .. that the minimum isotropic-nematic interfacial tension is ob-
two works have also studied associated wetting and capillar

q i ffects. So far. the densitv-functional theori thined when the director is parallel to the interface. It is also
condensation €fiects. 5o far, the density-iunctional IN€oriegy, - nowever, that the Onsager approximation produces

used in these studies have been based on the Onsageyiious minima in the interfacial tension at oblique ftilt

second-virial approximation, in some worl&] further sim- 5,65 for small elongations’D~5, a range not considered

plified by use of Zwanzig'{8] discrete-orientation model. i previous work but relevant to many real liquid crystals

The Onsager approximation becomes exact for the behaquM]_ For largerL/D, the results of the ST theory and On-

of the isotropic—ne'matic phase transition wheq the' Iength—tosager theory are in good agreement, apart from differences in

diameter (/D) ratio of the hard rods tends to infinity, since {he predictions of the densities of the coexisting bulk phases.

in that limit the_ coexisting volume fracnons tend to z¢gg. This work can be considered a preliminary step toward

However, for finiteL/D as well as in the treatment of other si,dying a variety of inhomogeneous structures of the hard-

possible types of hard-rod phase transitions such as thgsnerocylinder fluid, such as interfaces between other types

nematic-smectié transition, for which the transition values of coexisting phase€e.g., nematic smecti@s well as asso-

of the volume fraction are dd(1) even wherlL./D—=, the  cjated wetting and adsorption phenomena, which will be

Onsager approximation is no longer exact. Extensions of thgyckled in future work. In the following section the ST theory

Onsager approach should then be considered. is reviewed. Several technical hurdles faced in implementing
In this paper we apply the Somoza-Tarazd®d) [10]  the theory are discussed in Sec. lIl. The results are presented

density-functional theory. This theory combines ajn sec. IV, while a summary and conclusions are contained in

translation-orientation “decoupling” approximation, origi- sec. V.

nally introduced by Parsorjd1] and Leg[12] to extend the

Onsager theory to uniform phases of arbitrary density, with Il. MODEL FOR A PLANAR NEMATIC-ISOTROPIC

an approximate “weighted-density” functional method ap- INTERFACE

propriate for a nonuniform rigid-rod fluid. Recently we de-

scribed an efficient numerical scheme for solving the ST The molecular model consists of hard spherocylinders of

theory and used it to determine the bulk phase diagram afylinder lengthL and diameteb. The Helmholtz free-energy
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functional of a fluid of such molecules is expressed by the (T, Q) o(z, ﬂ) depends only on the spatial coordinate
sum of the ideal-gas terif,p and an excess terfe, due to [ ,omga| to the interface, so that the interfacial tension func-
interactions. In the Somoza-Tarazona approximafid@l,  tional y (i.e., excess grand potential per area over that of the
the latter is given by coexisting bulk fluids reads

— fdrjdm Vlp(n]

r 00
Pred(r) Bylpl= f_de[ p(z)|logp(z)—1—S(2) — Bur

~ f dQ/p(r', Q' )WVedr' —r,Q,0), (1) BY=p(2)]

—_— dz’ Z')WVei(z,2';[ f
)87 @ Va2 I

)
where p(r,ﬂ) is the one-molecule distribution function,

‘Ifreexf(p) is the excess free-energy per molecule of a uniform (2)
reference system of parallel hard bodies, awd(r’
-1,9,Q') is the excluded volume functiofi.e., minus the
Mayer function of two spherocylinders with centers of mass tial, andp the bulk pressure. The functiov is a double

atr andr’ and orientation€) and{}’. We use the standard 5nq,jar average, weighted by the functionf the excluded
factorizationp(r,€) = p(r)f(r,€), wheref(r,€Q) is the nor-  area between two spherocylinders at heightnd z’ (see
malized orientational distribution function. Here the refer-following section.

ence system is taken to be a fluid of parallel hard ellipsoids |n the limit of vanishing number density, the ratio
of major and minor diameter, anq o, , respectively, with ’Ef(p)/p,efﬂ1/2[15] In this limit, the functionals in Egs.
molecular voI_ume and aspect fa_“."‘l"’u e_qual to those_ of ) and (2) become equivalent to those of the Onsager
the spherocylinders: these condmons umquely d(_atermme th econd-virial approximatiofl—3,5,§. Therefore, on replac-
size and shape of the reference ellipsoids. In this case, prg;; that density-dependent prefactor by 1/2, the numerical
scriptions for calculating the two “weighted densities(r)  calculations of the present theory can be trivially modified to
and p,(r) (the latter being proportional to the lowest-order reproduce results of the Onsager theory.

