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Ising model of polarity formation in molecular crystals:
From the growth model to the asymptotic equilibrium state
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We analyze a layer-by-layer growth model of crystals consisting of dipolar molecules with two directional
states. The model is characterized by the assumption of thermal equilibrium formation of new adlayers,
whereas previous layers are treated as being “frozen” in the state in which they were formed. Longitudinal and
transverse Ising-type nearest neighbor interactions are taken into account. Under such assumptions, bulk
polarization is known to arise. We mainly consider asymptotic one- and two-layer statistics after many steps of
growth; we have obtained a theorem relating this statistics to thermal equilibrium of an appropriate two-layer
system. Local polarization patterns resembling those of ferromagnetism and antiferromagnetism emerge, de-
pening on signs and magnitudes of the coupling constants. We have explored such effects by means of
simulations, by a mean field approximation, and by a Bethe-Peierls analysis.
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I. INTRODUCTION vious step, no degree of freedom with respect to up or down
is allowed. For the molecular crystals we are considering
Recently, we have shown that a macroscopic state featuhere, the assumption of a frozen substrate is justified due to
ing polar properties may arise as a result of orientationathe very large energy of activation for a reversal of the polar
selectivity of dipolar molecules being attached to a crystaprientation of molecules within the substrate layeg, (
surface during growth[1]. In view of different growth ~>50 kJ/mol for prolate top moleculesArranged as this, we
speeds, we have to distinguish between effects being kineti@ivestigate the evolution of orientational order, especially for
in nature and those related to conditions of thermal equilibloNg sequences of layer-by-layer growth. Independent of
rium. In the present work we consider phenomena in thavhether growth started from a perfectly ordered centrosym-

limit of slow growth, where it is reasonable to assume thafMelic or noncentrosymmetric substrate seed crystal, each

adlayers are formed in thermal equilibrium. Scanning pyro_adlayer will accomodate some degree of orientational order-

electric microscopy, phase-sensitive second-harmonic mf'_ng, the statistics being determined by the requirement of the

O . . _global minimum of the free energy of an adlayer. The present
croscopyf2,3], and Markov-chairi4,5] studies providing ex concept is fresh and has not been considered by the standard

amples and understanding of spontaneously evoluting pOI"’}‘hodels of crystal growth of molecular materials. Application

properties during the growth of host-guest and singlesg widespread, because all crystals built from dipolar mol-

