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Lipid membranes with an edge
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Consider an open lipid membrane with a free exposed edge. The energy describing this membrane is
guadratic in the extrinsic curvature; that describing the edge is proportional to its length. We determine the
boundary conditions satisfied by the equilibria of the membrane on this edge. The derivation is free of any
assumptions on the symmetry of the membrane geometry. With respect to the axially symmetric case, there is
an additional boundary condition that is identically satisfied in that limit. By considering the balance of the
forces operating at the edge, a physical interpretation for the boundary conditions is provided. The effect of the
addition of a Gaussian rigidity term for the membrane is also considered.
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[. INTRODUCTION tions of the edge geometry. In distinction to the analytic
treatment of the problem provided in RE8], we will relax
Lipid membranes are described remarkably well by a geothe assumption that the membrane geometry be axially sym-
metrical Hamiltonian. This Hamiltonian is constructed as ametric. This is important not only for conceptual reasons.
sum of the scalars, truncated at an appropriate order, whicGenerally, there will be no privileged parametrization such
characterize those features of the membrane geometry thag that tailored to axial symmetry; in an axially symmetric
are relevant. A term quadratic in the extrinsic curvature progeometry the edge itself is simply a circle. We find that there
vides a measure of the energy penalty associated with bengre three boundary conditions. As we will demonstrate one
ing [1-5]; any intrinsic tendency to bend one way and notof these conditions, involving three derivatives of the embed-
the other is captured by a term linear in the extrinsic curvaging function, is satisfied identically in the axially symmetric
ture [6]. _ o o _limit. Therefore this limit is not a reliable guide to the gen-
The shape equation determmmg the_ e_qumbn.a of thisgra) case.
membrane is a fourth—orderznonlmgear elliptic pazrt!al differ- While the variational approach does capture the geometri-
Ent'al equation of the fornv K+K*=0, whereV IS the cal nature of the boundary conditions, the physical interpre-
aplacian on the n;embranK, Is the sum of thg pr.|n<:|pa| tation of these conditions still needs to be clarified. Ideally,
curvatures, and bi{® we mean a cubic polynomial in these : . .
. . one would like to interpret them in terms of the balance of
curvatureg7]. Here, we would like to examine the boundary he f i t the edae. To do this i that d
conditions that must supplement this equation when thé € forces operating at the ecge. o do Ihis in a way hat coes
membrane possesses a free edge. The energy cost associdtsgice to the g_eometr_y, we |_der_1t|fy the con_serveq No_e ther
with this edge is, to a first approximation, proportional to thecurrents as;ouatgd with the intrinsic translational invariance
exposed length. During the formation process, material wilCf the configuration[12]. The three, apparently unrelated,
either be added to the edge or the edge will heal itself so adoundary conditions are now cast in terms of the three com-
to form closed structures. There are, however, metastabonents of a single vector identity on the edge.
(cup-shapex equilibria of the lipid membrane with a free We finish with a discussion of the effect of a Gaussian
edge[8]. See also Ref9]. An examination of the energetics rigidity term on a lipid membrane with edges. Whereas such
of these structures is important for an understanding of th& topological term does not alter the bulk shape equation, we
assembly process. Alternatively, a line tension can be assshow that it does modify the boundary conditions that apply
ciated with a domain boundary between two different phaseto it in a way that will have consequences in the bulk. This
of an inhomogenous vesicld 0,11, and leads to budding. extension is relevant in topology changing proce$sés
For simplicity, however, in this paper we will restrict our-  The outline of the paper is as follows. In Sec. Il, we
selves to the case of an open homogenous vesicle. consider the simple example of a surface tension dominated
Our primary focus will be on the boundary geometry. Wemembrane. This allows us to establish our notation and to
have a surface with a boundary and a certain energy penaltjerive the boundary conditions in a simple context. In Sec.
associated with it, a well-defined problem in classical fieldlll, we derive the boundary conditions at the edge for a lipid
theory. The boundary conditions are identified by demandingnembrane. We then specialize to axially symmetric configu-
that the energy should be stationary for arbitrary deformarations to compare our results in this limit with previous
work on the subject. In Sec. IV, we consider the balance of
the forces operating at the edge, and we show how they are

