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Tracer diffusion in granular shear flows
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Tracer diffusion in a granular gas in simple shear flow is analyzed. The analysis is made from a perturbation
solution of the Boltzmann kinetic equation through first order in the gradient of the mole fraction of tracer
particles. The reference stdieeroth-order approximatigrcorresponds to a Sonine solution of the Boltzmann
equation, which holds for arbitrary values of the restitution coefficients. Due to the anisotropy induced in the
system by the shear flow, the mass flux defines a diffusion tédgdnstead of a scalar diffusion coefficient.

The elements of this tensor are given in terms of the restitution coefficients and mass and size ratios. The
dependence of the diffusion tensor on the parameters of the problem is illustrated in the three-dimensional case.
The results show that the influence of dissipation on the elenignts in general quite important, even for
moderate values of the restitution coefficients. In the case of self-diffisiechanically equivalent particlgs

the trends observed in recent molecular-dynamics simulations are similar to those obtained here from the
Boltzmann kinetic theory.
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I. INTRODUCTION made by Campbel[6]. He measured these elements via
molecular-dynamics simulations by using both particle track-
Granular systems under rapid flow conditions can beng and through velocity correlations. Both methods were
modeled as a fluid of inelastic hard spheres. In the simplefbund to agree with reasonable accuracy. Very recdimly
model, the grains are taken to be smooth so that the inelashe self-diffusion coefficients have been experimentally mea-
ticity is characterized through a constant coefficient of nor-sured in a granular system under Couette flow by employing
mal restitution. The essential difference with respect to moimage technology.
lecular fluids is the absence of energy conservation yielding In the context of kinetic theory, studies on granular flows
modifications of the usual hydrodynamic equations. Due tdn mixtures are scarcer. Most of thefB] are based on a
the kinetic-energy dissipation in collisions, energy must beNavier-Stokes description and, therefore, they are restricted
externally injected to the granular gas in order to achieve & small velocity gradients, which for the steady simple shear
stationary state. In some experimental situations, the granuldlow is equivalent to the low-dissipation limit. For this rea-
system is driven into flow by the presence of a shear field. Irson, the diffusion is only characterized by a single coefficient
this case, a steady state is possible when the amount of ewhich is not affected by the presence of the shear field. In
ergy supplied by shearing work is balanced by that lost du@ddition, although these studies permit in principle different
to the inelastic cooling. The study of the rheological propertemperatures for the two species, they assume equal partial
ties of this steady shear flow state has received a great deal gfanular temperatureE; in the quasielastic limit. Neverthe-
attention in recent years, especially in the case of oneless, given the intrinsic connection between the shear rate
component systenfd]. However, much less is known in the and dissipation in this problem, energy nonequipartition is
more complicated case of multicomponent mixtures ofexpected as the restitution coefficient decreases. As a matter
grains. of fact, some recent results obtained in molecular-dynamics
An interesting problem is the analysis of diffusion in simulations of granular sheared mixturgd as well as in
granular shear flows. The understanding of mass transport ireal experiments of vibrated mixtures in thigd] and two
granular systems is of practical interest since, for instancedimensiong11] clearly show the breakdown of energy equi-
powders must frequently be mixed together before any soppartition. This implies that the temperatur€sare different
of processing can begin. The self-diffusion phenomenon iffrom the mixture temperatur€. The consequences of this
granular flows was studied earlier. Experimental studies ineffect on the transport properties are in general significant, as
clude both systems with macroscopic floj#3] and verti-  has been recently found in the freely cooling cek®13. In
cally vibrated systemf4]. Complementary computer simu- conclusion, a consistent theory describing diffusion in granu-
lation studies have also been carried @&il, with special lar shear flows must take into account both the tensorial char-
emphasis on the influence of the solid volume fraction on thecter of the mass transport as well as the possibility of tem-
diffusive motion of the grains. In general, all these previousperature differences.
studies were limited to observing the diffusion in only one  The aim of this paper is to get the diffusion tensor in a
direction, usually the direction parallel to the velocity gradi- binary granular mixture under simple shear flow in the
ent. However, due to the anisotropy induced in the system bframework of the Boltzmann equation. Due to the complex-
the presence of shear flow, a diffusion tensor is required tity of the general problem, here we consider the special case
describe the diffusion process instead of a single diffusionn which one of the componentsay, for instance, the spe-
coefficient. To the best of my knowledge, the only attempt tocies J) is present in tracer concentration. The tracer problem
measure the elements of this self-diffusion tensor has begs more amenable to analytical treatment. First, the tracer
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particles are directly enslaved to the granular gas, and seconchere the Boltzmann collision operatd;[vq|f;,f;] de-
there are fewer parametdrs4—16. Therefore, in this situa-  scribing the scattering of pairs of particles is

tion one can assume that the velocity distribution funcfign
of the excess componefgranular gasobeys aclosed non-
linear Boltzmann equation while the velocity distribution
function f; of the tracer particlegimpurities satisfies a P , ,
Boltzmann-Lorentz equation. The starting point of our study XLayy “fi(r,vy, Ofj(rva, 1)

is a recent solutlor_1 of the set of Boltzmann equations for a —fi(r, vy, (1, vy, 0], )
binary mixture of inelastic hard spheres under shear flow