component of the formein terms of the actual number den-  As in Ref.[13], here we parametrize the orientational dis-
sity p(r) are given in Ref.[13]. In a planar geometry, tribution function as

where 8= (kT) 1. Here S,y is the local rotational entropy,
defined in Eq(26) in Ref.[13], u the bulk chemical poten-

Haf)= exf A1(2)P,(cosh) + A,(z)sin 260 cos¢+ A4(z)sin? cos 2p] | -

f dQ exfd A1(2)P,(cosh) + A ,(z)sin 26 cos¢+ A4(z)sin? 6 cos 2p]

where 6 and ¢ are the polar and azimuthal angles of a mol- . .
ecule with respect to the space-fixed Cartesian axes, and v(z)= f dQ sin 26 cos¢f(z,Q).

P,(x) is the second-order Legendre polynomial. Due to the
dependence on the anglg this parametrization allows for As in Ref.[13], one could adopt these order parameters to-
the possibility of biaxial interfacial statefsl6,17, and is  gether with the number densify(z) as the variational func-
equivalent to an expansion of 1z,Q}) up to second-rank tions of the theory. However, it proves more convenient from
spherical harmonic$1,2]. The parametric functions\;(z) a computational point of view to use a different set of orien-
can be considered as effective one-body external potentialgational order parameterg,(z),o,(2), referred to a local
Consistent with the last equation, the orientational order oprincipal-axis reference frame defined by the local nematic
the fluid is described by the following three order param-director. The two reference frames are connected through a

eters, which are the projections fffz,(}) in the second-rank rotation from thez axis by an angle)(z), the localtilt angle.
spherical harmonic subspace and which are uniquely relatetihe relation between both sets of order parameters,

to the functionsA(2): {n(2),0(2),v(2)} and{7n,(2),0,(2),¥(2)} is [18]
3
(z)= f dQP,(cosh)f(z,Q), (4) 7(2) = np(2)P,[cosy(z) ]+ Zop(Z)sinzdf(Z), (5
. . 1
o(z)zf dQsirt 6 cos 2¢f(z,9)), 0(2)= ny(2)sinf(z) + Eap(z)[1+cos2¢(z)],
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Vei(Z' = 2,7(2),0(2),v(2); 7(2'),0(2"),v(2"))

Sin 2i(z).

1
W(2)=| 1(2) = 5 0p(2)

v 5 TDH () 9@+ 0(z) D+ )
eff ’ 2 , 2 , 5 :

Use of the principal-axis order parameters simplifies the cal-
culation of the orientational entrodyL3], since the latter is
rotationally invariant and, therefore, does not depend on the ~ 7(2)+ 7(2") o(2)+0o(z') v(2)+v(Z")

tilt angle ¥(z). As indicated in the following section, the 2 ' 2 ' 2 ) @)
principal-axis order parameters are also more convenient in

accounting for the boundary conditions on the orientationaBubject to the truncated representation in ), this ap-
order in the bulk nematic phase. This approach requires inProximation is exact in the bulk nematic phase and very
verting Eqs.(4) to determine the functiond;(z) in terms of ~ good in the bulk smectic phase, where the spatial variation of
7(2), o(z), andv(z), and, in turn, in terms of the principal- the orientational order parameters is very weak. Also, it al-
axis order parameterng,(2), o,,(z) andy(z) using the trans- lows for a dramatic simplication of the calculations since the
formation formulas(5). This inversion is done beforenand values of the effective potential can be tabulated, for each
and the results stored in a large table. An alternative anyjalue of z'—z, as a three-entry table. This strategy has
equivalent approach would be to use thés as independent Proved to be rather fruitful in our previous works3,19.
variables, and perform the free-energy minimization with re-Our original hope was that the same approximation would

spect to these variables. also be adequate in the case of the smoothly varying
nematic-isotropic interface. However, it turns out that the
IIl. SOME TECHNICAL CONSIDERATIONS app'rox!matlon geperates an mstablllty that create; Qensny
oscillations at the interface, which was not expeaettiori.
A. Evaluation of the effective potential V¢ The alternative approach considered here is to evaluate
The functionV is given by the effective potential exactljsubject to the representation