*Electronic address: capo@fis.cinvestav.mx related to the boundary conditions. The effect of adding a
"Electronic address: jemal@nuclecu.unam.mx Gaussian rigidity term to the membrane energy is the subject
*Electronic address: santiago@nuclecu.unam.mx of Sec. V, where we obtain the appropriate modifications in
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C:x=Y(s) expressed in either of two ways= e,t?, wheret®=Y2 or t
=Y, where a dot denotes a derivative with respect to arc-
lengths.
The energy is a functional of the embeddX@f S in R3.
There is no need to vary the edge embeddifigindepen-
dently: theY? are fixed by the constraint that the two em-
beddings agreey =X, onC.
Equilibrium configurations are those at which the energy
(1) is stationary. To derive the equations describing the equi-
librium configurations in this model, we first consider a
. variation of the embeddiny of the membran& — X+ 6X.
Zx=X(£,8) We letn denote the unit normal to the surfake We decom-
pose the displacement with respect to the spatial basis
adapted t&,, {e,,n}, as,6X=d%,+dn. The induced met-
ric then varies according t08xYyap=2Kp®+V, Py

. . . +V,d,, whereK,, denotes the extrinsic curvature tensor,
the boundary conditions. We end with some remarks in Sec. =~ °~ 2 ab

VI, Kab=8y- dan, &)

FIG. 1. Definition of the quantities used in the description of the
geometry of an open membrane with an edge.

and V, is the covariant derivative o compatible with

vap- The derivative terms in the variation 6f, are its Lie

derivative along the tangential vector fiefH2. The variation
It is useful to examine first the simpler situation in which of A is

the membrane physics is dominated by surface tension, such

as a soap film with a free edge. Let the membrane suiface _ a

have an ared, with boundaryC of lengthL, and the tension OxA= LdAK(D+ ﬁ;dSl Pa- “)

in the membrane bulk be a constantand that on the edge

Il. SURFACE TENSION PITTED AGAINST EDGE
TENSION

o. The energy is then given as a sum of two terms, The mean extrinsic curvature i§=K,,?°. The second
term is obtained using Stoke's theorem. Hétds the out-
F=uA+ol. (1)  ward pointing normal t& on X. Only the normal projection

® of the variation plays a role in determining the bulk equi-

. Jlibrium of the membrane. This is true generally, regardless
Surface tension tends to decrease the membrane area,; I|Bf,= the model. In this particular model, however, there is

tension to deCfease the Iength of the free boundary._WlthOLHo boundary term associated with the bulk normal displace-
some further refinement, this model does not admit stablﬁqentq) As we will see, this is not generally true—a happy
equili_bria. Sgpposg a hqle is punctured .in the film, then de'accident when the ene,rgy is truncated at the area term. On
pendmg on its radius, elther the hole will clg.se'healmg thethe other hand, the tangential bulk variatidd always gives
f'lm’ or grow and de_stro_y It. An unstabl_e e_qunlb_rlum C'e_?”y only a boundary term. This is a consequence of the fact that
ex:st Whenothed.radms. IS ltuned t((; coincide V:’éth a Crltlcalatangential deformation corresponds in the bulk to an infini-
value r.. ©n dimensional ground, one wou _expet;t . tesimal reparametrization of the surface. There is, however, a
N.'“/‘T' (We_wnl ignore this !nstablllty here as our |_nt_erest in physical displacement of the boundary. In fact, the boundary
ths model is only as a point of reference for a lipid mem-q,h i ytion to Eq.(4) is easily identified as the change in
rane) . : . the surface area of under a normal deformation of its
The membrane surface is described by the embedding boundary, 5Y2= (1°®,)I2, which at each point is directed

X in three-dlmensélonal Spi‘dé3 as>'<=X(§a), wherex are along the tangent plane &f at that point. The projection of

coordinates forR®, and gl coordlnates_ for the surface ®P onto the edge itself, t*®,, does not contribute.

