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Analog of surface preroughening in a two-dimensional lattice Coulomb gas
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Elaborating on previous theoretical treatments of the roughening transition, | provide the exact mapping of
a surface model which undergoes both roughening and preroughening onto a mixture of unit and double
charges living on the square lattice. Depending on the model parameters, the preroughening transition of the
surface can be either continuous or discontinuous. Using the surface temperature as a control parameter, the
dual Coulomb gas accordingly undergoes two consecutive phase transitions through equilibrium phases whose
dielectric behavior is analyzed in terms of Monte Carlo simulation and exact finite-size calculations. Right at
the preroughening point of the surface model, the charged mixture behaves like an electric ifigrdatded
preroughening is second orglewhile showing metallic behavior below and above that temperature, at least up
to the roughening temperature where the conventional metal-insulator transition occurs.
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I. INTRODUCTION the infinite-size limit(at least, as long as PR is continupus
Moreover, it seems plausible that, in rare-gas surfaces, the

Thermal disorderingi.e., rougheningof a crystal surface (first-ordej PR transition jointly occurs with the onset of

is usually described within the solid-on-soliI§OS approxi- surface meltind8]. Anyway, at pre;ent there is no clear evi-
mation. Two regimes are thus identified, separated by a critidence that the PR phenomenon is of any relevance to unre-

cal value,Tg, of the temperatur@. For T<Tg, the surface constructed metal surfaces, although the experimental setup

is smooth or flat, being pinned to a definite crystal plane2nd/0r long equilibration times in atomistic simulations

aboveTg, thermal excitations in the form of surface stepsﬁgﬁk[jg(]aas'ly prevent the observation of a DOF-phase separa-
cause the delocalization of the surface which in turn freel ' . .

; ; S . The present work somewhat deviates from the main-
wanders in space like a Gaussian interface. After the pioneeg;

. : T . eam, in that it deals with a purely theoretical question. As
Ing work_ of Ch_w and WeekEL], roughe_zr_nng IS bellev_ed, a5 mentioned above, Chui and Weeks were able to prove that
a two-dimensional(2D) phase transition, to be in the

. . : . roughening is ar{infinite-ordey KT phase transition by ex-
Kosterlltz—ThouIess(KT) universality class(toggther with actly mapping the discrete-Gaussian SOS model onto the
the XY model, 2D melting, and the neutral lattice Coulomb e ira| |attice Coulomb ga€G) model. In particular, while

gas, just to mention only a few 2D statistical models thatihe metallic phase of the CG model is in a correspondence
exhibit this kind of criticality. ) with the smooth phase of the surface, the insulating phase is
It was only in the late 1980s that Den Nijs and Rommelseihe counterpart of the rough phase. In this respect, the ques-
provided a concrete example of a critical precursor of roughyion naturally arises as to whether a system of charges exists
ening, called preroughenindPR) [2,3]. Its promoting  \yhich undergoes a further phase transiti@ther than the
mechanism is an effective repulsion betwgamallel surface  ommon metal-insulator opdaving the features of PR. The
steps(i.e., both up or both dowrwhich could shift rough-  5ngyer, see the details in the Appendix, is affirmative. | was
ening up in temperature, enough to unveil PR. Starting fronypje to devise a SOS model with both PR and roughening
the PR temperatur@pg, the surface gets disordered just in \ynich can be exactly mapped onto a version of the CG
the first layer, due to proliferation of up and down stepsmqgel. As a result, also the DOF phase of a surface will gain
which, however, will retain a strict up-down order all the 5 hrecise translation into the language of electric charges.
way up t0Tg. As a result, in the event of PR, the surface The outline of this paper is the following. In Sec. Il a
remains flat belowls, although its outermost layer is half- gyitably deformed sine-Gordon SOS model is introduced, for
occupied forT>Tpg [the intermediate phase between PRyyhich the existence of PR and roughening is proved. Then,
and roughening is called the disordered-flROF) phasg. in Sec. lll, the mapping of this model onto a CG model is
As yet, the only unanimously recognized experimental reyeveloped, and the phase diagram of the latter is fully
alization of the preroughening-roughening scenario is foundyorked out. The structure of the various phases is mainly
in the fcq111) surface of rare-gas crystald]. In spite of  5rgued from the value of the dielectric constant and from the

interest for its amazing properties. For instance, Monte Carlgnary of the main conclusions in Sec. IV.

simulation [5], renormalization-groud6], and mean field
theory [7] indicate that the PR point is an isolated point |I. THE SOLID-ON-SOLID MODEL: PHASE DIAGRAM
outside the rough phase where the interface width diverges in

A. Motivation
In Ref. [1], the discrete-GaussiaipG) SOS model and
*Email address: santi.prestipino@unime.it the 2D neutral lattice CG model are shown to be mutually
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dual, in that their partition functions are simply proportional Insofar as one is interested in the CG analog of the DOF
to each other even though the temperature scales are iphase, the advantage of using a Hamiltonian of the sine-
verted. In particular, surface roughening and the metalGordon type soon becomes evident. In R&}.a very accu-

insulator transition on a 2D lattice are nothing but differentrate variational theory of both PR and roughening is gener-
representations of the same critical phenomenon. The Hamikted using a modified sine-Gordon SOS Hamiltonian and a

tonian of the DG model reads Gaussiaransatzfor its free energy. Taking advantage of this
information, we are rather spontaneously led to consider the
Hoe=J> (h,—h,)2 1) following field theory, which is a modification dfl o :

for integer-valued heights defined on, say, the square IattlceH os=1J E (hy— y)2
The sum in Eq(1) is over all distinct pairs of neighboring
lattice sites and) measures the positive cost of a step ele-

ment. Both the site coordinates and the surface heights are 1 > 1+ By, cos2mhy) + By, cog4mhy) '
hereafter taken to be dimensionless, i.e., given in terms of B *x 1+By2tBYa
suitable in-plane and off-plane lattice constants, in such a 3)

way thatJ sets the energy scale.
Following the lesson of Ref2], one could naively think

to induce the stabilization of the DOF phase in the DG modelvherey, andy, are suitable functions of the temperature

by simply adding a suitable next-nearest-neightgNN)  andg=1/(kT) (note that, for small values g8y, and By,

Gaussian term téipg. Although this term does not contrast the sine-Gordon Hamiltonian of Reff7] is exactly recov-

step proliferation, it will nonetheless disfavor the appearanc€red.

of nearby parallel steps, thus setting the stage for the DOF In order to assure thatigos shows PR at a giverm

phase. More important, the amended Hamiltonian would be= Tpg (prior to roughening | tentatively set

ready, apart from obvious modifications in the Chui-Weeks

derivation, to be mapped onto a CG model. However, | _ _

checked by a series of extensive Monte Carlo runs tioat Y2(T)=C(Tpr—T) and yu(T)>0, (4)

PR transition shows up in this w4{0]. As a matter of fact,

the constraindh=0,=1 on the difference between nearest-with C>0. As discussed in Ref7], positive values ofy,

neighbor(NN) heights, which is included in th@estricted- andy, will favor integer heights at low temperatures, hence

SOS Hamiltonian of Ref[2], proves to be a crucial ingre- a smooth surface beloWpgz. Wheny,<0, heights would

dient for the DOF phase and there is apparently no easy wawather stay closer to a half-integer number, whence a differ-

to handle this constraint analytically. ent phase will be stable foF>Tpg where the first surface

Luckily enough, another route is open to us. In a paper byayer is only half-occupiedDOF phasg A PR transition will

Ohta and Kawasaki on a renormalization-group theory of thehen occur aff =Tpg. At high temperatures, entropic con-

roughening transitiori11], a different SOS Hamiltonian is siderations will eventually prevail and the DOF phase will be

being mapped onto a CG model: overtaken in stability by the rough phase. We recall that,
according to the mean-field theory, roughening of the sine-
Gordon SOS model occurs &f'P=4J/(7k), whereas PR
turns from second- to first-order whpg<J/(7k).