component molecular crystals have introduced a fundameré-cmes, at least in principle, are expected to show grown-in
tally new view on how molecular crystals built from dipolar otacts of polarity. Typical candidates are derivatives of
molecules can develop a pyroelectric symmetry class by §enzene- and stilbene-type frameworks. For examples, see
mechanism of growth. As shown previou$g), the Markov- 5],
chain mechanism of polarity formation can transform a cen- |n the present work we will address the interesting ques-
trosymmetric seed crystal, e.g22;/c, into a twinned state, tion as to whether the limiting layer statistics—after an arbi-
where polar properties develop in the positive and negétive trarily large number of growth steps—can be conceived in
sector. As shown by phase-sensitive second-harmonic msome sense as a thermal equilibrium statistics of an isolated
croscopy|7], the direction of the net polarization in these system. In fact, we have found that the asymptotic statistics
sectors is opposite. of the two-layer system consisting of the thermalized adlayer
The system to be investigated here is defined as followsand the previously formed substrate is the canonical distri-
A single-component crystal built up from dipolar moleculesbution of a two-layer system with appropriate interactions.
is subjected to slow layer-by-layer growth. Dipolar entitites This allows us to set up an Ising-type Hamiltonian to discuss
[represented by dondD) and acceptofA) type molecular phase transitions as a function of coupling parameters and
fragments bound to ar-conjugated frampare attached to a temperature. In the sections to follow we have worked out a
face (kl) of whatever the given seed crystal structure is.formalism describing this equivalence. Monte Carlo methods
Among the possible processes which can occur during thare used to portray the basic behavior of the system during
attachment of molecules to surface sites, we consider onlgrowth. Average values of layer polarization and phase tran-
those with one degree of freedom: the up or down orientatiosition characteristics are calculated by a mean field as well as
of the dipole moment of the admolecules. For theby a Bethe-Peierls approximation.
(hkl)-substrate layer itseli.e., the layer attached in the pre- ~ Some of our assumptions are very close to those formu-
lated in a model for growth of binary alloy8], where atoms
are allowed to interact and to equilibrate at the surface, but
*Electronic address: bebie@itp.unibe.ch are frozen in the bulk. In that model too, the asymptotic layer
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X,y TABLE I. Longitudinal interactions between molecules of adja-
| cent layers at corresponding sites.
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FIG. 1. Interactions between dipolar molecul@srows. The
arrows indicate the orientational state of the dipolar molecules (a) Transverse interactiondVe assume nearest neighbor
(A—D or D—A; polarizations+1 and —1 with respect to the |sing interactions between dipolar molecules within the same
direction of growth. z: direction of growthx, y : transverse direc- layer. AE, = E,—E,, denotes the pair energy difference be-
tions(2D). Eap, Epp, Eaa: nearest neighbor longitudinal interac- yyeen parallel and antiparallel polarizations. We introduce
tioq energieskE,, E,,: nearest qeighpor transverse interaptiqn eN-the dimensionless coupling, =AE, /kT. A negative value
ergies. Layer-by-layer growth gives rise to net bulk polarization. of Q, favors equal polarization of neighbors within layers.
o . ) (b) Longitudinal interactionsThe polarization vector of a
statistics(beyond a transient thickngssas proved to corre-  gipolar molecule points from the electronic acceptor terminal
spond to the thermal equilibrium of a two-layer system. IN(A) to the electronic dono(D) terminal, symbolicallyA
our case, however, the corresponding theorem is more com-,p |y Table I,s' denotes the polarization of the molecule
plicated, due to the fact that the_longitudinal interaption hagyf layerz (formerly grown, now froze s the polarization of
less symmetry in our case. Details are worked out in Sec. Mhe molecule of layez+ 1 (being attached and thermalized
both at the same sitex(y). Ean Stands for the interaction
Il. GROWTH MODEL: DEFINITION OF INTERACTIONS energy betweenA and A terminals §'=-1, s=+1;
DA---AD), likewise Epp for AD---DA and E,p for
In the model discussed in the present paper, a rectangul&D- - - AD or DA- - - DA. Without loss of generality, inter-
crystal is growing layer-by-layer in the positivedirection.  action energies can be given with respecEig, ; basic pa-
Molecules are arranged on a square lattice. The number @ameters, therefore, arRE,=Exa— Eap and AEp=Epp
molecules per layer is denoted By=n,n, (usually, n,  —E,5. The dimensionless coupling’ are expressed in
=ny). The molecules are of the dipolar type featuring simplyterms ofA=AE,/kT andD=AEp/kT (see Table)l Inter-
two directional statess=*1 in the z direction. Nearest molecular interaction energies are accessible by quantum
neighbor interactions among dipolar molecules within themechanics calculation9,10]. Typical values folEaA, Epp .
same layer and between adjacent layers are assumed, the pRji, range from several to about 40 kJ/mol. Examples are the
interaction energy depending on the directional states of thRnown H-bond-type interactions. The majority of the ex-
two molecules involved. The main assumptions on the layeramples given in Ref[5] belong to the sectoAE,, AEp,
by-layer growth process are the followin@) A new layer ~ AE, >0; in these cases, the coupling is ferromagnetic in the
starts to be formed only after the preceding layer is comdirection of growth, and antiferromagnetic perpendicular to
pleted.(ii) When a new layer is attached, the former layersit (Fig. 2, row d. For a systematic account of possible phe-
(indices Q. .. ,z) are assumed to be “frozer(i.e., they are  nomena we shall also treat other sectors of the coupling con-
kept fixed permanently in the state in which they werestants.
formed, whereas the new layeindex:z+1) relaxes to ther- To summarize, one step of the growth process consists of
mal equilibrium, taking the nearest neighbor interactions ofthe attachment of a complete new layer in thermal equilib-
dipolar molecules within the layer and with correspondingrium under the influence of its internal transverse interac-
sites of the formerly grown layer into accoulifi) Thermal  tions and of the interactions with the former layer. The two-
relaxation of a layer takes place after all its molecules arglimensional (2D) Ising-type HamiltonianH,; determining
attached.(iv) The state of the seed layez<0) is given  thermal equilibrium of the new laygwith polarizationss,y
explicitly. These assumptions are supported by the fact that=1, ... n,, y=1,... n,) under the influence of the fixed

in molecular crystals of elongated prolate-type moleculesstate of the former layefdescribed by its polarizatiors, )
the activation energy for dipole reversal in the substrate layejg

is high and that molecular crystals generally do not undergo

surface reconstruction. Thermal relaxation of the surface Q.

layer will not always be met: this assumption requires the Hl({s})/kT:XEy = Scy(Sxy+17Scr1y)

surface layer to have sufficient time to equilibrate, before it ’

is completed, i.e., the time for the growth of a layer must be ,

larger than surface layer relaxation times. This issue is dis- +Xzy R(Sxy 1Sxy)s @
cussed in Ref[8] in connection with growth of binary al- ’

loys. More precisely, we assume the following interactionswhereR(s’,s) is defined in Table I. For the transverse inter-
among dipolar moleculesee Fig. L actions boundary conditions have to be formulated, usually
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FIG. 2. Simulation of typical growth processes. Layer siz& 10. X, y, z denote the axesz( direction of growth, from left to right
Squares display single layers, rectangles show side viplasex=0). Columns:(A) layer z=0 (seed, given explicitly (B) side view
(z=0-30), (C) layer z=29, (D) layer z=30, (E) side view =270-330),(F) layer z=329, (G) layer z=330. Last three columns:
couplings @, D, Q,). Rows:(a) uniformly polarized seedsy=+1), (b) randomly polarized seedg¢) initial configuration metastable,
switching to a stable one at abaut 300, (d) layer organization AFO(e) polarizations alternating from layer to layer, layer organization
AFO, (f) polarizations alternating from layer to layer, layer organization FO.
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either open or periodic, and taken care of in the first sum ofayer sizeN, the probabilityp. of the signature to change
Eq. (1). In simulations we use periodic boundary conditions.from one layer to the next is given by

ll. BASIC PHENOMENA IN (A, D, Q,) SPACE 1

Pc= N(A+D)/2" (2)
The thermal character of the formation of new layers calls 1+eNATD)

for a statistical description of the crystal. Given the layer size

ny, ny, the process is fully determined by the couplirgs For largeN and fixedA and D, this formula gives a simple