(ab, .. .a=_1,2a). Its edgec IS embeddgd N turn as a curve ) o s turn now to the variation of the edge embedding

onZ a_sf = Y*(s), which we parametrize by its arclength induced by the bulk variatiodX. It can be decomposed with

See Fig. 1. We can now cabtas respect to a basis adapted to both embeddiXgsnd Y
given by{t,l,n}, wherel=ge,|2. Thus at the edge we set

F=MJEd2§J§+a fﬁcds. 2 SY = ¢pt+ yl+ dn, (5)

where the edge and bulk components are identified by con-
Here, the metric induced ol is given by y,,=e,-&,, tinuity, =12d, and ¢=t*®,. Modulo a divergence asso-
where e,:=9dX/9¢* are the tangents to the surface, ciated with a reparametrization of the boundary, which in-
=dety,,, anddA= \/yd?£. Note that we can also consider volves the tangential component that we can safely
the direct embedding of the edggin R3, via x=Y(s), discard, we have for the variation of the infinitesimal arc-
whereY = X(Y?(s)). The tangent t& in R® is equivalently length
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Syds=ds(kp+ K d), (6)  wherel; is the vector normal to the edge that is tangent to the
ith sheet. EquatiofiL3) provides a generalization of the Neu-
where we have used the fact that mann rule for soap bubble clusters at a Plateau bdfdto
, accomodate line tension on the edge. A simple application is
t=—«l—Kjn. (7)  considered in Ref[14].

Here k is the geodesic curvature af associated with its
embedding i, and we have definel = K ,pt2tP. The un-
conventional minus sign in the first term of E) comes
about becauskis the outward normal toC on ¥, i.e., t3=
—kl?

The corresponding deformation inis then given by

lll. LIPID MEMBRANE WITH AN EDGE

A lipid membrane is modeled by a phenomenological en-
ergy quadratic in the extrinsic curvature of the surface. Let
us write this as

— ab
5Y|_: %CdS(Kl/j—’_KH(D) (8) Fb fsz‘F('y !Kab)! (14)

i.e., F depends at most on the extrinsic curvature, and not,
for example, on its derivativ®¥ ;K. In particular, we will
focus on the model described by the Helfrich energy density

Summing the two contribution®) and(8) to the variation of
the energyF, as given by Eq(1), we find

5XF=,uLdAK<I>+ 3§Cds[(ﬂ+m<)¢+ar<”q>]. (9) F=a(K—Kg)*+pu. (15

The spontaneous curvatufg is a constant, as is the bending
The bulk equilibrium is a minimal surface unaffected by therigidity «. The constani is interpreted here as the Lagrange
boundary, satisfyingK =0. On the boundary, the projections multiplier implementing the constraint on the membrane
along the normals to the edgg,and®, represent indepen- area. We will discuss the addition of a Gaussian rigidity term
dent deformations, so that stationarityfofequires the van- in Sec. V.
ishing of the corresponding coefficents. We thus read off the The energy of the bulk and the edge is
two boundary conditions

F=F,+oL. (16)
ox+u=0, (10) i - S
The shape equation describing the equilibrium in the bulk,
oK;=0. (11)  which is derived from the extremization of the ene(dp),

The first tells us that the geodesic curvature of the edge as o[ —2V?K+2(K—Kg) R+ (Ko?—K?)K]+uK=0,
embedded in the membrane is constant. The second simply (17
enforces the vanishing ¢, at the edge. Note that the com-
pleteness of the basig,l} of tangent vectors o at C,
y3P=1t3t"+13® permits us to express the mean curvature a
the edge a& =K +K , whereK, =K,;|?°. Thus modulo
the bulk equilibriumK =0, the boundary conditiofiL1) can
be alternatively expressed & =0. The only potentially
non vanishing component df,, on the edge is the off- R=K?—K,,K2P. (18)
diagonal componenKHL:taleab. _ _

For this particular model our approach has been heavy Under a tangential deformation of the surfacgX
handed; the boundary conditions we have written down are= ®%e,, the energy density transforms as a divergence that
an elaborate way to express the simple vector identity IS transferred to the boundary,

is well known[7]. The structure of this equation has been
discussed in detail elsewhdr?], where an alternative deri-
Yation is also provided. The scalar curvat@®Reappearing in
Eq. (17) is related to the extrinsic curvature through the
Gauss-Codazzi equation

ot=pl, 12 5Fu= § dsA 0 19
C

which equates the change in the tension over the intérsal

along the edgerAt to the force due to surface tension acting This is because the local scalar energy dengityansforms

on the edgewlAs. The apparent mismatch in countifthree  as

versus twg is accounted for by noting that the projection of  a

Eqg. (12) alongt is an identity. For higher-order models, as O F= D% (20

we will see, this projection will not be vacuous. The details ofF do not enter. Note that E419) agrees with

Note that had wé\ sheets conjoined on a single edge, Eq.the corresponding expression for the area Wit 1. As be-