2 Below in this section, | provide conclusive evidence that
Hsosindeed undergoes, besides roughening, also a PR tran-

wherek is the Boltzmann constang,is a positive energy, and sition (either continuous or discontinuous, depending on

the heights areeal variables defined on the square lattice. At Tpr). Here, we just anticipate our main res(gee proof in

variance with Ref[1], the partition function oH is pro-  the Appendix: Hamiltonian(3) is exactly dual to a version

portional to the partition function of the neutral square-latticeof the CG model, see Eq$11)—(13) below, with unit and

CG model with unit charges only and nonzero chemical podouble charges only, whose study will be the subject of

tential. The new term on the right-hand side of £2).is a  Sec. lll.

pinning term that keeps track of the crystal structure. The

Hamiltonian (2), which reduces to a sine-Gordon Hamil-

tonian for smally/(kT), should be regarded as a coarse-

grained version of the “true” microscopic SOS Hamiltonian  In the following, dimensionless units are used, setting

[somehow, each, in Eqg. (2) is an average of many micro- the reduced temperature equal tte kT/J. Moreover, for

scopic heightk In view of this, no surprise ifl explicity  later comparison with the mean-field results of &, the

appears in Eq(2). From the viewpoint of renormalization- study of Hgosis specialized to a couple of choices for the

group theory,Hox and the underlying SOS Hamiltonian parameters, namely,

would anyway exhibit the same thermodynamics, at least as

far as the nature of phases and of the transitions between E—O @%20.5’ nd &:O.lﬁmodel A, (5)

them are considered. k7 d J

Hok= JE he—hy) —kTZ Il 1+ = Y < cog2mhy) |,

B. Monte Carlo analysis
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According to the mean-field analysis of a closely related
model system, model A would correspond to second-order
PR attpr=kTpr/J=0.5, whereas model B would undergo a
first-order PR transition aipg=0.25.

Considering model A first, an important question to ask is
about the argument of the logarithm in E®): it must be
positive in order forHgogto be properly defined. Observe
that, for the chosely, andy,, the quantity & By,+ By,
>0 for any t. On the contrary, whent<t.;,=(21
—84/6)/10=0.1404, there is a range of costd values
where 1+ By, cos(2rh)+ By, cos(4rh) is negative How-
ever, since the phase-diagram region that really matters lies
well apart fromt,,,, no serious drawback is attached to the ¢
lacking of Hgpg definition belowt ., . PR

| use Standard. Metropolis Monte _Car[‘MC) to ST[Udy FIG. 1. MC simulation results for model FEgs. (3), (4), and
Hsos. Square latticed XL of three sizes are considered, (5] pata points relative to four lattice sizds=24 (A), 48 (0),
namerL=24,48, and 72, with periOdiC bOUndary conditions 72 (O), and 96(*), are plotted. Top: average square height differ-
(PBO) (I have also carried out a small number of runs forence sh2. In the inset, finite-size scaling behavior 6h? at t
L=96). A MC move consists of updating the height at a=tpy, plotted as a function of Ih (circles, MC data; dotted line,
randomly chosen lattice site by a random change in the inbest linear fit,5h?=0.008 892 33-0.040 631 8 IrL.). The error bars
terval [ — 6h a0 0hmaxl; then, the move is accepted or re- are also shown. Straight line segments between the points are drawn
jected according to the Metropolis rule. As usual, the valueas a guide to the eye. Center: the order paranfetés for sh?, the
of Sh.«is being adjusted during the run in such a way as tcstatistical errors folP are negligible, smaller than the size of the
keep the acceptance ratio of MC moves as close to 50% &ymbols. Bottom: the order-parameter susceptibitify (the error
possible. After due equilibration of the sample, as many a§ars are estimated from block averaginghe reported data clearly
108 sweeps are generated, each sweep consisting of one dpdicate the exist(_ence of a PR pr_la_se transition close to, if nqt ex-
erage attempt per site to change the localThe relevant actly at,t=0.5. It is much more difficult to say where roughening
averages are updated every 10 sweeps. occurs, presumably neas1.

Besides other quantities, | calcula_te the mean squarg,e top panel | plot the average square height differeinde
height differencesh?=((h,—h)?) [with h=(1/N)2,h, and  The clearcut maximum at=0.5 is the most compelling evi-
N=L?], the order parameter P=(P), where P  dence of a PR transition occurring, in the infinite-size limit,
=(1/N)|=, expiwhy)|, and the order-parameter susceptibil- presumably right atpg. Here, my data denounce a clear
ity xp=N({P?)—(P)?). As a note of caution, | observe that logarithmic increase obh? with L, hence second-order PR
the above expression f@t is different from that usually as- (see the inset of Fig. 1 tgpBelow tpr, sh* appears to
sumed when the heights are inted8t. Accordingly, non- ~ saturate and the same happens in the interval betwgen
zero values of bott® and sh? will be found not only in the and the roughening temperatute, located somewhere
smooth phase but also in the DOF phase. Right at the PRround 1. At sufficiently high temperatures, my data indeed
point, however, and so long as PR is critidwould vanish ~ confirm thatsh® increases logarithmically with.
in the thermodynamic limifdue to a rough surface land- The order parametep is plotted in Fig. l(cente}. The
scape, implying a dip in the finite-siz® and a peak foyp, ~ €XPectéd dip atpg as well as the vanishing ak are both
close to the PR temperature. Concurrengly? will blow up evident. Near each transition point, the order-parameter sus-

X . : . . ceptibility yp shows a peak whose height increases with the
I|k§ InL. Aless smgular behavior will occur at PR in case of system sizdsee Fig. 1(bottom]. Furthermore, the specific
a first-order transition.

. . ._heat remains finite at any(not shown, suggesting a nega-
To corroborate our conclusions, the statistical uncertamﬁve PR specific-heat exrp?:)(nent. 0 99 9 9

ties affecting the relevant averages are also evaluated. These p picture of how the surface looks in the various phases

are defined as root mean square deviations of statistical ayzn pe drawn from the MC-time evolution of the current

erages, once many independent estimates of these quantitiI%%an surface heigHr_t In Fig. 2, this evolution is shown for
(block averagesare given. In most cases, grouping MC i "

_ L=72, at four distinct temperature valuds: 0.45 (smooth
states in blocks of % 10* sweeps should be enough. How- phasg, t=0.5 (PR), t=0.7 (DOF phasg andt=1.2 (rough

ever, particular care must be paid for the susceptibility, asé. We clearly see that is roughly constant in both flat

whose values could be correlated over much longer segmen % : : :
of MC trajectory(see below Finally, errors are more severe phases. In fact, it carries out only small fluctuations a_round
' ' n integer or an integer-plus-one-half value according to

close to second-order transition points, due to unlimiteq,, 4 - the phase is smooth=0.45 or DOF (t=0.7). Oc-

growth of decorrelation times. casionally,h performs enormous “jumps” of unit lengttyi-
In Fig. 1, MC simulation data are reported for model A. In ant fluctuations of the SOS interface as a wholehich are
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FIG. 3. MC simulation results for model FEgs. (3), (4), and
(5)]. Data points for square lattices of two sizks; 48 (A) and 72
(O), are plotted. Above: thermal derivative of the tilting free en-

(DOF phasg andt=1.2 (rough phasg  is the MC time as mea- ergy as a function of, at fixedC, tpg, andy,. The lines through the
data points are spline functiokgotted line L = 48; continuous line,

sured in sweeps. Rather evident is the rupture, in the behavtor of L=72). Below: the tilting free energy. On account of these resuilts,

that occurs at PR. Moreover, the behavior at PR is similar to that 'r\]/ve conclude that, in the infinite-size limit;;=0 at PR, while

the rough phase. The unit jump bfatt=0.7 is a finite-size effect.  eeping a nonzero value in both flat phases as a result of the rigidity
of the surface towards tilting. On approaching the rough phasge,

more frequent the smaller the surface size. Each jump Simp|9radually lowers, eventually vanishing at the roughening tempera-

indicates a transitiofduring the simulation runbetween ture.

two different, although perfectly equivalent, realizations of

the same phase. This behavior closely resembles the orsame quantity for the tilted surface. In order to tilt the sur-

originally discovered in the FCSOS modél]. Such jumps face, the use of proper “periodic-step boundary conditions”

occur very rapidly on the time scale of the simulation. More-is mandatory. Unfortunately, the standard method gr

over, each time a jump occurs, it causes an abrupt variatiowhich uses the transfer matr[2,12] cannot be applied in

of xp which, when the total number of jumps during the runthis case since the heights are real numbers. In spite of this,

is very small, makes less reliable the statistical erroyhs  at least the thermal derivative @f, can be obtained in a MC

calculated through block averaging. experiment by inserting a unit step at the vertical boundaries
A further, independent evidence of the DOF phase comesf the simulation box and recording the resulting change in a

from a measurement of the free-energy cost for tilting thenumber of averages.