D, Q, and by the state of the initial layez£0). It does not  picture for the transition from one layer to the next: for

come as a surprise that the memory for the initial state gets- D<<0 the signature will alternate; fék+D >0, the signa-

lost in the course of the growth process. In the present papdure remains the samigee Fig. 3, right The examples dis-

we are mainly concerned with the asymptotic statistics of thglayed in Fig. Zrows (d) and(e)] approximate this behavior.

layer after many steps and for the asymptotic correlation beThe switching behavior is already discussedSri1].

tween a layer and its predeces§iarthe present paper quoted (i) For Q, ——=, the layer is homogeneou&O): s,,

as the largez limit). =3y, where the layer polarizatiosy is +1 or —1. The
The main characteristics of the growth process for anytransition probab|I|t|e:7pS ‘s from layer polarizatiors] to s;

given set of couplings and for different initial conditions can gre given by

be observed by means of simulations. Some examples are

displayed in Fig. 2 Typical layers remind of Is!ng -like struc- =(1+e NP)"1  p, =(1+e\D)1

tures, due to the influence of the transverse interaction. For

negative values o®, , ferromagnetic orderingrO) with a

tendency to equal polarization of neighbors can be expected, poy=(1+e"7h p_=(1+e ML )
whereas positive values @J, favor local antiferromagnetic

ordering(AFO) within the same layer. In longitudinal direc- T -

tion two main patterns can be observed, again depending on ++

the couplings: either the new layer reproduces more or less
the previous one, or its polarities are opposite to the previous
ones at corresponding sites.

In full generality, the asymptotic statisti¢kargez limit)
ought to be described for all points of the parameter space
(A,D,Q)). For the sake of an overview, the remainder of the
present section is restricted to a discussion of the following

special casesi) Q, —°, (i) Q, — —°, (iii) no transverse FIG. 3. Idealized layer statistics and layer pair statistics for large
coupling,Q, =0, (iv) dependence OQL for some fixedA  yansverse interaction in the largelimit. Left: Q, — —c. Right:
>0, D>0 (always in the large-limit). Q,— +%. Symbols+ and — indicate local polarizationgfour

(i) ForQ, —, the layer exhibits a checkerboardlike pat- sites of two consecutive layérdayer organization may be of FO
tern (AFO): s,,=so(—1)*"Y, where the signatursy is +1  or AFO type, and may reproduce or alternate from one layer to the
or —1. The energy required to change the signature from ongext. For each of the five different regimes an example can be found
layer to the next iIN(AEA+ AEp)/2. Therefore, for finite in Fig. 2.
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TABLE II. Attachment of an admolecule: summary of eight situatiomean field approximations’,
polarization of substrate moleculg;polarization of admolecule at same site. The mean field estimate of the
coupling energy depends on the sublattic® which the site belongs.

Sublattice Branching
g s’ s Coupling probability
1 2 - - +2Q, (1-29™M) vy
2 2 - + -2Q,(1-2g™) +A v,=1-v,
3 2 + + —-2Q,(1-2qW) v3
4 2 + - +2Q,(1-29%)+D vs=1-vg
5 1 - +2Q,(1-2q®) Us
6 1 - + -2Q,(1-29@)+A ve=1-vsg
7 1 + + —2Q,(1-2q®) vy
8 1 + - +2Q,(1-29®)+D vg=1-v;
From this matrix we obtain the mean lengths of chains of IV. MEAN FIELD DESCRIPTION
equally polarized layergpolarities +1 or —1, repectively, In the present section we restrict ourselves to the sector
A>0, D>0 and use a mean field approximation to discuss
L.=1+eV°, L[ =1+eMA ) the stationary layer statisticdargez limit), which is ex-

pected to exist in this sector. This approximation turns out to
be sufficient for an understanding of the AFO-phase transi-
In the largeN limit these expressions imply the following tion (see below

picture of the transition behavior. For the sectd0,D For sufficiently large positive values @, the layer is
<0 the polarization alternates from layer to layer. Fbr  expected to exhibit approximately an AFO struct(gee Sec.
>0, D>A, starting from any state of the first layex= 0) ), i.e., markedly different spatial averages of the polariza-

the asymptotic layer polarization is Z-{«); for A>0, A  tion for the two sublattices. In view of this effect we intro-
>D, the asymptotic layer polarization is1 (see Fig. 3, duce separate spatial mean polarizatistisands(® for the
left). In the sectorA>0D>0 there are metastable states,two sublatticeqy (g=1,2). The probability of a site of sub-
such as, for example, the layer state=—1 in the range latticeg to have positive polarization 9= (s(9+1)/2. In
D>A>0, due to the extremely small transition probability the spirit of the mean field approximation we disregard local
~e~NA from layer polarization—1 to +1; similarly, so= correlations. In view of the symmetry between the two sub-
+1 is metastable in the range>D>0. lattices, we may introduce the conventigff’<q®.