Eq. (3)], with no intervening approximation. Specifically, we
calculate the integral

veﬁ(z,z';[f])=fdﬂf dQ'f(z,Q)f(z', Q)

T 2 T 2
XJ dR'V (1 —1,0,0), 6) Veff(z’—z;[f])zf0 desmafo dqbfo do’'sine’ fo do’
whereR’ = (x" —x,y’ —vy) is the displacement vector normal xX1(z,0,9)1(2",0",¢")
to thez axis and translational symmetry with respect to this
vector has been invoked. Insofar as the approximate repre- xf dR' Ve (r'—r1,0,0,60",¢"). 8
sentation forf(z,Q) in Eq. (3) is employed, and in view of
Egs. (4), we can express Veg(z,2';[f])=Ven(Z' Introducing the notation

-z;79(2),0(2),v(2);7(2"),0(2"),v(z")), where the orienta-

tional order at heightz and z’' is indicated by the corre-

sponding order parameters. Note that the solid angles in Eq.

(6) are necessarily referred to the space fixed rather thanvexc(z’—z,0,¢,0’,¢’)=f dR'Veydr' —r,0,¢,60",¢'),
director reference frame. Since we do not know how to cal- 9)
culate V4 analytically and the tabulation of this function

appears to be out of the question, the following approximaand using the symmetry properties of the excluded volume,
tion was used in previous woifl 3]: the integral forV4 can be written as

/2 2 /2
Veﬁ(z’—z;[f])=f desinﬁf d¢j de’sine’
0 0 0

X J:Trd¢/{[f(2,0,¢)f(Z,,0',¢’)+f(Z,7T_ 0,0)1(2',m—0",¢")[VNexdZ' —2,0,¢,0",¢")

X[f(z,0,)f (2", m— 6", )+f(z,7—0,0)f(Z',0",")IVexdZ' —2,0,,7— 0", )}. (10
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The kernels will on average orient near the interface. Therefore, the bulk
) o ) o, tilt angle ¢, should be included as a variable in the minimi-
VexdZ'=2,0,4,0",¢"), VedZ' —2,0,p,7—6",¢") zation process, a procedure which we ¢all minimization

but which is technically nontrivial to carry out due to the fact
Shat Y, enters as a boundary condition and hence is of a
different nature from the other variational parameters. In
practice, we can proceed ffixing ¢,, performing a minimi-
o0 zation over the local variablgs(z), 7,(2),0,(2), and (2),
Verd2,0,0,0",¢' )= E Vgl)( 0,0,0",¢")ekn?, and then scanning over different valuesygfso as to locate
n=-e that value which yields the minimum interfacial tensign
" corresponding to the equilibrium structure at the interface. A
C o 2 Vs ikez similar method has been used in previous studies usin
Veud2,0,6, 7= 0", ¢ )_n;_m V(0.6 70", ¢)el, density-functional theory for variousIO “Maier-Saupe-type” ’
(12) liquid-crystal modelq20,21], and will be called thepartial
minimizationmethod. Complications of this approach arise
with k,=n#/(L+ D), so that the quantities that are actually due to the fact that, although the bulk tilt angle is fixed at
tabulated are the Fourier componeMg(6,4,0",¢') and  each minimization step, all the local order parameters in the
Vn(0,0,m—6",¢"). Note that in the above expansions the model are allowed to vary inside the numerical box. In par-
coefficients have the properky(_')n=vﬁ), so that the result- ticular, the local tilt anglej(z) may fluctuate and its profile
ing expansions are real and involve sums of cosine functionsnay be nonmonotonic, exhibiting so-called “subsurface de-
In practice the expansions are truncated beyoreN for  formation” (as found, e.g., in Refi21]). We have indeed
some value of. observed such an effect here, namely, that when the bulk tilt
Calculations using the present procedure are more timangle ¢, is fixed at values different from 90°, the local tilt
consuming than in Ref.13] but remain within reasonable angle does not remain uniform and instead varies wiih
limits. All numerical integrations, including those for obtain- order to satisfy the energetically favorable orientation at the
ing the Fourier components, are performed using Gaussiainterface(which tends to be 90°), even at the cost of seri-
quadrature, usually involving 12 roots for each variable ofously distorting the tilt-angle profile in the box between the
integration, though selected calculations have been done usterface and the bulk nematic phase. In fact, for bulk tilt
ing 20 roots. The number of Fourier components used waanglesi, near 0°, this frustration effect appears to prevent

are computed and tabulated prior to the minimization of th
functional. As in previous work13], the z dependence of
these kernels is handled via the Fourier expansions