FIG. 2. Run-time evolution of the mean surface heiHh])f a
72X 72 system(model A), for a number ofreduced temperatures:
from top to bottom,t=0.45 (smooth phase t=0.5 (PR), t=0.7

surface. This is defined ag, =L B(f,—fy), wheref is the Starting from the relation— BF=InZ, a rather lenghty
free energy per site when full PBC are applied dpds the  calculation first yields
dBF _
(aﬁj) =< > (hx—hy)2>+(1+,3yz+ﬁy4) '
Citpr:Y4 (x.y)

C Y4 Cy,
Eth{l—cos(thx)]ﬂL j[l—cos(4whx)]+ K j[cos(4a-rhx)—cos(27rhx)]

X ; (7)

1+ By, coq27h,)+ By, cog4mh,)

In deriving this result, the/, dependence oBJ has been where each derivative is being performed at fixathr, and
considered too. From the definition gf, we then have Ya.
| expect that, by its very definitiony, is nonzero in any
a(n/L) 1(&EF1_8/3F0) flat phase, while vanishing like ~! at a second-order PR
aBI L2\ 9B 9BI )’ transition and in the whole rough phasd. In afinite sys-

8

021602-4



ANALOG OF SURFACE PREROUGHENING IN ATWGO. . . PHYSICAL REVIEW E 66, 021602 (2002

L L I I L L LI L 0.3 . : —— T —— T
1.4

0.2

1.2

0.1

o
®
S B e I e

©

~
S OCOCO O
B Ol @
9B, 19;]

3]

o]}

o by v by by b
(=]
T

0.2
/ 0.35
0.25
S T ol i v v v b b iy
5 10 15 20 25 30 35 40 0.4 0.6 0.8 1 1.2 1.4
r top KT/J

FIG. 4. Radial distribution functio(|x|) ={(h,—hg)?) for the
heights(model A). The data points are for a ¥72 lattice and a
number of temperaturdgas indicated beside each lin&he dotted
lines are the best-fitting curves according to EtP) (in the plot
they are almost indistinguishable from the MC profile®bserve
the difference between the trend G{r) to saturation, typical of a
flat surface, and the logarithmic increase at large distance, whic
applies at PR and in the whole rough phase.

FIG. 5. Thermal evolution of the fitting parametdé¢sand X for
the same 72 72 systems as in Fig. &K is the roughness strength,
which should take at roughening the universal valug®2fdashed
horizontal line, being crossed fox=1.25) and a smaller value at PR
(here, K=0.08). X is a sort of correlation length which, in the
H"lermodynamic limit, would diverge at PR and in the whole rough
phase.

In fact, in order to extract the correlation lengtha more
natural choice would have been to imagine an exponential
damping for the large-distance profile &f(|x|). However,
the logarithmic fit proves to be more effective than the ex-
ponential fit in thewholerange of|x| values. Moreover, in-
formation about the location of phase transitions are equally
accurate from the fi€10). In fact, althoughX is not the cor-
relation lengthX and ¢ behave similarly at any temperature,
being both finite or both infinite. In particular, each transition
point is characterized by a very largévalue, as demon-
trated in Fig. 5. Hence, whil&(|x|) asymptotically satu-
ates(to approximately h?) when the surface is macro-
scopically flat, it shows a large-distance logarithmic increase
at PR and in the whole rough phase.

tem, 7; would be minimum at a temperaturt close totpg,
hence the thermal derivative of; will be negative fort
<t* and positive fort>t*. Indeed, this is what | observe
(see Fig. 3.

Assuming; to be exactly zero at our maximum simula-
tion temperaturé=1.4, the quantity plotted in Fig. 3 above
can be further integrated to give thg profile, shown in Fig.

3 below for the two size& =48 andL=72.

In the thermodynamic limity, is positive at low tem-
perature, first vanishing abg. On heating,»,; recovers a
positive value in the DOF phase, until it vanishes again an
for good when reaching the roughening temperatgreAs a
result, the surface first delocalizestag, but, due to a non-

zero 7, value betweepr andt, it remains flat in the DOF Although not completely reliable, due to the finite system
phase. It is necessary to wait urtty for the surface t0 be- gj;6 and to the intrinsic inaccuracy of formu(®0), the in-

come delocalized again, now permanently. | note that thegrtace roughnesk attains the universal 2 roughening
behavior of#, () just described is the same as suggested by 51 e att=1.2. Moreover, thé value at PR is smaller than
the variational theory of Ref7] for the step free energy. 2/m2, as indeed expectdd].

Another interesting subject is that of height-height corre- | - closing, the question is addressed as to whether a dif-

lations. Their charac_ter is stu_dled in detail for72. In Fig. ferenttpr value would lead to a first-order PRote that the
4, | plot the correlation function location of roughening should not be significantly affected
by a modification otpg). For the choice pertaining to model
G(|x])={((hy—hg)?), (99 B, tshould not fall below 0.106. . . for thelogarithm in Eq.
(3) to be defined.

In Fig. 6, some MC results for model B are compared
with those relative to model A. PR is much likely first-order
now, as being signaled by the leveling off Bf(tpg) at a
nonzero minimum value, by the apparently infinite jump of
xp in the thermodynamic limit, and by the convergence of

sh? to a finite valug(see Fig. 6 inset, where the value &2
K(T) _ _ att=0.25 is plotted versus In). This is also confirmed by
In(|x| 2+ X(T)"$)+C(T). (10

2 the run-time evolution ofh at t=0.25 (Fig. 7), which is

for a number oft values in the relevant temperature range.
Because of the PBC, th& profile levels off atL/2. This
behavior is interpolated through the bdsast-squargdoga-
rithmic fit, as drawn from Refd.13] and[14]:

G(|x])=~
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value oftpg. In the next section, | move on to study the CG
model that is dual tdHggs.

)

0.1

dh?

0.05 Ill. THE DUAL COULOMB GAS: PHASE DIAGRAM

||||||w|||||
T
~

A. The model
O_..I....I....I..

Now that | ascertained the existence of a stable DOF
phase in the SOS model, | am in a position of unveiling the
exact counterpart, in the CG language, of the DOF phase. As
| prove in the Appendix, there is a CG model which is ex-
actly dual toHgpg, implying three phases and two phase
transitions for both. In particular, the transition points of the
CG model fall at the same values pfwhere the PR and
roughening of the surface model occur.

The partition function of the CG model is given by

10

Xp

0.2 025 0.3
kT/J

FIG. 6. MC data for the SOS modgEgs.(3) and(4)]: compari- =Q {%} 52 a,0 eXA Bqua(N1+N_y)
son between model B gz=0.25, lef) and A (tpg= 0.5, righ} (same
sizes and notations as in Fig). While PR is second-order for
model A, it is most likely first-order for model B. In the inseih? +,8QM2(N2+ Nz)]eXF< _,BQZ Vx,quQy> )
vs InL att=tpr=0.25(the error bars are also shown =y

(11)

radically different from the one we expect for a rough sur-
face (that is, for second-order BRHere, surface states with

integerﬁ are sampled within the same simulation run to-,tice andN=3,5,  is the current number af charges.
-

gether with states where is half-integer: this is a typical _Due to the Kronecker delta in E11), only those charge

MC feature for thermodynamic phase poexistence which I%onfigurations that satisfy the neutrality conditiaigg, =0
also the reason for the blowing up gf right attpg. are to be summed over.