(12) gets modified in an obvious way: fore, this boundary term induces a source into the boundary

N Euler-Lagrange equation. For an edge with a line tensipn
o‘[:,uE I (13 we get the first boundary condition, due to a deformation

i=1 along the normal, ¢,
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ok+F=0, (21) where we have discarded a total derivative term with respect
to arclength. In this way we succeed in isolating the indepen-
where we have used Eg®) and(19). This should be com- dent normal variations at the boundary, the coefficient$ of
pared with Eq(10) to which it reduces itF= u, a constant. andV, ®.
This boundary condition relates the geometry of the edge to From Egs.(8), (26), and (28), we obtain for the total
the extrinsic curvature of the membrane evaluated at thboundary contribution of the normal variation
boundary.

We now examine a normal deformation of the surface _ § _ ab ab
5, X=®n. The shape equatiofl7) determining the local 01Fo Cds[ lalp VL @ T2V
membrane equilibrium is obtained by demanding that the g
energy be stationary with respect to normal deformations of a ab
3., which may or may not vanish on the boundary. As such +ds(|af to) + oKy P, 29

this equation cannot be affected by the addition of a bound-

ary. To determine the boundary conditions we need to extengo that we can immediately read off the two boundary con-
the support of the variation to include the boundary. We havalitions that supplement E¢21),

that the normal variation of the bulk energy can be written as

d
1.V, FaP+ d—5(|afabtb) +0oK;=0, (30)
ELszf dA[ FKD + 2T, K3PD + FaP5 K], (22)
|l pF3P=0. (31)
where I' ,,=dF1 9y and F3=9Fl9K,,. The boundary
term we wish to identify ind, F,, originates in thes, K,,  The first is of third order in derivatives of the embedding

term in this expression. We recall that the extrinsic curvaturdunctions. This is consistent with the fact that the shape
transforms as follows under a normal deformatiorSofsee  €quation(17) is of fourth order. Using the decomposition of

Ref.[12)): the covariant derivativ€27), it can be written in the alterna-
tive form
5LKab: _VaVbCD+KaCKCbCD. (23) d
ab _ ab _ ab —
We thus have that |aIbVL]—' +2ds(|a.7: tb)+K(|a|b tatb)]: +O’K” 0.
(32)
o, Fp= f dALED +V (DY, F2P— FV,@)], (24 In the case of a membrane described by the Helfrich
Hamiltonian(15) with an edge the third boundary condition
where we have defined the Euler-Lagrange derivative (31) implies
E=(—VV+ Ko oK) F20+ FK+ 20, K. (25) K=Ko (33

on the edge—the rigid membrane necessarily has a constant
mean curvature at the edge equal to its spontaneous value.
This is entirely independent of the tensignor o, or of the
rigidity modulus. IfKy=0, the membrane is minimal at its
5, Fp= % dsl,[®V Fab— Faby, @], (26)  edge. As observed in R€B], we note that the spherical cap

¢ geometries exploited in Refl5] are a poor approximation

) _ to the actual equilibrium geometry.
The terms proportional t¥ ,® and® are not independent:  The second boundary conditi¢80) is of Robin type. For

the projection ofV,® along the edge is completely deter- any F that is a function only oK, we have thatF2°x= y2b, so
mined once is specified orC. To decomposé, F into two  that the middle term in E(30) vanishes,

independent parts we proceed as follows: we first decompose

Thus, modulo the bulk shape equati@i 0, the boundary
contribution is

V.® into its normal and tangential parts with respect’io |, F3Pt, =0, (39
Vaq)zlaVLq)—’—ta(-Dv (27)  and the boundary condition reduces to
2aV, K+ oK =0. (35)

where we have defineW | =12V . We now perform an in-
tegration by parts on th@ term to obtain for the second  Thjs equation determines the normal derivativeKofn

term on the right hand side of E(g6), terms of the component of the extrinsic curvature tangent to
q the edge. It does not involve the surface tensionNe em-
dsl.Faby & = % ds[l I FabY & —db— (1. Fabt,) |, phaS|ze.that its existence seems to have gone unpotmed.
igc & b c 1P - gs'la? ) The first boundary conditioiEq. (21)], together with Eq.