N=15, with selected checks made usiNg- 21. us from obtaining convergent numerical solutions by the par-
tial minimization method.
B. Minimization of the functional In practice, we have proceeded by two slightly different

Minimization of the interfacial-tension functional E@®) ?a?itgr? dsiet;a:ig gr;sfijr:]r:ggtf}[iazuilsk ;Ilis?g\?vli;ti;ggl :némml_

is performed as usual by first discretizing thexis so that id ch lowl d with the local ord
becomes a function of a large number of variables, 0o ¢ change Slowly compare with the local order param-
By ’ﬁters during dull minimizationprocesq20]. In the first ap-

namely, the values of all the order parameters at the mes roach, called thdirst constraint minimizationwe let the

pg!gg pslegpsl 3‘,76’0' aﬁld tggp;?:gé Tﬁd.gurrslb:{.a?;gnezm onjugate-gradient minimization run for a few iterations
points u ! ponding spatl pleng ly, typically 10, and thereby obtain @nstraint plot of

is Az/L =0.05. The ensuing multidimensional minimization interfacial tension versus bulk tilt angle, from which the

is performed using a conjugate-gr_adlent methOd' equilibrium configuration is deduced. The second approach,
Qne .Of th? desired rgsults of this StUdY Is the val.ue of thecaIIed thesecond constraint minimizatiomiffers from the
equilibrium tilt angley, in the b_ulk_nematlc phase,_ L.e., the first in that the local tilt angle is not allowed to fluctuate, so
angle betw_een the bulk nematic director and z_thms NO™ * that the tilt-angle profile/(z) is constrained to be constant
mal to the mterface: We take the bylk nemgt{c phase t9 b%cross the box and equal to the bulk valige Again, a plot
aplp[)oac,:’held az;—mlo ('.n prr;';lctlcg, o_utsllde'of a:jlnlte NUMET- ¢ interfacial tension versugy, allows us to deduce the equi-
cal box ?\ n this limit, the principal-axis order-parameters librium configuration of the interface. These two methods are
approac not rigorous. However, since we are reasonably confident
that distorted tilt-angle profiles do not occur at equilibrium in
the present model, we have mainly adoptedgbeond con-
op(z—%)=0, (12)  straint minimizationmethod and have occasionally imple-
mented the first method as a check.

ﬂp(ZHw) = Tb,

l//(z_mo): lr//bi

where 7, is the bulk nematic order parameter measuring

mean molecular orientations relative to the director axis. One The theory outlined above is now applied to the nematic-
expects thaty,, is actually determined by the interactions isotropic interface of hard spherocylinders. In fact, the actual
near the interface, but its value is not knownpriori. In  results presented below are obtained using a simplification

particular, we do not knova priori how the molecular axes whereby the weighted density(z) is replaced by the true

IV. RESULTS
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FIG. 1. Density and order-parameter profiles obtained from the A .
extended Onsager theory with the second constraint method, for the 0123 f s ° *
caseL/D=5 and for different bulk tilt anglegindicated on the (b)
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local densityp(z). This is called the “extended Onsager
theory,” and is equivalent to a direct extension of the
Parsons-Le¢11,17 theory for bulk nematics. This replace-
ment is justified by the expected smoothness of the nemati
isotropic interface and considerably simplifies the numerica
analysis: preliminary studies using the full theory indicate
that its results differ negligibly from those of the extended
Onsager theory.