(i ) We now consider the case of missing transverse cou- Let us consider a sitex(y) of the substrate layepolar-
pling, Q, =0, which is well known from the 1D treatment of izations’); s denotes the polarization of the molecule to be
the present modeln(=n,=1) [4]. Along the direction of attached at the corresponding sitgy( of the new layer. The
growth, a site X,y) undergoes a stochastic process witheight possible situations are listed in Table Il. The column
fixed transition probabilites from one polarization to the “coupling” gives the expectation value of the coupling en-
other, the mean length of chains of constant polarization beergies(divided by kT). Given the states’ of the substrate
ing given by molecule and its sublattice, there is a pair of two competing

processess’ ——1 ors’—+1 (such as, for example, pro-
_ _ cesses 1 and)2Note that the mean field estimate of the
Li,=1+e® L, =1+e’ (5 couplings assumes thermalization of the adlayer after all its
molecules are attached.
More details on the single chain can be found in the Appen-E’aseOI on the assumption of the_t_hermal _equili_brium forma-
dix. tion of the new layer, the probabilities defined in Table Il
q are given by the following expressioniderived from the
mean field estimate of the energy difference within the pair,
see Table I}

(iv) Finally, we assumé>0 andD>0 to be held fixe
and discuss the behavior of the layer as a functiol@of.
The most prominent feature is the phase transition to th
AFO state occurring at some val@, =Q{“(A,D)>0,
such that forQ, >Q{“™ the two sublattices have a different
mean polarizatior(sublattice 1,x+y=odd; sublattice 2x
+y=even); forQ, <Q{™ the layer is homogeneous. The
behavior atQ, =Q(™ (for fixed AD) corresponds to the @
ferromagnetic-antiferromagnetic transition in magnetism in vs=[1+e" Q024 "A" L, ®
the presence of an external field. More details on this phe-
nomenon will be given in Secs. IV and VI. v,=[1+e 4Q1-29®)-Dj-1, 9)

vy=[1+e" Q02D A, ®)

vy=[1+e 402 -0] 1, @

021605-4



ISING MODEL OF POLARITY FORMATION IN . .. PHYSICAL REVIEW E66, 021605 (2002

1 (AFO -type solution. They can be found numerically from
s |2 o 7 the pair of equation§l0), (11). It turns out that they do exist
mean field approximation : for given A>0, D>0 for values ofQ, exceeding some
0 positive critical valueQ{“™(A,D). Intuitively it is clear that
//%_:T-_— these solutions correspond to the expected AFO behavior of
. layers for sufficiently large positive values &, . Figure
A_H/ % 4(a) displays the sublattice polarizatioss), s(® and the
-1 2 mean layer polarizatios= (st +s(?))/2 as functions ofQ,
-1 0 Q 1 (thick lines. In this rangeQ{*™<Q, , the solutions of the
1 type q®M=q® found previously must be unstable: they are
s b. artifacts of our system of equatiohBig. 4(a), dashed ling
Bethe approximation {4 At the phase transition the mean field approximation for
* s(Q,) exhibts a kinFig. 4(a)]. The kink is also obtained in
0 the Bethe approximatiofsee Sec. VI and Fig.(8)]. So far
/r— we could not reproduce this kink in our simulatiofsg. 4,
J L symbols+). Simulation results for layer sized 5®0 and
-1 3 100X 100 were obtained by means of the method developed
-1 0 Q 1 in Sec. VI(canonical distribution of an equivalent two-layer

o o system. Typically, 10°° Monte Carlo trials were carried out
FIG. 4. Layer polarization in the largelimit. A=2.0, D=0.8. for a given set of parameteré\( D, Q,). Sublattice polar-
AbscissaQ, . Ordinate: sublattice and mean layer polarizatia.  jzations in the AFO range were estimated from the peaks of
Mean field approximation(b) Bethe approximation. Thin line, FO  ypeir gistribution. In our programs we used the random num-
type solution 6)=s2)); solid thin line, physical FO range; broken generator introduced by Bays and Durham as described
thin line, unphysical range of FO -type solution. Thick lines: sub-in Ref.[12].

lattice and mean polarizations in AFO range.. simulation results. - i
P ge The critical valueQ!°™ depends only weakly oA andD.