To conclude, my SOS model shows a stable DOF phase in 1,4 square-lattice Coulomb potential reads:
the temperature range betwegg andtg~1. In close agree-
ment with the mean-field prediction, the PR transition
changes from second-order to first-order upon reducing the - s exdip(x—y)]—1

whereq,=0,£1,+2 is the charge at th& position in the

1
VX'V_N §70 2—cosp,—cosp, In(Ix=yD) 2In8 4
DAL (12
= t=0.23 505
: o o
= d-05 where p=p,x+pyy is the dimensionless vector with com-
15, T T N '5—1 ponents p,=2mm,/L and py,=2mm,/L (for m,,m,
L =0,1,...L—1). In Eq.(12), the large-distance behavior of
0.5 = t=0.25 E V is also indicated ¥=0.577 is the Eulero-Mascheroni con-
0 E stan. In Fig. 8,V is plotted for a periodically repeated 24
—05E y X 24 lattice as a function of the discretized distance from a
—1 Erry U S E R i reference position. When the minimum-image-distance con-
E o027 J0s vention is adoptedy reaches its maximum absolute value at
E ’ Eln half of the box length. Therefore the large-distance logarith-
E 30 mic behavior only applies in the windoif it even exists at
- 4 -0.5 all) 1<r<L/2. | wish to emphasize that, due to the discrete-
SEI NI R R BRI R ness of the embedding space, the translationally invariant
0 2x105 4x105 6x105 8x105 108 lattice Coulomb potential is not spherically symmettior

T instance, the values &f, , atx—y=(0,5) andx—y=(3,4)

FIG. 7. Run-time evolution of the mean surface heighof a  are slightly different, see Fig. 8, where two separate symbols
96X 96 systemmodel B, at three different temperatures: from top appear for =5).
to bottom,t=0.23(smooth phaset=0.25(PR), andt=0.27(DOF Finally, the temperature and chemical potentials of the
phasg. 7 is the MC time as measured in sweeps. The half-unit jumpcharges are well-defined functions of the reduced SOS tem-
of h att=0.25 is the evidence that the smooth and the DOF phasegerature, also through the phenomenological paramgters
do coexist, implying a first-order PR transition. andy,, given by
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FIG. 8. The Coulomb potential for L =24, plotted as a func- ter kT/J
tion of the distance from a reference lattice point, up.t@. The
continuous line is the asymptotic behavior\éf,, that is, —In|x
—y|—(1/2)In 8-y (y=0.577), which, however, would only apply

in the range ¥|x—y|<L/2.

FIG. 9. The figure shows the evolution, as a function of the SOS
temperaturd, of the parameter&l3) controlling the statistical me-
chanics of the CG model that is dual to the SOS model A. Top:
temperatureT o= 1/85 of the charges. Center: reduced chemical
potential of unit Bou,, continuous ling and double charges

_ T _ )= Bly-| (Bgu, dashed ling Bottom: fugacity of unit ¢;) and double
’BQ_,BJ’ 21= eXp Boia) = 2 charges %,). Note the nonmonotonic trend @f; as a function of
or Tq, and its logarithmic singularity dtg.
BYa

and 2= quBQ[.Lz) = 7 . (13)

valueg will be consistently tested in a 2212 lattice through

a truncated expansion of the partition function of the charges
in powers ofz; and z,. Besides virtuallyexact reference
results, this expansion will give us the possibility to check
the correctness of the MC procedure.

Compared to the more conventior@hui-Week$ situa-

n, a complication in my case arises because the insulating/
rough phase is separated from the metallic/smooth phase by
a further DOF phase. This is why any method to investigate

looking at this picture, we immediately realize that, in Con-j, qenth the statistical mechanics of a diluted system of
trast touo, the chemlcgl potentigk, of unit charges has a charges, however small it might be, is welcomed as an in-
nonmonotonic trend which, as we shall see, is solely respon;,,able opportunity.

sible for the phase transition of the CG modet@t. More-
over, u; and u, are largely negative, which implies low
values for the charge densities but for sufficiently high.
The argument- (1/Tg) =, -,V of the exponential
e o negatiE/ . fgz e coyly s, Whﬁg s low, In Ref.[19] a truncated fugacity expansion of the partition
the few charges present are preferentially bound together ifynction of a neutral square-lattice CG of unit charges was
neutral NN pairgdipoles. On the contrary, charges of equal conS|dere.d in order to explore a region of _the phase dlagram
sign push each other away. Besides isolated double chargéEf"lt .MC 5|mulat|on could not reach. In particular, all possible
also 2-dipoles(i.e., dipoles formed by double chargeare configurations of 2, 4, and 6 charges were enumerated. In

strongly suppressed at low temperature since the argument {2t case, however, the positive valuguoeverely restricted
the exponential is four times more negative than forthe validity of the expansion to relatively small temperature

1-dipoles(for low T, also the fugacity, of double charges values. . .
is smaller than the fugacitg, of unit charges Here, I attempt a similar expansion but for a system of
A thorough study of model11)—(13) necessarily implies four different species of charges. The grand-canonical parti-

the use of numerical simulation. However, before going on tdion functionZq is written as
illustrate the simulation procedure, | shall take advantage of

the negative values attained I and u, in the relevant Eo= 2 52 aN,,.0Z
range for carrying out a perturbative study of the CG model. Ny N3 Np Np=0  Gf T
My intuition that the charged system under consideration is
indeed a very dilute onéwith the only exception of lowt

Note that the temperaturé,=1/55 of the charges is in-
versely proportional to the SOS temperattitthis is exactly
what the word duality is for It should be observed that
To,m1, andu, are all dimensionless quantities. Unless oth-
erwise specified, | use foy, andy, the same expressions tio
relative to model A. In this case, the quantities in Ep) are
plotted in Fig. 9 as a function of the SOS temperaturgy

B. Low-fugacity expansion of the partition function

Ny +N_g Np+N_
1 2

XZN,N_{ Ny N (14
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whereZNl,,\,ﬂszny2 (a function of B only) is the canoni- Nk T o4
cal partition function of a system containing a fixed number :
Ng of g charges, fog=+1,=2.

For given numberd\, of charges, the exact computation
of ZN, NNy N, requires one to sum a maximum number
N(N=1)(N—=2)---(N=Ng+1) of Boltzmann weights,
where N;o,=N;+N_;+N,+N_, is the total number of
charges on the latticn many cases, however, the use of
symmetry arguments considerably simplifies the calculation
Moreover, the number of 4-tuples of non-negative integers
N, satisfying N;—N_;+2N,—2N_,=0 rapidly grows
with N¢,. Therefore it is clear thaE o can be evaluated only
whenlL = \/N is small and Eq(14) is truncated to low order.

If only terms up toN.,=6 are kept in Eq(14), the par-
tition function will read

P(N,,)

P(N,,)

Eo=1+ 2521100t 2520011+ 2522( Z 001+ Z0210)
FIG. 10. Truncated fugacity expansi@tb) for = (the lattice is
12X 12 andtpg=0.5): fraction of (micro)states withNy, charges
(from 0 to 6. The straight lines between the data points are just
drawn for guiding the eye. Left top panel: takiBipy,=2 as a refer-

2.2 4 4
+ 212521111+ 21255001 Z3Z 0022

4 2.3
+2175(Z3101+ Z1310 + 2125(Z 2010+ Zo222)

4.2 6 ence, the plotted lines are relative, from top to bottom,tto
+2725(Z 400+ Z +zyZ ' p ' p ,

122(Za00z+ Zoaz0) + 2123300 =0.42,0.4,0.45,0.48, and 0.5. Right top panel: from bottom to top,
+ 23257 pp11+ 22757 1125+ 57 0033, (15)  t=0.52,0.55,0.6, and 0.65. Left bottom panel: from top to bottom,

t=0.7,0.75,0.8,0.85, and 0.9. Right bottom panel: from top to bot-
tom,t=0.95,1,1.05,1.1,1.15, and 1.2. Clearly, the probability of ob-
where, due to charge-inversion symmetry of the Hamil-serving more than six charges in ax122 model system is abso-
tonian, Z,p01=Zg210, and so on. Within the same multiple |utely negligible whert>0.45.
loop that givesZNl,Nfly,\‘z,,\L2 as an output, | also evaluate

the canonical average of the system enetigy n  n,n ,»  Yaq(X,Y) is not generally a function dik—y] only, although
With this information at hand, | readily calculate the follow- deviations from radial symmetry are minute. .
ing grand-canonical average&t) the number densitiep, From the knowledge of the pair distribution functions

= (1IN)(Ng) (Wherep,=p_ andp,=p_, owing to the fact Yqq' - the qharge—qhargg correlatiofg,q,) are easily deter-
that the chemical potential is the same for opposite chazrgesr_n'ned'zus'”g the identitg], = Cy 1~ Cx, - 11 2Cy 2= 20y, -2, |
(2) the energy per sita=(1N)(Z,-,Vy ,0,d,); and(3) the  find (ai)=2p1+8p, and (for x#y)

number histogram. Only at this moment, the reliability of the 2

truncation(15) can be judged on the basis of the calculated (AxAy) =2p1[911(X.Y) ~g1-1(X.Y)]

probability density forN.,. For a 1212 lattice andtpg _

=0.5 (corresponding to modelAthe probability of having 80102l 01.24%Y) =01 -2(%Y)]
more than six charges on the lattice is absolutely negligible +8p§[gzyz(x,y)—gzy_z(x,y)]. (16
whent>0.45(see Fig. 10 This is enough for considering as

virtually exactfor t>0.45 any result obtained from approxi- In deriving the above equation, explicit consideration of
mating the partition function of the 3212 system through charge-inversion symmetry of the Hamiltonian has been
Eq. (15) (observe that the relevant region of the CG modelmade, which implies, also thanks tg=u_ 4, that
phase diagram lies entirely within thisnterval). (CxaCyp) =(Cx,—aCy,—p)-