FIG. 2. Interfacial tension vs tilt angle for the cdséD=5: (a)
results obtained from the extended Onsager approximation using
artial minimization with the first constraint method, including only
fén iterationgopen circleg and from the second constraint method

filled squarey (b) Onsager theory.

cision in the angular integrations involved in calculating the

Figure 1 plots the density and orientational order—e{hﬂlez(.:ﬁve pzotehntial. the behavior of the interfacial tension f
parameter profiles for spherocylinders of Iength—to—diameteL/ Igure 2 shows the behavior of the interfacial tension for

ratioL/D =5, as obtained from the extended Onsager theor D=5 as a function of the bulk tilt an_gl¢b_, as o_btamed
) . L a) from the extended Onsager approximation using the two
using the second constraint minimization method, for value

: om0 ~mo o . inimization techniques angb) from the Onsager approxi-
of the bulk tilt a_ngledszo 20 ’60_ , and 90°. Figure 1 mation with the second constraint method. The data from the
shows thaty,(2) is always monotonic, whereas the density o minimization techniques for the extended Onsager
p(2) is nonmonotonic for small tilt angles.e., for bulk di-  theory are numerically similar. This supports the idea behind
rector orientations nearly perpendicular to the interfa€®-  the first minimization method, where the conjugate-gradient
hibiting a minimum on the isotropic side of the interface. process is carried out for only ten iterations, namely, that the
This represents a slight molecular depletion, an effect whichyulk tilt angle is indeed a slow variable and tfest vari-
disappears ag,—90°, i.e., as the bulk director approaches aables, i.e., density and principal-axis order parameters, rap-
planar orientation. This feature of the density was found earidly accommodate to quasiequilibrium values. Both methods
lier by Chen and Nooland22] using the Onsager theory for agree that the equilibrium director orientation is parallel to
spherocylinders with./D—o, and more recently by van the interface. In the casé,=90°, calculations using the
Roij etal. [6] using the Onsager theory for a discrete-second constraint minimization method are equivalent to a
orientation model, as well as by McDonadtlal.[3] in stud-  full minimization of the free-energy functional with respect
ies by Onsager theory and computer simulations of hard antb all local variables, since in this case the local tilt-angle
soft ellipsoids. Figure 1 also shows that the location of theprofile ¢(z) is found to be constant. The Onsager theory also
density interface, as inferred, say, from the position of thepredicts a minimum in the interfacial tension for a planar
inflection point inp(z), is shifted toward the bulk nematic director orientation. However, it is seen that the latter theory
phase with respect to the location of the interface indicate@lso exhibits a second minimum with slightly greater depth
by the profile of#,(z). This is also in agreement with pre- around a tilt angle~30°. We have checked that this finding
vious findings[1-3]. is not a consequence of numerical inaccuracies, by perform-
The biaxial order parameter,(z) in Fig. 1 is also non- ing calculations on the Onsager theory using Gaussian
monotonic, exhibiting a pronounced minimum on the isotro-quadratures with 20 roots instead of the 12 roots used in
pic side of the interface whose amplitude increages is other calculations. These more accurate results are shifted
expectegwith increasing tilt angle),, . Again, these features downward by an essentially constant amowst1@6) from
are in qualitative agreement with previous studies by bottthose obtained with 12 roots, indicating that the numerical
theory and simulatiofh2,5,6,23. The fact thato,(z) in Fig. inaccuracies are nearly independent of tilt angle. Hence we
1 is not exactly zero whetk,=0 is an artifact due to impre- conclude that the minimum near 30° is a real feature of the
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0.162 As in the figures, the interfacial tensions in Table | are ex-
t . L/D=10 pressed in the reduced unjtt =8y(L-+D)D, in order to
ko 0142 . compare with previous calculations based on the Onsager
o . theory in the limitL/D—c<. The most recent analysis gives
5; 0122 p . v*=0.156+0.001 forL/D—« [5]. As seen in Table I, our
=2 o102l ‘. value fory* according to the Onsager theory fofD =20 is
= A still somewhat below this asymptotic limit. Of more signifi-
oosp L+ v o ot cance, the extended Onsager theory yields systematically
So\lfb(dEQ) 60 20 lower values ofy than the Onsager theory, although the gap

decreases with increasingD. This is consistent with evi-
FIG. 3. Interfacial tension vs tilt angle for the caséD=10.  dence that Monte Carlo simulations produce slightly lower
Solid circles and triangles indicate results of the Onsager and ex/alues of y than the Onsager theory in the case of hard

tended Onsager approximations, respectively. ellipsoids with length/width ratio of 153]. From Table I, for
each value oL/D, the relative difference between the On-

Onsager theory. This is consistent with the fact that the Onsager and extended Onsager valuey @ roughly equal to

sager theory is not expected to be accurate for such smaje rejative difference between the corresponding values of
elongations, and also the fact that such a feature has not begil, ean densitygiso+ prem)/2
SO ne .