For the asymptotic statisticz{>=), the probabilitiesq®  ForA=D=0 we obt{;\inQ(fr")= 1/2, the well known critical
are the same for both layers, leading to the following equayalue in the mean field approximation of the Ising model.

tions of consistency: For A=2 andD=0.8 the mean field approximation yields
Q{*~0.33 (0.54 from simulations
qaP(1-vy)=(1—-q®)(1—-vs), (10) Though the mean field descriptigdMFD) presented in
this section is not expected to match the behavior of our
q@(1-v3)=(1-q?@)(1—vy). (11)  process accurately, it has some remarkable merits.
(i) For typical values ofA and D and for anyQ, , the
After insertingv, ... v; from Egs.(6)—(9), this pair of  MFD polarization agrees reasonably well with simulation re-
equations determinag® andq® for givenA, D, Q, . First  sults:
we extract the solutions with the proped{#)=q®=q, cor- (iil) The MFD is able to account for the existence of an

responding to equal sublattice polarizations. These FO typAFO phase transition, where the polarizations of the two
solutions are expected to exist at least for negative values @fublattices assume different values spontaneo(sith a
Q. . Inthis case Eq(11) or Eq.(10) can easily be solved for critical exponent of 1/p it is observed, e.g., at fixed, D
Q.. with increasingQ, .
(iii) ForQ, =0, the chains are independent and the exact
Q. (q)= mean polarization can be taken from the isolated chain
{4 4(1-2q) analysis(see Appendix

D A

| (2q—1)+ (29— 1)*+4q(1—q)e”e®
n .
2eP(1—q)

s(Q,=0)= (13

2+eP+ehr’

(12) The same result follows from the MF[Eq. (12), Q, =0].

The curve in the Q, ,q) plane obtained from this relation (V) At Q. =0, even the slopels/dQ, as given by the

may be termed the FO curve in mean field approximatiod!FD IS €xact,

[Fig. 4(a), thin line]. Note that forA>D>0 the branch 0 oA D 2D A

<Qg<0.5 has to be taken, and f@>A>0 the branch 0.5 ds =8e (1+2e7)—e(1+2e )_ (14)

<qg<1. As we shall see below, the soluti¢t?) is unphysi- dQ, Q=0 (2+et+eP)3

cal beyond some positive value @, where the transition

to the AFO state occursA>0 andD >0 held fixed andQ | This expression can be derived by differentiating 8d) or

increasing. Eq. (10) with respect toQ, , settingQ, =0, solving for
We now turn our attention to solutions of the typ€" dg/dQ, , and finallyds/dQ, =2dg/dQ, . Remember that

+q@), corresponding to different sublattice polarizationswe haveq!)=q?=q at Q, =0. The exactness of E¢l4)
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is due to the following properties of the MFD) the result  fices to prove it for one single chainr(—s’, o—s), which
for sis exact atQ, =0, and(ii) the influence of the trans- can easily be worked out for the four combinationssbyfs.
verse coupling on the transition probabilities is taken into

account exactly up to first order @, (first-order perturba- A The asymptotic distribution of layer states as a canonical
tion obtained from the expectation value of the transverse distribution

coupling in the unperturbed state . . . o
Ping P a Equation(20) constitutes an expression for the probability

7, Of a layer states in the largez limit. Note that the
number of terms in the sum of E¢RO) rises exponentially
with increasing number of molecules per layer; therefore, its
In this section we concern ourselves with the asymptotidoractical value for a direct computation ef, is rather lim-
distribution ., of the statesr (o=1,...,2) of the front  ited. Nevertheless, an elegant formula far such as Eq.
layer after infinitely many stepdayer indexz— ). A state (20), is most welcome. In the present section we use this
o of a layer is specified by the values of all polarizations,formula in order to prove a close relation between the
{s«,}. All statistics of the growth process, including the @symptotic statistics of the layer-by-layer growth model
asymptotic distribution, is determined by the transition ma-(GM) on the one hand and the thermodynamic equilibrium of
trix P: its elementsP,,,, are the transition probabilities from & certain two-layer systerfsubsequently termed Llon the
a given(frozen substrate layer staie’ to the stater of the  other. .
newly attached layer. From the assumptions of the growth We define

V. THE ASYMPTOTIC DISTRIBUTION OF THE LAYER
STATE (z— )

model, we have K(mr:eN:’mN;’AF(ﬂA(mFa 22)
AU"U'FO'
Poo=—"", (15  and note that the probabilit{20) of the states can be writ-
> Agrgl o ten as
where Ty =C2 Kyr. (23
Ayrp=exp(—EYKkT 16 _ .

o= SR, o IKT), (16) Note thatK is symmetricalK ,.,=K,, [see Eq(21)]. The
I',=exp —EM™YKT). (177  main point is the following: the sum

E';’?g denotes the longitudinal coupling energy between the Z= E Koo (24

substrate layer stat@’ and the stater of the attached layer,
and E'"is the total energy originating from the transverse
couplings within the layer state.