For reasons which will become clear in a moment, | am Charge-inversion symmetry does not hold, in general, for
also interested in the spatial correlations between th@ system with fixed numbers of charges. For instance,
charges. | calculate the standard two-point correlation funcéCxg)N1-N-1"N2"N-2=N_ /N (where the superscript denotes
tiONS (Cy(Cyqr) = PP Iqq (X,Y) (for x#y), wherec,qis an @ qanonical averageNevertheless, since the charge configu-
occupation numbercy,=1 if site x is occupied by aq  rations that enter the sufi4) are overall neutral, a sum rule
charge, 0 otherwige For any of the allowed 4-tupleN,} such as
[see Eq(15), where all of the 13 cases are lisiethere is a
(possibly zerd contribution to(c,qCyq); in turn, any such (Ng.N_1,Np N_p) —
contribution, suitably Weightedqby);]I some powers of the XE; (aay) 0 (17
fugacities, will concur to fixingg, (a grand-canonical av-
erage. Whenever applicable, use of symmetry consider-holds for all of the 4-tuple§N,} with X,qN;=0. | thus
ations allows one to speed up the loop calculations, hence toave 13 exact identities of the kind7) against which the
reduce the computational effort. Likewise the potentialcalculation of the canonical,,, may be checked. | notice,
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however, that Eq(16) is useless for computing the canonical LAPSLARRE DA

charge-charge correlation functions. See, for instance, the 6x107 ]
case of(q,dy) . Sincec,,=0 for all x, | find axto= ]
Q -

<qqu>(3101): <Cxlcy1>(3101)_ 2<Cxlcy,f l>(3101) 2x107¢ B

—4(cyacy, )1+ 4(c, ey, )Y
= <Cxlcy1>(3101)_ 2(CyCy, - 1>(3101) 0.006 |

- 4< CxaCy, —2>(3101)+ 4<Cxlcy2>(1310)1 (18

Z 0.004 -
> W
which is radically different from Eq(16). 0.002
Once the charge-charge correlation functions are known, | L L
can evaluate the static dielectric constantvhich is given, 20608 1 12 %1 0608 1 12
from linear response theory, h§5] KT/J kT/J

2 FIG. 11. Thermodynamic properties of the CG modd)—(13),
1y _ ™ . _ as it follows from the truncated fugacity expansidm) of the par-
¢ °=lim { 1 NTQp2 XEy (qqu>exr{ Ip(x y)]] tition function (the lattice is 1X 12 here, withtpg=0.5). Exact
calculations O) are compared with MC dafa). Top panels: num-

) ber densities. Left bottom panel: average energy per site. Right

=1- ﬁ{ N(dp) bottom panel: inverse dielectric constant. The density is rather low

Q for both species, particularly for double charges. The nonmonotonic

p—0

cog 27z, /L) +cog2mz,/L) trend ofe ! as a function ot is the symptom of a complex phase
+ 2 {do0y) > Y } (29 behavior with three phases: an insulating phase at higihd two
z#0 likely metallic phases at low, separated by an insulating state at
the PR point.
This quantity allows one to distinguish a meta ¢=0)
from an insulator ¢ *>0). Coming from low temperature, 2
the vanishing ok~ ? (in the thermodynamic limjtwill signal Nan= <x2,y> (Cx1Cy,—11Cx,—1Cy1) ) =4Np1G; _1(1),
a phase transition from an insulating phase, where most of (20)

the charges are bound in neutral NN pditlse medium is
polarizable but it is not certainly a conducktdo a metallic ~ and similarly forAj,.
phase(where free charge carriers do give rise, in the pres- Now, | review the results of the analysis based on (&§)
ence of a driving field, to an electric currénUsually, this  for the 12<12 lattice. The CG parameters corresponding to
transition is driven by the critical unbinding of dipoles, a KT model A are considered first. | show in Fig. 11 the thermal
phenomenon in the square-lattice CG model. The fraction obehavior of the number densitips and p,, of the energyu,
dissociated charges would continuously increase as ornand of the inverse dielectric constast®. Also included for
moves farther from the transition point into the metallic comparison are the outcomes of a MC simulation< (4’
phase. Within the KT scenario, the inverse dielectric constarsweeps long Looking at Fig. 11, what appears first is the
actually behaves like an order parameter for the insulator-tostrong dilution of the system, which is far more pronounced
metal transition: in an infinite-sized systee,* would jump  for double charges than for unit charges. Coming from high
from 4T, to zero right at the transition temperatufg (a  t, both densities first grow as a result of the increas& of
more-or-less sharp crossover will be observed in a finite sysisee Fig. 9, until, in the PR region, the rapid drop af
tem). causes the vanishing of; at tpg and the appearance of a
An even more direct method for investigating the naturelocal minimum in the profile ofp,. Past the PR point, the
of the DOF phase for the charges is to monitor, as a functiosimultaneous increase dfg, u, and u, leads to a rapid
of temperature, the average population of various relevarfilling of the lattice with charges of all types, whence to
charge arrangements: isolated unit and double charges, pairgetallic behavior. Similar t@, is the behavior ofi, which is
of NN sites hosting two opposite chargds and 2-dipoles  throughout positive, denoting the tendency of every charge
and neutral trimergmade up of two equal unit charges and to keep unlike charges closer than like ones.
one double charge being NN of batiwe call Vj; (N,) the Some hints about the nature of the DOF phase for the
average number of isolated uiitouble charges /Ny, (Ngo) charges come from the analysis of the behavior of the dielec-
the average number of (2-)dipoles, and\; the average tric constant. Whert is high, e 1 is close to 1, indicating
number of neutral trimers. The exact enumeration of thes@sulating behavior. Upon reducirtg e~ gradually lowers
structures is made in parallel to the term-by-term estimate odintil it reaches a minimum at=0.7. Following a recovery at
the partition function\y; can be also estimated from the PR,e ! eventually drops when increasifig beyond the PR
contact value of the pair distribution functian _,, that is  value. It is too early to say whether these findings would
Gi-1(1)=g;_1(x,y;|x—y|=1), through the relation imply metallic behavior for both SOS flat phasfsis nec-
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essary to wait until a finite-size-scaling studyef'). Even 0.6 g 0.12 ]
in this case, however, a curious possibility is that the PR = 0.1 PR -
point will actually represent an island of insulating behavior = E ool & R
within a sea of metallic behavidthis is consistent with the 1 5 r R ]
fact that the surface is rough at PRBince at PR unit charges ' = 008 1 4 & 1
are absent, this could be the outcome of a marked tendenc , %%9%% [ ] 0.04 1 %
of 2 and—2 charges to occur in neutral pairstak. 0.02 | ¢ ]

In order to shed some light on the nature of the interme- 0 S [ % ]

04 06 08 1 12 04 06 08 1 1.2

diate phase of the CG model, | present a simplified argumen
that makes the expectation of two phase transitions rathe
natural for this system. Suppose that two charges only, 1 ant
—1, are hosted in the latticghis is a good approximation 0.0004
only at very lowTg). In this case, the contributions to the .®
partition function coming from isolated unit charges and g ggg2
1-dipoles, respectively, redlf,= Nz§2|x|>l exp(BqVox) and

Wy=4NZ exp(BoVop). The ratioR(Tg) =W, /Wy is a mo- .
notonously increasing function dfg which, irrespective of 04 06 08 1 1.2
z,, equals 1 at~1.0 (I took L=24; however, this result is KT/1 KT/d
only weakly dependent on the system $iZEhe same ratio - . : . .
in the event of two opposite double charges only would sim-CGFféjj'(lslt)efzslng f%fr'T_Olaizd;nhgge:sbdépoéichncifgm:trizr'g the
ply be R(Ty/4), crossing 1 at one-fourth of thewhere ’ P