observed in any earlier studies, which have focused on much
larger elongationgthe minimum aspect ratio considered in
computer simulations of ellipsoids by Allen and co-workers
is 15[1—4]). For this reason, we have also applied both the
Onsager and extended Onsager theories to the dades We have examined the structure and free energy of the
=10 and 20. _ _ . . nematic-isotropic interface of a hard-spherocylinder fluid at
Figure 3 plots the interfacial tension of both theories as gngjecular length/diameter ratios betweefD=5 and 20.

function of ,, (second constraint methbébr L/D=10. InThe study employs a simplified version of the Somoza-
this case, apart from an overall difference in magnitudes, th?arazona[lO] density-functional theory, which approxi-

tvv.o.theorles y'f'gofm_p:]ar belhawo; ?]f ?Xh'l;'tm.gla smgle mately extends Onsager’s classical second-virial theory to
m'Trg(‘)‘j” at‘/’ba. t' the \t/a u?ﬁ 0 t € '?te;r‘?‘c'{ah tenS||on at arbitrary elongation and density. Qualitatively, most of our
Vo= according to the two theories, Tor the 1hree elongay g is are in agreement with those obtained in earlier studies

tions considered here, are listed in Table | along with the . . . .
- T . pplying either Onsager theory or computer simulations to
reduced number densities of the coexisting isotropic an : L ;
ard-rod models with significantly greater elongation

nematic phases, denot, and pnem, respectively. These [1-3,5-7,22,2B In particular, the profile of the biaxial ori-

densities are also compared with Monte Carlo va[24d. It ! ..
is seen that the densities predicted by the extended Onsadgitational order parameter,(z), the weaknonmonotonicity
theory agree with the Monte Carlo results to within 2.5% in€Xhibited by the density profile(z) for small tilt anglesy,,

the isotropic phase and to within 4.7% in the nematic phase?Nd the minimum in the interfacial tension @4=90°, are
all consistent with previous studies. We have also shown that

TABLE I. Comparison of theoretical predictions for the bulk the Onsager theory predicts spurious minima in the interfa-
densitiesp;, and p,em Of the coexisting isotropic and nematic Cial tension at small tilt angles for elongation$D~5. A
phases, and for the reduced interfacial tensidr(at bulk tilt angle ~ Priori, however, one should not expect the latter theory to be
90°), for the three elongations considered in this work. The On-valid in this range of elongations. Our calculations indicate
sager and extended Onsager approximations are denoted “Ons” aritiat the present theory yields smaller values of the interfacial
“Ext,” respectively, while “MC" refers to Monte Carlo datd24]  tension than the Onsager theory for any finite rati®.
for the coexisting bulk densities. Values of the latter densities indi- ~An aspect dwelt upon in this paper is the theoretical de-

V. CONCLUSIONS

cated by* are estimates obtained from figures in Re#]. termination of the “anchoring angle,” i.e., the value of the
equilibrium tilt angley, in the bulk nematic phase. We have
L/D Theory  pisclD? Prent-D? v discussed several numerical approaches for finding this
angle, all of which concur thai,=90°, corresponding to
Ons 0.8753 0.9442 0.1230  planar alignment of the bulk nematic director. We should
S Ext 0.4491 0.4686 0.0634  emphasize, however, that the methods described here are
MC 0.447 0.447 consistent with the finding that thequilibrium director
Ons 0.4340 0.4821 01200 Structure of the spherocylinder model is characterized by a

constant tilt-angle profiley(z)=¢,. For other possible

10 Ext 0.2992 0.3290 0.0877
X models[20,21,25, our methods do not rule out the occur-
MC 0.292 0.320 e o .
rence of equilibrium structures exhibiting local deformations
Ons 0.2145 0.2516 0.1350  of the director while respecting the boundary conditions in
20 Ext 0.1759 0.2017 0.1139  the bulk nematic phase.
MC 0.172 0.211 To our knowledge, no computer-simulation studies of the

nematic-isotropic interface of hard spherocylinders in the
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range of elongations considered here are available for conproblematic due to unresolved effects of electrostatic inter-
parison. Such studies are now being performed by our groupctions and polydispersity in particle dimensions.
and will be described in future work. Recent experiments

have measured the interfacial tension of aqueous suspensions

of cellulose crystallites characterized ffective length/
diameter ratios comparable to those considered hbfé
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