(28) (33), implies that on the edge
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ok+u=0. (36) sin®\’ sin® sin®
—2acosO| 0+ +a ®’+T)(®’—T)
The geodesic curvature of a loaded boundary is completely
fixed by the ratio of the tensions in exactly the same way as . Sirf® o
in the preceding section for soap bubbles, see (EQ). If Xsin® +2aKo—p——(n+aKp)sin® =0. (41)
wn=0 the edge is necessarily a geodesic of the bulk geom-
etry. If the boundaryC is also axially symmetric so that it coin-
If the line tension on the boundary vanishes=0, the  cides with a fixed value of” then 1=/ K =Kg, K,
consistency of Eq(33) with Eq. (21) requires thatu=0 =K,, andK;, =0. Itis simple to show that=—R’/R. We

also. Furthermore, Eq35) implies V, K=0 on the bound- thus have for the boundary conditions, E(®3) and(36),

ary. But the unique solution satisfying the two boundary con-

ditionsK=K, andV , K=0 is K=K, everywhere. One way 0'+sin®@/R=Ky, oR'=uR. (42

to see this is to construct the Gaussian normal coordinates

adapted to the edgel,6), wherel is the length of the geo- The remaining boundary condition, E&5), of third order in

desic that intersects the edge normally. With respect to thigerivatives appears to present a problem: a third-order ordi-

system of coordinates, the Laplacian assumes the fofm nary differential equation does not admit third-order bound-

=2+ kd+ 32 in the neighborhood of the edge. Thus, ary conditions. The inconsistency, however, is only apparent:

modulo the boundary condition&]?K =K on the edge. ©n the boundary, the shape equation E4f) itself repro-

But Eq. (17) implies thatv2K =0 there so that?K and all duces, modulo I_Ec(_.42) the troublesome boundary condition

higher derivatives vanish. K is analytic inl, thenK =K. If (35). Our anglysus IS thus completely consistent with the axi-

u#0, there is no such constraint. The geometry is very se‘:"!ly symmetric ana!y3|s of Re[B] where thg boundary con-

verely constrained by the boundary conditions. dmons. (42). are denvgd. It is quth stressmgl, however, that
Let us now examine an axially symmetric membrane Withpotent|al pitfalls of using the axially symmetric problem as a

an axially symmetric edge. With respect to cylindrical polar(‘gu'd.e to the more general_ problem. The boundary co_ndltlon
cooordinatesp,z, ¢} on R3, the membrane is described by (30) is a nontr|V|aI. constraint on the geometry, whlqh is not
p=R(/) and z,=,Z(/‘) Where 22+ R'2=1. / is the arc already encoded in the shape equation for nonaxially sym-
length aloiy a a curve with fixedp, and the primes denote a metric configurations.

derivative with respect ta”. The intrinsic geometry ok is

described by the line element IV. BALANCE OF FORCES
In this section, we consider the balance of the forces op-
2_ A2 20y 2 ’
dr°=d/“+R(/)d¢". (37 erating at the edge. This provides the missing intuition on the

physical origin of the boundary conditions we have derived

We can write the extrinsic curvature in a form consistent, {he preceding section.
with axial symmetry as

Consider a point on the edge. In equilibrium, the tengjon
) must satisfy
Kab=7"a/bK/+ (Yab— 72’ b) KR, (39

_ o g="21,. 43
whereK,; andKy are two spatial scalars that we identify as g a “3
the principal curvatures of the embedding®fn R*, and/?  Here f2 is the membrane stress tensor so g, is the
|s/athe outward pointing unit normal to the circle of fixed  gyrface tension acting on the edge due to unbalanced stresses
/?=(1,0). The mean curvature =K +Kg. To evaluate i the bulk at its boundary. In RefL2], it was shown that the

the principal curvatures, it is convenient to defi@eas the  py|k stress tensor for the model defined by the Helfrich en-
angle that the tangent to a curve of fixedmakes with the  ergy (15) can be expressed in the form

positive X axis:

K
fa= 2aK( Kab— Eyab) —2aKo(K3P—K 2P

4z _ 39
d—R—tan . (39

. - —(u+aKd)y*"|e—2aV3Kn, 44
We then haveZ’ =sin® andR’ = cos0, so that the principal (n+aKp)y }eo aVaKn (44)
curvatures are