- N (O) from the truncated expansigh5) of the partition function are
R(TQ)_l' namely att~0.25. Although these numbers are compared with MC resulté) for the same lattice. Left top panel:

purely_ indiqatjve, I surr_nise thaF, upon decreasing the valuedverage numbersV, and A, of the isolated unit(above and
of , dissociation of 1-dipoles will come before and separatgoyple chargegbelow). Right top panel: average numhaf,, of
from the unbinding of 2-dipoles. Should these two events be_gipoles. Left bottom panel: average numbé, of 2-dipoles.
driving mechanisms of phase transitiofi) both the inter-  Right bottom panel: average numbgf of trimers. | checked that
mediate and the higi, phase of the CG model will be the numbers of 1- and 2-dipoles, as being computed by summing
metallic (simply because unit charges occur freely in bothover the 13 4-tuple§N,}, are virtually identical to the values drawn
and thus are able to sustain the electric condugti®) the  from Eq. (20) (and those analogous for 2-dipolewhich uses the
“DOF” metal would be a worse conductor than the contact value of the pair distribution functions.
“smooth” metal (just because in the DOF phase double
charges are frozen in and cannot give rise to a current to isolated unit chargéslin fact, x,; is a bit negative at high

By the way, only a determination of the average numbet, due to an overcounting error in the estimate\gf (if two
of isolated charges and dipoles that are present in the systebadipoles have one charge in common, the unit charges are
can say a definite word about the nature of the three phasélree in total, not four Coming from hight, x;; and x4,
of the CG model. My results are reported in Fig. 12 as ashow a specular trend. While the latter goes down linearly,
function of the SOS temperaturéWhile for both species the the former increases until they cross each othér=t. The
amount of isolated charges behaves similarly to the overaltrossing point would correspond to an insulator-to-metal
density, the number of dipoles shows some differences bdransition, an event usually referred to as the “unbinding of
tween unit and double charges. This can be better appreci-dipoles.”
ated by plotting, separately for the two species, the fraction Moving to double charges, | first note that is far from
of isolated charges and that of “associated” charges. Since bheing zero(with the only exception of very high values,
neutral trimer can either be viewed as a bound pair ofndicating that an important category of structures containing
1-dipoles or as a variant of a 2-dipole, | evaluate the totablouble charges was neglected. Evidently, these structures are
number of bound charges a&};=2MNg;+2A; for unit  the above-mentioned2,+1) pairs, as also evidenced by
charges andV,,=2Ng+ N, for double charges. | then de- the vanishing of,, at tpg. While these structures are irrel-

0.0006 -y 0.0005 [

PRI ISR N I
lllllllll

fine (for «=1,2) evant as for the balance of unit charges, they will contribute
a non-negligible fraction to double charges. Anyway, these
N N pairs ought to be included within the class of isolated unit

Xia_sza and  Xgo= 2Np,," (1) charged(of which they represent a minorjtyhence they do

not enter neitheN,, nor \Vp,.

Besides these fractions, it is useful to consider also the frac- The overall behavior ok, andxg, is consistent with my
tion X,,=1—X;,— Xq, Of the residual charges. expectation that the phase transitionigtis promoted by the

Looking at the left top panel of Fig. 13, we observe thatunbinding of 2-dipoles. Far>0.6, X, is larger tharx;,, but
X1 is practically zero fot>0.5, meaning that, whenis not  the difference reduces asgoes down. When PR is ap-
too small, isolated and bound charges almost exhaust thgroached from the DOF phase, the fraction of 2-dipoles ob-
total of unit charges. Among the structures that are not monitains further enhancement from the loweringzef which in
tored, | only mention the NN pairs composed of one doubleurn causes a reduction in the number of the competing
charge and one unit charge of opposite difpese are similar  (+2,+1) bound states. Exactly at PR, the latter are missing
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100 L B C. Simulation results
__ 80 double The 12x 12 lattice of charges is too small of a system to
2 60 allow for neat phase-transition signatures. On the other hand,
*; 0 when considering much larger systems, a low-fugacity ex-
x pansion of the partition function is no longer a viable solu-
¥ 20 tion and a different strategy is in order. In these cases, MC

- oo Yo : simulation is the only available method. However, the very
04 06 08 1 1202 o6 o8 1 1o same feature that makes it possible to perform the perturba-

KT/J KT/J tive analysis(that is, a strong dilution of the charges also
I L L B L B B the weak point of MC sampling: very long runs must be
carried out in order to collect sufficient statistics.

There are at least two ways to implement the MC method
in the present CG model. One solution is similar to that
described in Ref[15]. A single MC step is articulated as
follows: first, | randomly choose a pair of NN or NNN lattice
sites. Then, the charge at one site is increased by one or two,
whereas the charge at the other site is decreased by the same
amount. Should by this means one obtain a charge different
from 0,=1, or £2, the move will be rejectedike it would

FIG. 13. Statistics of isolated and bound charges in the CGoe if an enormously positive chemical potential were associ-
model, as being drawn from the data of Fig. 12. Left top panel:ated with this charge Otherwise, the energy change is cal-
fractions of unit chargegdotted line andO, X;;; continuous line  culated and the move is accepted or rejected according to the
and [, xg;; dashed linex;). Right top panel: same fractions as ysual Metropolis rule.
before but for double charges. Bottom panel: abundancy of isolated An alternative to the above algorithm is the following:
charges relative to that of bound chargesntinuous line, unit first 3 pair of NN or NNN sites is chosen at random and their
charges; dotted line, double chargeSrom this picture it appears  cnarge contents are kept; then, depending on the values of
that dissociation of :L.-dlpoles Qccurs Bt1, while most of the these charges, a MC move out of the following list is at-
e e T e o . ierSEmptedinot ha the ol charge isconserved anywe

LT ) . ’ a charge is moved to an empty sit8) one double charge is
ers floating in a sea of isolated unit charges. - . ) .
broken into two unit charges3) two equal unit charges
and the 2-dipole is a far more preferred configuration formerge into one single double charge}) two opposite
double charges than the isolated state. This explains the igharges are createth) two opposite charges are destroyed;
sulating character of the CG model righttak. and (6) the positions of one double charge and of one unit

In the bottom panel of Fig. 13, the charge preference focharge of opposite sign are interchanged. Next, the trial
the isolated statéas opposed to the bound staitequantified move is accepted or rejected depending on the Metropolis
through the plotting of\;; /N, and of N, I Vp,. Clearly, the  weight. | point out that the above listed elementary moves
number of free unit charges exceeds that of bound chargewe characterized by differefat priori probabilities, which
for t<tg and their ratio increases down to PR. Converselythen obliges one to modify the usual form of the Metropolis
isolated double charges become as numerous as boumdceptance probability.
double charges only close te= 0.6, where the DOF charac- We have checked by intensive MC runs for a<iI2 sys-
ter is stronger. However, after reaching a maximumt at tem that the two algorithms above give indeed practically the
=0.6, Xj,/Xg, goes down again to about zero at PR. same results, which are also fully consistent with the exact

Whent<0.45, the results based on E@5) are no longer calculationgsee Figs. 11-1)3Moreover, the performance of
reliable. However, it is clear from the trend pf andp, that ~ both algorithms is similar, whereas the acceptance of MC
cluster structures of any kind are being excited now, thugnoves is about twice as large for the second of the two.
making isolated charges and dipole-like arrangements less For the simulation, three system sizes are considdred,
and less relevant, as for the overall balance of the charges;48,72, and 96. The same parameters as in(&g(model
than other more complex structures. A) are used first. After equilibration, as many ax 20°

Given the above results for the X242 system, | conclude sweeps are generated, each sweep consisting of one MC step
that both SOS flat phases are likely metallic in the languag@er site(in the hight region, a longer MC trajectory of 4
of electric charges, owing to the existence of free unitx1(® sweeps is generated far=48 and 96 in order to
charges in both. In the “DOF” metal, however, double achieve better statistics for the double chayghgerages are
charges exhibit a certain tendency to pairing which is absenpdated every 10 sweeps. Among the quantities that can help
in the “smooth” metal. | notice that, more than 10 years ago,to understand the way how charges are distributed on the
a similar conjecture about the CG counterpart of the DOHattice, the following are especially monitored: the number
phase was advanced by Den Ni§ who, however, did not densitiesp,, the average energy per sitethe radial distri-
provide a numerical demonstration of the kind consideredution functionsG,q/(r), and the inverse dielectric constant
here. e L. During the run, | also compute the statistics of isolated

0
04 05 06 07 08 09 1 .1 1.2
KT/J
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FIG. 14. Inverse dielectric constaat?® in the CG mode(11)— o ) ] . .
(13): a comparison is made betweegs=0.5 (main picture and FIG. 15. Statistics of isolated charges, dipoles, and trimers in the
tpg=0.25(inse). Data are shown for a number bivalues: 12full CG model(11)—(13), for tpr=0.5. The exact calculations fdr
circles, exact calculation—same data as in Fig, B (A), 72 =12 (A) are compared with MC simulation results for=96 (O)

(0), and 96 ©). The scaling behavior af* clearly indicates that ({0 allow for a better Compari.son, the data for-96 have been
the system is always metallic when the dual SOS surface is fladivided by 64. Left top panel: average numbers of isolated unit
However, whentpe=0.5, it is insulating at PR, as well as in the (@bove and double charge®elow. Right top panel: average num-

whole rough phase. Conversely, whgp=0.25, the dielectric char- °€r f (1,-1) NN pairs. Left bottom panel: average number of
acter is probably metallic also at PR. (2,—2) NN pairs. Right bottom panel: average number af2(

+1,51) trimers(where the two unit charges are both NN of the

. i double charge
charges, of 1- and 2-dipoles, and of neutral trimers.