The asymptotic distributionr must satisfy

can be interpreted as the partition sum of a certain two-layer
system LL, wherer' and o denote the states of its first and
second layer. The interactions governing the system can be
read off fromK ., in that the factors in expressi@@2) can
E T Poro= T, (18) be interpreted as Boltzmann factors corresponding to certain
o' transverse, longitudinal, and external field couplings of an
appropriate two-layer system. The system LL and its interac-
E me=1. (19)  tions will be described in greater detail below. From Egs.
7 (23) and(24) the link between this two-layer system LL and
the asymptotic statistics of the GM as given by E2Q) is
now evident: the GM probabilityr,, is equal to the proba-
+ - bilty of the states’ of one of the two layers of LL(in
WazceN”mN”AraZ; Ao gr (20 thermodynamic equilibrium
7 The structure and the interactions of the two-layer system
provides the solution of Eq18) [13]; ¢ denotes the normal- LL defined by its partition sunZ can be read off from Eq.
ization factor to be adjusted to satisfy EGq.9); N is the (22); ) ]
number of molecules of polarizatiin the states of the (i) LL consists of two layersi(’, L) of the same size as
layer. This theorem can be verified by inserting expression€ layers in the GM. Like in GM, each grid point carries the
(15) and (20) into both sides of Eq(18). After cancellation ~Polarity —1 or+1. The indexo"’ denotes the state &f , &
of sums of the type A,/ ,«T ,» on the left, the two sides the state oL.

We claim that the vectosr with elements

are seen to be identical, if the equality (ii) FactorI' ;. : Boltzmann factor corresponding to trans-
. - verse interaction within layet.’, same as in the growth
eN;D+N;AAUU,:eNU,D+N(r,AAU,U (21)  model.T',: same, layet.

(iii ) FactorA ./, : Boltzmann factor corresponding to lon-
holds. Note that this equation does not involve the transversgitudinal interactions between the two layers, same as in the
interactions. Due to the independence of the chains, it sufeM. (See Table)l

021605-6



ISING MODEL OF POLARITY FORMATION IN . .. PHYSICAL REVIEW E66, 021605 (2002

TABLE lIl. Two-layer system LL, coupling energies divided by wheres;, ands,, denote the polarizations at siey.
kT. See Table IV for an equivalent scheme. The equivalence presented here seems potentially useful
for the analysis of the layer-by-layer growth model.

s’ S Longitudinal External field Total (i) The asymptotic statistics of the GM can be obtained
- - 0 —A —A from a Monte-Carlo simulation of the thermal equilibrium of
_ " A A the system LL. All known techniques of simulating a canoni-
" _ D D 0 cal _(_ansemble can be applied directly. o _

+ 4 0 D _ (i) Any phase transitions suspected in simulations and

approximate analyzes of GM must correspond to a thermal
equilibrium phase transition in LL. Thus, phase transitions of
(iv) FactoreN;,MN;,A: Boltzmann factor corresponding GM get a well defined background in terms of thermal equi-

to the coupling of the molecules of layer to an external llorium physics.

field. The energy of a polarization 1 or —1 amounts to Notg that the_ equivalenge exists on formal grounds only.
—D or —A, respectively. Note that this interaction applies to Ihere 'S no evident physical correspondence between the
one of the two layers onlyL() stochastic layer-by-layer growth process on the one hand and

the thermodynamic equilibrium of the two-layer system on
the other. Remember that the equivalence described here ap-
plies to theasymptoticstatistics of the GM £— ).

The theorem presented in this section is similar to that

The longitudinal interaction energiédivided bykT) be-
tween two corresponding moleculeslof, L (with polariza-
tionss’, s) are summarized in Table .

The following reinterpretation is more elegant and dis-

closes the symmetry between the two layers. The same ng{ven "? Ref.[8], where a model for gfowth of binary_ a!loys
interaction as described above is obtained with an externaf considered, anq where the asymptotic Ia_yer_ statistics was
field affecting all molecules of both layers together with anproved to be equivalent to .the thermal eq“"'b”“’T‘ statistics
appropriate longitudinal Isinglike interaction between corre-Of :Ntwo—tlﬁyir sylstem. L‘:,ntlr"k? our .tl_r:)e.orem, tTe m_teractutnln
sponding molecules, the transverse interactions remainin gtween the two fayers of their equilibrium system 1S exactly
the same as beforésee Table IV. The Ising coupling e same as that assumed in their growth process. The com-

strength(energy of parallel configuration minus energy of pl;catlotr_w In-our case gt(r)]es bacl;hto a lack (.)f symmettry: th%]r
antiparallel configuration divided biyT) is interaction governing the growth process is symmetric wi

respect to an exchange of the two layers; ours is not.

A+D
Q=~— (25
B. The asymptotic distribution of layer pairs
The external coupling of polarizatiois sB, The correspondence between the growth process GM and
D—A the two-layer system LL goes even beyond the one-layer
B=-— 2 (26) statistics. In the present section weGahaII prove that the dis-

tribution of layerpairs is the sameHo,(T:H(';'?U. Here, the
In this most symmetric formulation, the external couplingfirst symbol refers to the growth proce€SM; z—x) and
term is responsible for the predominance of positive polaritydenotes the probability of finding two consecutive layers in
in the sectoD >A. Note that an exchange of the two layers given statesr’, o; the second symbol denotes the probability

does not affect the energy. of the two-layer system LL to have its first and second layer
To summarize, the HamiltoniaH , of the two-layer sys- in stateso’ and o, respectively. In other words, the joint
tem reads statistics of two consecutive layers of the growth process
Q may be viewed as a canonical distribution of an appropriate
H,/kT= XEy ?Sx,y(sx,y-#l"' Ser1y) two-layer system.