Thus its projection along the normal to the ed§es
K=0' K _sin®
am ’ R™ R

(40) fol,={2a(K— KK, —a(K—Kg)?— u}l

+2a(K—Ko)K| t—2aV Kn. (45)
Axial symmetry implies that the fourth-order shape equation
can be integrated to provide a third-order equatiorR@s a  In addition, as we have seen in Sec. I,
function of /. It has been shown elsewhe(¢16,17, see,
also Ref.[12]) that this equation takes the form g=—ot. (46)
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Using Eq.(7) for t, we read off the three components of Eq.
(43') g Eq.(nfort, w P d J dAed~fa=J dAfe, . (53)
ok=2a(K—Kg)K, —a(K—Kq)2— pu, (47)  We note that the bending energ@AK? is a conformal in-
variant, and so does not contribute to the tré&e We have
oKj=-2aV K, (48 3, =2aKy(K—Kg)—2u), so that
0=2a(K=KoKj_, (49 2MA—2aK0f dA(K—Kg)+oL=0. (54)

respectively, alongd, n, andt. The condition(48) coincides , o ) . ) )
with the boundary conditiori3s). If K, #0, Eq. (49) im- Th|s condlthn is useful for identifying th_eIS|gn associated
plies thatk =K,. The remaining boundary conditiof#7) ywth the mu!nphers. For example, K,=0, itis clear thatu
then coincides with a linear combination of the boundary'S Necessarily negative as was observed in (&f.
conditions(33) and(36). In the axially symmetric geometry,

however,K|, does vanish so that E¢49) does not imply V. GAUSSIAN RIGIDITY

K=K, as it stands. One needs then to appeal to the inte-
grated shape equatiodl), which together with Eqs(47)
and (48) reproduceK =K.

We thus have identified a very simpl& heavily dis-
guised physical interpretation of the boundary conditions. In
particular, in this approach, the boundary conditkor K
emerges as the vanishing of the stress induced by the bulk
along the edge. Note that the variational approach did not I=f dAR (55
rely on the identification of projections. Indeed, the boundary z
condition corresponding to the projection alongas origi-
nally identified by demanding stationary energy for indepen
dent boundary variations & | ®.

We also note that the form of E@¢43) implies the inte-

grability condition = f dAR+2 % dsk (56
s c

The geometrical scalars we can construct with dimension
[length =2 are R, K2, and K,,K3. The Gauss-Codazzi
equation(18) tells us that the three scalar invariaRs K2,

and K,,K are not independent. In addition, the Gauss-
Bonnet functional

is a topological invariant if the membrane is closed. More
generally for an open membrane,

f{) dsf?l,=0 (500 s a topological invariant. A consequence is that if a Gaussian
¢ rigidity term is included in the energy a line rigidifyd s« is

the ed Th ist f th h ¢ | necessarily induced along its boundary.
on the edge. 1he existence or these three extremely NoNn- 1, oniain the variation of the Gaussian term, we need to

trivial hcondmons Is far from obvious in our previous ap- o how the scalar curvature varies. Its tangential deforma-
proach. tion is straightforward; to determine its normal deformation,

a o
One can Say more. Take the equatidif ._.0 descrllbmg we exploit Eq.(18) and with it the technology developed in
the conservation of the stress tensor, dot it iKtoand inte- Secs. Il and Il

grate over the membrane surface. We get Consider now a Gaussian rigidity addition to the bulk
energy, so that
f dAVa(X-fa)=f dAe,-f2. (51
F:Fb+ﬁf dAR. (57
Working on the right, we have
Whereas the bulk shape equation is unmodified, all three

f AV (X 3) = 3g dsx. | f2 boundary conditions are changed:
a(K—Kg)?+ BR+u+0ok=0, (58)
= 3€ dsX-g .
ZQVLK—ZBKHL'F(TKH:O, (59
== jgdst-g a(K—Ko)+BK;=0. (60)
=olL, (52 We note that the Gauss-Codazzi equati®8) allows us to

expressR in terms of the projections df ,, with respect to
where we have used E(3) on the second line, as well as the edgeR=2(K”KL—K”L2). Equation(58) is quadratic in
Eq. (46) on the last line. On the other hand, if we writ¢  the extrinsic curvature. Equatiori§9) and (60) by contrast
=fabg + fn, then are linear relationship betweet, andK.
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Note that, unlike the case of the pure Helfrich model, the 2aV K—28K, +oK;=0 (64)
central term in Eq(59) does not vanish in general. However, * It =
itd ishi iall tri ith axiall
it does vanish in an axially symmetric geometwith axially 2K, [a(K—Ko)+ BK|]=0, (65)

symmetric edge K, =0. More generally, we have the inte-

gral statement where we have used the fact that, at the edge,

fﬁcds[ZaVLK+aK“]=0. (61) n=Kt+K,L. (66)