In Fig. 14, the inverse dielectric constant is plotted for all _ _
sizes. It is rather evident where the trend goes when increat@t€d and bound charges far=12,48, and 96. Amazingly,

ing the system size:~ * eventually vanishes in both SOS flat "0 really new feature shows up in _the behavior of the largest
phases but not at PR. Therefore, as already anticipated, ti$Zes that is not already present in the-12 system. Not-
CG system is metallic both in the smooth and in the DOFWwithstanding fort>0.7 the accuracy of my MC estimate of
phase(it remains to be seen what distinguishes between théhe extremely small density of double charges is very poor, it
“DOF” and the “smooth” meta). Surprisingly, however, the is clear that the infinite-size behavior of the CG model is
same system is insulating at ttisolated PR point between already well accounted for by the tiny X2.2 lattice.

the two. When the PR transition is first-ordenodel B), the Upon decreasing beyond the roughening value, the av-
nonzero maximum o€~ ! attpg=0.25 appears to be only a erage number of isolated double charges smoothly grows,
finite-size effect(Fig. 14, inset This suggests that the sys- with respect to the number of associated charges, until a
tem is metallic also atpg. maximum relative abundancy of about 1 is attained tfor

Going back to model A, the metal-insulator transition at=0.6. As | move towards the PR point, however, the insu-
tg can be located through the criterien*(T,) =4T.. This lating character reappears due to a drop in the number of the
givestg=1.3, which is consistent with the overall behavior (+2,51) pairs. Eventually, all kinds of excitations become
of e~ * for model A, not as much with the MC data of Fig. 1 permitted in the smooth, fully metallic phase, not just iso-
(unless | admit that. =72 is still too small a size lated charges, which explains the trend observed 400.5.

In Fig. 15 | compare thé& =12 andL =96 systems as far Hence | confirm that, due to a large fraction of free unit
as the average numbers of isolated charges, of dipoles, and ciiarges, the DOF phase has a metallic counterpart in terms
neutral trimers are concerned. To make this comparison moref charges, likewise the smooth phase. However, in the
significant, the numbers fdr=96 are divided by 64, which “DOF” metal a large portion of double charges are bound,
is the ratio between the two respectidevalues. What im-  which is not the case for the “smooth” metal.
mediately stands out is the similarity of behavior between the As far as model B is concerned, | report in Fig. 17 the
two sizes, the main difference lying in the statistics of iso-statistics of isolated and bound charges in the48 andL
lated charges, which are comparatively more numerous ir=96 lattices (same analysis as illustrated in Fig. 16 for
the bigger of the two lattices. model A. The main difference from model A lies in the

The overall behavior of%;, andxg, for L=96 is the same behavior of double charges near PR. The fraction of bound
as forL=12 (see the top panels of Fig. 16; observe that,charges never grows beyond 50%, even at PR. As a result,
beyondt=1.15, no double charge appeared during the.run the charged mixture is metallic also at PR. The first-order
In the same figure, | compare the relative abundancy of isoeharacter of the PR transition is revealed by the scarce size
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FIG. 16. Statistics of isolated and bound charges in the CG FIG. 17. Statistics of isolated and bound charges in the CG
model that is dual to the SOS model A, for=96. Left top panel:  model, fortpr=0.25(model B andL = 96. Left top panel: fractions
fractions of unit charge&lotted line andD, x;;; continuous line and ~ of unit chargegdotted line andD, x;;; continuous line andl, Xqy;

0, xgy; dashed linex,;). Right top panel: same fractions as before dashed linex;;). Right top panel: same fractions as before but for
but for double charges. Bottom panels: three system sizeg2  double charges. Bottom panels: two lattice sides,48 (L) and
(dotted line andA), 48 (O), and 96 (), are compared as for the L=96 (O), are compared as for the relative abundancy of isolated
abundancy of isolated vs bound chargkst, unit charges; right, ~and bound chargegeft, unit charges; right, double chargesnlike
double charges The conclusions drawn for the smallest size arethe previous casenodel A, a non-negligible abundancy of isolated
substantially confirmed in the larger systems: while dissociation oflouble charges at PR causes the mixture to be metallic also at PR.
1-dipoles occurs nearhlly=1, 2-dipoles do not unbind until the PR
point is reached. s2)

K == 2 Pqpq’; [gqq’(xay)ln gqq’(xny)

a.q’ y

dependence of the charge abundancies, as shown in the bot-
tom panel of Fig. 17. —qq'(X,y)+1]. (23

Note thatS{? is the entropy of an ideal-gas mixture of four
species with activitieg,,z;,z,, andz, and no constraint on

It is by now natural to analyze the phase transitions uUnthe particle numbers relative to each other. Moreover, the
dertaken by our fluid of interacting charges in terms of theyalues ofz, andz, are such as to reproduce in the ideal-gas

so-called residual multiparticle entrogRMPE). Since the  mixture the same densities as for the interacting sy$tsh
publication of[ 16], a lot of calculations have showWf7]the 3 prescription leading to

intrinsic validity for many model systems of a criterion,
hereafter referred to as the entropic criterion, aimed at infer-

ring the amount of configurational order that is present in a Z;
fluid system from the importance of many-body spatial cor-

irﬁqlaltéwzn'tgﬂt:ne o?‘vt?wfl:‘o(re;tlz?;lfcorbta;:gnlgi/.lPgtse]r ttr:]: ;?]t_t'cewhere 2, and 2, are the overall densities of unit and
P : double charges, respectively. The expressis for S?) is a

tropic criterion has proved to be useful also for lattice sys- Il oairs of ch ) 4 all ordered pairs of
tems[19]. sum, over all pairs of charge species and all ordered pairs o

. . lattice sites, of the same two-body term appearing in the
| recall that the RMPE is the difference between the totalentropy expansion for the continuum,

system entropy and its lowest-order contributions in the While the calculation o8 only requires the knowledge

grand-canonical many-particle correlation expansias, of the pair distribution functions, the total entro@yof the
namely the ideal-gas and the two-body terms which, for g . . X .
mixture of lattice particles, respectively, read as charges cgnnot be directly obtained in a MC experiment.
' ' However, it can be evaluated anyway by the method of ther-
s0) modynamic integration, which givesin terms of the energy
= In(1+22,+225) =2p4Inz;-2pyInz, (220 and the number densities of the charges along a pallyin
In order to derive a formula for the entropy as a function

of the SOS temperature, | start from the grand-canonical
and Massieu functiorB, given by