With the formulas of the preceding sections, the proof is
simple. From the assumptions of the growth model we have

QL ’ ! ! !
+;y TSX,V(SXVVHJFSXH,VHB% (Scy+Syy) N8 =7, Py, (28)
Q , .
+ ?” 2 (1+5xySxy) (27 Inserting 7, from Eg. (20) and P, from Eq. (15), we
Xy obtain
TABLE IV. Two-layer system LL, symmetric coupling scheme.
M = ceNoDTNAT A, T (29
s’ s Longitudinal External field Total o'a orreen o
- - —(A+D)/2 2(D—A)/4 -A _—
_ i 0 0 0 On the other hand, the probabilify ; of a state ¢',o) of
+ _ 0 0 0 the two-layer system is proportional ko, and the explicit
+ + —(A+D)/2 —2(D—A)/4 -D expression(22) for K., matches the expression given for
Hf,’"('f in Eq. (29). This completes the proof.
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ﬂs’s— B(s'+5s)

DESCRIPTION 09(s),s50)= 2, ex 5

VI. TWO-LAYER SYSTEM: BETHE-PEIERLS [{
s’',s

In the preceding section we have shown that the
asymp_totic one- and two-la_lyer s_tati_stics of the growth mc_)del _ &(s()s’ +sos)—V(9)(s’ +s)l.
is equivalent to the canonical distribution of an appropriate 2
two-layer system. Thus, the asymptotic statistics of the grow-
ing system is reduced to a thermal equilibrium problem,The expectation value of the sum of the two central polar-
which can be approached by many proven approximatiofZations Is
methods. In the present section, we follow the guidelines of 5
the Bethe method. _ (sp+50)P=—=[ZO(+,+)-20(—,—)], (34

The application of Bethe’s method to the antiferromag- z©
netic phase transition of the Ising model with the inclusion of
an external magnetic field was treated a long time agavhereas the expectation value of the sum of a pair of periph-
[14,15. In the present situation, this treatment has to be exeral polarizations can be obtained by differentiating with re-
tended to two layers,.’ andL, and must include also the spect tov(@,
Ising interaction between the layers.

Within Igyer L' we cqpsider_a sitex(y) and its ,four <Sﬁ+5k>(g)=——i d 2(0) (35
nearest neighbors, polarities being denotedspyands;, (k 4 79 yv@
=1,...,4). The polarities of the corresponding sites of
layer L are denoted by, ands, (k=1, ... ,4). Inwriting Finally, the consistency requirements can be written down

down the partition sum of this subsystem consisting of ter{central spins of one sublattice are the peripheral spins of the
molecules, the internal pair interactions and the interactio®ther sublattice
with the field B can be taken care of exactly, whereas the / 1) et 2
influence of the environment onto the<2 peripheral polar- <S°+S°>( )_<Sk+8k>( £ (36)
izations is approximated by mean field&”. Note thatv(® (sh+50)@= (s} + 5D (37)
may depend on which sublattia (g=1,2; x+y odd or 0 K
even the central sites of our subsystem belong\t6?) and  For a given set of couplingsi( D, Q, ), Egs.(36) and (37)
V) will then be determined from requirements of consis-constitute the equations for the determination\ét and
tency (see below. V(). They are polynomial equations of high degree, which
The partition sum of our subsystem reads can be solved numericalve have used theATHEMATICA
system[16] for the numerical treatmentThe probabilites of
the different states of the subsystem are then kndvaing
Z9=3 exg—u), (300 proportional to their contribution to the partition synas
“ well as other characteristics of the system, such as, for ex-
ample, the covariancés; s,) of adjacent polarizations.

the sum extending over all 1024 statesw Figure 4b) displays the dependence of the sublattice po-
={sy, ....S4,50, - - - S4f. The symbolufyg) collects all in- larizations and of the mean polarization on the couplihg
teractions mentioned above: for the parameter seA=2.0, D=0.8 as obtained from the

Bethe approximation. The AFO-phase transition occurs at
o Q{“~0.44, to be compared with a value of about 0.53 ob-
—”S&Ska B(sy+S) tained from simulations of the two-layer system with the
2 same parameters and with side length 50. This is some
improvement over the mean field approximation, which
) (31) yields a critical value of about 0.33 in the same situation. In
both approximations, the difference of sublattice polariza-
tions rises with a critical exponent of 1/2.
The explicit expression foZ@ can be simplified, since _The parameter range irA( D, Q,) space allowing for an
all four peripheral pairsk=1, . . . ,4) give rise to the same AFO transition can be derived from Eq&6) and(37). The
factor Q9(s),s,), numerical results are displayed in Fig. 5, where the critical
0 value Q™ is given as a function oA and D. We restrict
ourselves to a sketch of the derivation. For givén,Q, ),
z7@=3 70(s},sp), (32  Eas.(36) and(37) each g)efin(ez)a curv&™® andC?), in the
plane of the variable¥*'*/, V<), Due to the symmetry be-
tween the two sublattices, the two curves are symmetric with
respect to the diagonal®™=V(), The intersections of the
two curves are the solutions of Eq®6) and (37). As ex-
pected, for low values 0@, there is only the symmetric
(33 solution, whereas there are three solutions for sufficiently