As was the case in the preceding section, these coincide with

In an axially symmetric geometry one can check '[hat,the boundary condition€58), (59), (60) when K, #0.

modulo the lower-order boundary conditio(&8) and (60),
Eq. (41) reproduces Eq59) on the boundary.
Let us consider now the balance of the forces in this case. VI. CONCLUSIONS

The Gaussian term makes no contributioriz$12]. Naively Whereas for a soap film, it is very simple to identify the

reinvoking Eq.(43) would appear to suggest that this term forces operating on the edge, and so read off the boundary

cannot modify the boundary conditions, in contradiction W|thConditions on the bulk geometry, such an approach is less

what we have.just derived. However, with a gig‘era' funCtIc’nobvious for a membrane. However, we have demonstrated
F and in particular forBR, the termd/ds(l . F72°tp,)® ap-

L L . how simple geometrical and variational arguments may be
pearing in its normal variatiofsee Eq{28)] will be nonva- exploited to derive the boundary conditions on the lipid

nishing, and it is_n(_) Ionge_r appropriate to di.scard a tOtaImembrane geometry. We have made no restrictive assump-
derivative as we did in deriving EGR8). For consistency, we tions about the symmetry of the configuration. We then

claim therefore that we need to modify E@3) as follows: showed how these boundary conditions emerge from a bal-

g—g—1,F2%,n. (62)  ance of the forces projected along a basis of vectors adapted

to the edge.

For Gauss-Bonnet, the second term read®sK;, n. This

mysterious term is precisely the tension associated with the ACKNOWLEDGMENTS

edge energy . dsk. The projections of Eq(43) alongl, n,

andt, respectively, then read R.C. is partially supported by CONACyYT under Grant
No. 32187-E. J.G. and J.A.S. are partially supported by

o[ (K—Kg)?—2(K—KgK,]- ZﬂKﬁl +ok+u=0, CONACYT under Grant No. 32307-E and DGAPA at UNAM

(63) under Grant No. IN119799.

[1] Proceedings of the Jerusalem Winter School for Theoretical [8] D. Boal and M. Rao, Phys. Rev. #6, 3037(1992.
Physics edited by D. Nelson, T. Piran, and S. Weinbéfgprld [9] D. Boal, Mechanics of the CelCambridge University Press,
Scientific, Singapore, 1989Vol. 5. Cambridge, England, 2002

[2] L. Peliti, in Fluctuating Geometries in Statistical Physics and [10] F. Juicher and R. Lipowsky, Phys. Rev. Left0, 2964(1993.
Field Theory Proceedings of the Les Houches Summer Schoof11] F. Jilicher and R. Lipowsky, Phys. Rev. B3, 2670(1996.
of Theoretical Physics, 1994, edited by F. David, P. Ginsparg{12] R. Capovilla and J. Guven, J. Phys. A: Math. G86, 6233
and J. Zinn-JustigElsevier Science, New York, 1996 (2002.

[3] S. Safrangstatistical Physics of Surfaces, Interfaces, and Mem-[13] D. Weaire and S. Hutzlefthe Physics of Foam@©xford Uni-
branes(Addison-Wesley, Reading, MA, 1994 versity Press, New York, 1999

[4] R. Lipowsky and E. Sackmanhiandbook of Biological Phys- [14] R. Capovilla and J. Guvefunpublished

ics (Elsevier Science, New York, 1985/0ls. 1 and 2. [15] P. Fromherz, Chem. Phys. Le@i4, 259 (1983
[5] V. Seifert, Adv. Phys46, 13 (1997 [16] W. Zheng and J. Liu, Phys. Rev. 48, 2856(1993.

[6] W. Helfrich, Z. Naturforsch. @28, 693 (1973. oo i <L
[7] O.-Y. Zhong-Can and W. Helfrich, Phys. Rev. L&, 2486 [17] (Bl.gggzc, S. Svetina, and B. @&s Phys. Rev. E55 5843

(1987).

021607-7