D. Entropy of the charges

P1 P2

- and =, (24
1-2p1-2p; =T 2p—2p,"
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Since my MC data were collected for a pathTig at fixed <
C.tpr, andy,, | need to calculate the total derivative &f B 0
with respect to8o=1/Tq, whereu,; and u, are viewed as 0
functions of 3. Using the chain rule of derivation and stan- —0.01
dard thermodynamic relations, | readily obtain 0.4 0506 070809 t 11121314
~ 0.005:_||||||||||_:
d(S/k) dm) g ]
=—U+Ny| g1+ Bqr & oF ;
dbq “dBq 3k :
Aty -0.005 g
+N2<“2+IBQ£)' (26) 001 B4l ]
Q " 040506070809 1 1.11213 1.4
Considering that KT/
1 +Clt 1 FIG. 18. Residual multiparticle entrop@R_l\/IPE) of the CG
Ml(,BQ): —In(— PR_— ) (27) model (11)—(13), for tpg=0.5 (model A). Two sizes are compared,
Bo \2K|Bg m L=12 (A, exact calculationand L=96 (O, MC simulation. In
the above picture, | show three quantities for each size: total en-
and tropy per site(the continuous lines above theaxis), ideal-gas
1 my entropy per sitethe dotted lines and two-body entropy per site
ol Bo) = —In(—4 ’ (28)  (the continuous lines below theaxis). Below: RMPE forL =12
Bqo \2BgJ (A) and 96 (O). The RMPE shows the expected behavior: it takes
L . negative values in bottfluid) metallic phases, apparently vanishing
the derivatives ofu; and u, will read as at PR. It eventually moves towards zero when approaching the
roughening point. Looking at the picture below, | can hardly say
%_ M tpr (29) whether the RMPE of an infinite-sized system would be indeed
dBqg - Bao IgétPR_ ﬂ%/ﬂ- positive in the insulating/rough regime.
and mined constant, see belopwin the other casel.=96, the
entropy and its lowest-order terms in the multiple-correlation
du, 1+ Bok2 expansion are numerically computed via E8Q). This not-
dB == > - (300 withstanding, my MC sampling is so accurate that the minute
Q Ba difference giving the RMPE is an extremely smooth function

of the SOS temperatuisee Fig. 18 even close to the high-

Upon inserting Eqs(29) and (30) into Eq.(26), I thus get est temperaturet& 1.15) where | am able to quantify the

d(&/k) rtoT2 number of double charges during the simulation and, there-
e _&Nl_TQNZ- (31 fore, to computes®. | point out that the total entropy of the
dBq mtprl g~ 1 96X 96 system would in principle convey an undetermined

overall constant, say its value &t 1.4, which | have arbi-
trarily set equal td5(1.4) of the 1212 lattice. In turn, this
indeterminacy is transferred to the RMPE which, for the

The subsequent use of E@5) finally yields the following
expression for the entropy:

S(Te) 1 largest lattice, 'i§ only fixed up to an unknowhut likely
T _I_—(U — 1N — uoN,) very smal) adqmve constant. o o
Q The behavior of all the entropies is nonmonotonict,in
To tppT2 following somehow the thermal evolution of the densities.
+f U(T)+———=—N;+TN, |—. Coming from lowTq, the multiplicity of the system mac-
0 miprl —1 T?

rostate first grows. On approaching PR, the dipzpfbe-
(32) comes evident, leading to an abrupt fall in the number of
microstates, hence in the entropy. Upon going across the PR
The calculated entropies are shown in Fig. 18 for the CGoint, the entropy grows again, but now much more rapidly
parameters corresponding to model A. Two distinct sizes aréhan before. The absolute value $f) shows a similar be-
compared hereL=12 andL=96. In theL=12 case, all havior.
plotted quantities are the outcome of an analytic calculation, Now, | attempt an interpretation of the RMPE profile.
which is made possible by the exact knowledge of the partiUsually, the RMPE of a simple fluid that undergoes a unique
tion function and of the pair distribution functions. Anyway, ordering phase transitiaiinduced by varying either the tem-
| have verified that the independeBtestimate through Eq. perature at fixed density or the density at fixed temperature
(32 gives exactly the same resulpart from an undeter- is found to be negative in the disordered phdse density/
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high temperature while becoming eventually positive on APPENDIX: MAPPING OF THE SOS MODEL
approaching the ordered phase. In fact, the RMPE is gener- ONTO A LATTICE COULOMB GAS
ally found to vanish very close to the transition pawith a
tolerance of a few percentin such a way that the location of
the RMPE zero is a rather good estimate, sometimes a ve -
good one, of the transition point. fualt_to each t(?]ther. By thattl mean that tthet twolt_p?rtlt;_on
Considering the results of Fig. 18, | conclude that, evenunctions are thé same, up to an unimportant muftiplicative
for a charged fluid mixture on a lattice, the behavior of theconstant, even though Vﬂth inverted temperature scales.
RMPE as a function of is highly informative of the general . First, I. denote bmWhT.Elx:yc:'XgNX@y/tie purehly iaussl-
structure of the phase diagram. In fact, the RMPE distinctl;}an part n Eq.(3) as multiplied byg=1/(kT). The kerne
vanishes atpg and smoothly approaches zero from belowWXvy precisely reads as
neartg; moreover, it is throughout negative beldw, in
agreement with the fact that, in both metallic phases, the
charges are completeljor t<tpg) or at least partially dis-
ordered(for t>tpg). In particular, in the DOF regime where
the double charges show a preference towards dipole-lik
pairing, a minor degree of disordéas compared with the
full-metal regime goes along with a less negative RMPE
value. As a matter of fact, | cannot say whether the apparent
failure of the entropic criterion in accounting for the KT
metal-insulator transitiorithe RMPE remains negative be- Zse= lim th exp(—hWwh)

In this Appendix | provide the proof that the SOS model
t Eq.(3) and the CG model defined by Eq4.1)—(13) are

WX,)’:IB‘J[(4+K2)5X,y_ 5\xfy|,]_-|- (A1)

In the above formula, a regularization paramet&has been
introduced in order to make all eigenvalues \0f strictly
ﬁositive (this factor will be later sent to zero so as to even-
tually recover the original modgl

Given Eq.(Al), the SOS partition function is given by

yondtg) is a real drawback of the criterion or is in fact just K20

a finite-size effect, also complicated by the unknown con-

stant value | was alluding to before and by my inability to XH 1+ Bys cod2mhy) + By, CoS 4mhy) ]
count double charges beyomne1.15. X 1+BYy2+BYa

(A2)
IV. CONCLUSIONS

In this paper, the thermodynamics of a SOS surface mod ach factor in the above product can be rearranged as fol-

undergoing, besides the usual roughening, a PR phase traf*'s:
sition is exactly mapped onto the grand-canonical ensemble

of a 2D lattice CG model of unit and double charges. Upon 1+ By, cod2mhy) + Bys cod4mh,)

adjusting the SOS model parameters, it is possible to make 1+By2+BYa

PR (as well as the analogous transition in the CG mpdel

first-order. Both models have been studied mainly through = E z, exp(2miqyh,), (A3)
MC simulation, supplemented in the CG case by exact finite- =0x1x2

size calculations.
The duality between the two models has actually servedvhere
as the expedient to investigate the possibility of a more com- q
plex phase behavior than usual in a gas of lattice charges, _ qf Y2 | ~ 5
generally exhibiting a unique phase transition from an insu- qu—(1+,[3y2+,8y4) (W) quBQ’“qqu)’ (A4)
lator at low temperature to a metal at high temperature. In
particular, | have been able to describe a new kind of phasbeing
transition between two different metallic phases which are
the counterpart of the smooth and the DOF surface phases. T ~ Bly-|
Precisely, while the cold, fragile “DOF” metal is one where ,3sz1 Xl Bop 1) = 5
the unit charges are free and a large fraction of the double
charges are bound, all kinds of excitatioim®t just isolated ~ BYa
chargey become permitted in the hot, strong “smooth” exp(4Bqu+2) = o (A5)
metal. Hence the PR transition becomes translated, in the CG

language, into the unbinding of dipoles being formed by|n Eq. (A3), the sum indexeg, are later interpreted as inte-
double charges. PR itself, when second-order, is an |solat32ier electric charges. Using the above representation, the
r

point in an otherwise metallic regime where the chargedhroduct at Eq(A2) can be reshuffled to read finally as
mixture displays insulating character, such as we find only at

low temperature.

(1+Byo+Bys) N2

2xq
y2 X HX _
) eXD( BQ; quq>2<
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After an obvious Gaussian integration, thRé—0 limit is is just the square-lattice Coulomb potentiplié a Born-Von
taken, with the result that the only nonzero contributions toKarman vector. The “prime” over the sum in Eq(A7) is
the SOS partition function come from the,} configurations there to recall that only the neutral charge configurations are

satisfying the conditior®,q,=0. The final outcome is included into the sum. . _
The right-hand side of EqA7) is the grand-canonical

partition function of an overall neutral system of 2D lattice

ex —BQZ VyyOxdy |=Eo, charge;(obwously,qX.:O means that no charge is present at
X<y the x site). Hence this system shows the same number of
(A7) phases and phase transitions as in the original SOS model.

Note that the chemical potential jg,=; for =1 (unit)

where charges angk,= 4, for +2 (doublg charges. There are no
charges of magnitude greater than two.
| finally point out that, notwithstanding that the original

Lo {;}' exF{ BQE pqx%%

Vx,y:z ex_mp(x _y)] ! (A8)  model is badly defined at low temperatuisee Sec. 114,
N pFo 2—cospy—cospy the model defined by Eq$A7) and(A8) has a proper defi-
nition whatever the value g84.
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