4
Q
ul9 =?”s{)so+ B(sp+So) + kgl

Q
+ f(s{)sﬁ +505) + V(s +5))

’
SO ,SO

Z9(sf,50) =[Q9(s],50)]* ¥ exp[ - %s()so— B(sy+ so)},
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12 In both approximations treated here, the phase transition
is not destroyed by the external field influencing the two-
1.0 layer system. This is in accordance with the behavior of the
two-dimensional Ising model, where the antiferromagnetic
phase transition survives an external magnetic field provided
it is below a critical valug17-20.
D To summarize the main results of the present paper, we
have analyzed a specific growth process characterized by an
0.35 infinite sequence of thermal equilibrium adherence of new
layers onto previously formed layers, which then are as-
sumed to be frozen. The thermal equilibrium of the adhered
layer is governed by longitudinal and transverse Ising-type
o\ couplings. As stated previousl#], this sequence of pro-
0 A 12 cesses leads to the formation of bulk polarization. In the
. ) - present paper we are mainly concerned with the fact that this
FIG. 5. Phase diagram in the quadrékt-0, D>0: critical  gequence of processes leads asymptotically to a stationary
valueQ{™ of Q as a function of, D. Bethe approximation. AXes: - yyyo-|ayer statistics. Depending on the signs and magnitudes
A, D. ParameterQ| ™. of the coupling constants, the single layer may be FO or
AFO ordered, and from one layer to the next local, polariza-
large values ofQ, . The limiting case, corresponding to the tijons may tend to reproduce or flip. Our main theoretical
phase transition, is characterized by the cu@€3 andC®  results concern the equivalence of the asymptotic two-layer
intersecting the diagonal with a slope efl. The slope of  statistics of this growth process with the canonical distribu-
the curvegespecially av()=V(?)) can be obtained by dif- tion of an appropriate two-layer system with Ising-like near-
ferentiating Eqs.(36) and (37) with respect toV("), V), et neighbor couplings. We have made use of this equiva-
from where the critical condition can be formulated. Thelence, in that we have analyzed the asymptotic two-layer
results displayed in Fig. 5 were obtained numerically. statistics by means of a Bethe-Peierls treatment. We have
Both in the mean field approximation as well as in thewritten simulation programs for the growth process and for
Bethe approximation the mean polarization exhibits a kinkthe canonical distribution of the two-layer equivalent system.
when tracked as a function @, [Figs. 48) and 4b)]. Like-  The present analysis explains the phenomena of growth-
wise, a kink is expected in the dependence of the mean panduced polarity formation as observed in real materils
larization on the temperature at fixed coupling energiesand is intended to provide a systematic theoretical elabora-
AE,, AEp, AE, . Figure 6 displays the polarization for the tion of possible phenomena for any signs of the couplings
couplingsA=2.0T,/T, D=0.8T,/T, Q, =0.54T,/T as a involved.
function of T/Ty, whereT is the temperature and, is an
arbitrary reference temperatufdimensionless notation for ACKNOWLEDGMENTS
fixed coupling energigs The kink corresponds to the phase , . )
transition in the Bethe approximation. In addition, Fig. 6 _ This work has been supported in part by the Swiss NFP
displays the results of our Monte Carlo simulations; again36 (Grant No. 4036-043932We thank F. Niedermayer for
no kink is observed here. The critical point obtained fromhelpful discussions.
simulations is indicated by the dotted curbgsgining of the
sublattice branches; they are bent towards lower tempera- APPENDIX: ISOLATED CHAIN

tures. For an isolated chain, the statesf a layer reduce to the
two polarizationss=*1 of one molecule. The distribution
7 of the polarization in the long chain limitz{~~) is de-
termined by the condition

0.4 0.6 1.0

> wgPg=ms,5=*+1, (A1)
S!

with the transition probabilitie® ¢

1 2 t P.,=11+eP), P,_=eP/(1+eP),

FIG. 6. Layer polarizatiors in the largez limit. A=2.0T,/T, P_.=e A(1l+e ™), P__=1/(1+e ). (A2
D=0.8T,/T, Q,=0.54T,/T. Abscissat=T/T, (T, temperature;
Ty, arbitrary reference temperatir©rdinate: average layer polar- The normalized solution reads
izations. Solid line: mean polarizatio(Bethe approximation Bro-

ken line: mean polarizatio(simulation results Dotted line: sublat- m.=(1+eP)/(2+er+eP), (A3)
tice polarizations as estimated from simulatidosrves bent to the
left). m_=(1+eM/(2+er+eP). (Ad)
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