[17]. The corresponding Boltzmann-Lorentz equation for theHere, d is the dimensionality of the systemy;; = (o
impurities is solved by means of a perturbative scheme in, o)/2, & is a unit vector along their line of center®, is
powers of the gradient of the mole fraction of tracer par'theJHe:aviside step function, angj,=v;—V,. In additibn,

e, e e feure of s expansion it e S rimes on he velociies dence he i valfes v
P at lead to{vy,v,} following a binary collision,

values of the shear rate, which for the steady shear flow
problem is equivalent to an arbitrary degree of dissipation. In
the first order of the expansion, the tracer diffusion tensor is
identified from the mass flux. Explicit expressions for the , T -
nonzero elements of this tensor are obtained by using a first Vo=Vot wij(1+ o) (0 Gro) 0, )
Sonine polynomial approximation. These elements are given

in terms of the restitution coefficients and the parametes of/N€rexi;=m;/(m;+m;). At a hydrodynamic level, the rel-
the mixture(masses and sizes evant quantities are the number densitiesthe flow veloc-

The plan of the paper is as follows. In Sec. II, we intro- 1Y U, and the “granular” temperaturg. They are defined in
duce the set of coupled Boltzmann equations describing thi€rms of moments of the distributidn as
mixture and state the problem we are interested in. The state
of the mixture in the absence of diffusion is analyzed and, in ni:f dvf,(v), pu=> pu=>, f dvmivf;(v),
particular, the nonzero elements of the pressure tePsof [ [

siilt =0 [ avs [ 45060000

Vi=vi—uji(1+a; (o g o,

the granular gas are obtained in the leading Sonine approxi- (4)
mation. Comparison of these results with previous theories is

also presented. The section ends studying the state of tracer _ T f M\ oe

particles with special emphasis on the evaluation of the spe- nT 2. T 2. dv d VIV, ®

cific dependence of the temperature ralig/ T, on restitu-

tion coefficients, mass ratio, and size ratio. Section Il dealsvheren=n;+n, is the total number densitg=p,+p, is

with the perturbation scheme used to solve the Boltzmannthe total mass density, and=v—u is the peculiar velocity.
Lorentz equation of the tracer particles when the diffusionEquationg4) and(5) also define the flow velocity; and the
takes place in the system. This section contains the maipartial temperaturd@; of specied, which measures the mean
results of the paper since we determine the tracer diffusiokinetic energy of specieis

tensor in the first order of the expansion of the concentration The collision operators conserve the particle number of
gradient. The dependence of the nonzero elements of thisach species and the total momentum, but the total energy is
tensor on the different parameters of the problem is illusnot conserved. This implies that

trated in the three-dimensional case, showing a good quali-

tative agreement with Campbell’'s simulatidigd. Finally, in 12 .
Sec. IV we close the paper with some concluding remarks. IEJ: dvamVa3Lvifi fil=— EnTg, )
Il. DESCRIPTION OF THE PROBLEM: GRANULAR where { is identified as the “cooling rate” due to inelastic
MIXTURE IN SIMPLE SHEAR FLOW collisions among all species. At a kinetic level, it is also

convenient to discuss energy transfer in terms of the “cool-

We consider a granular binary mixture composed bying rates” ¢; for the partial temperature; . They are de-
smooth inelastic disksd=2) or spheresd=3) of masses fined as

m; and m, and diametersr; and o,. Collisions between

particles are inelastic and characterized by three constant res- 1 )

titution coefficientsay;, a,y, andai,=a,;, wherea;; <1 §i=— anT, 2 f dvm Vg, [V i, 1. (7
refers to the restitution coefficient for collisions between par-

ticles of species andj. In the low-density regime, the one- The total cooling rate can be expressed in terms &fas
particle velocity distribution functiond;(r,v,;t) (i=1,2)
obey the set of nonlinear Boltzmann kinetic equations,

§:T_1E XTidi, 8

Jd
—+vy -V [fi(r,vyt)= Jiilvq|fi(1),fi ()], 1 . . .
(ﬁt ' ) (Fv23t) EJ: ibvalfi®. 01 @ wherex;=n;/n is the mole fraction of specids
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Let us now describe the problem we are interested in. Wevith the flow velocityu: f,(r,v)—f,(V). Consequently, the

consider a granular binary mixture in which the masses andtationary Boltzmann equation for the excess component be-
sizes of both species are arbitrary. Our aim is to analyze aomes

diffusion problem in a mixture of grains driven into flow by
the action of shear forces. Here, we consider the simple case
of the tracer limit, namely a binary mixture in which one of
the componentésay, for instance,)lis present in tracer con-
centration &;<<1). In the tracer limit, one expects that the We are mainly interested in computing the nonzero elements
state of the granular gas is not affected by the presence of th# the pressure tensé,. These elements can be obtained by
tracer particles so that its velocity distribution functibp ~ multiplying the Boltzmann equatiofl3) by m,V,V, and
obeys a(closed nonlinear Boltzmann equation. Further- integrating oveV. The result is

more, the mole fraction of tracer particles is so small that

their mutual interactions can be neglected in the kinetic a&kmP2,/mt a&/mP2xkm=Ax/ (14
equation off,. As a consequence, the velocity distribution

J
_aVya_foz(V):\]zz[V“z,fz]- (13

function of tracer particle$, satisfies &linearn Boltzmann- where

Lorentz equation. Let us start by describing the state of the

mixture in the absence of diffusion. Ay, = mzj dVV,V,J,4 V|f,,f5]. (15
A. Granular gas (excess componeit To get an explicit expression fd?, one needs to compute

We assume that the granular gas is subjected to the simpl@€ right-hand side of the set of E(L4). This requires the
shear flow. From a macroscopic point of view, this state i<SXPliCit knowledge off;, which is not known even in the

characterized by a constant linear velocity profite u,=a elastic limit. However, one expects to geta good estimate of
1, where the elements of the tensoarea,, =add,y, a the low moments of the Boltzmann collisional operator by

being the constant shear rate. In addition, the partial densityXPandingf; in Sonine polynomials and then to truncate the
n=n, and the granular temperatufe=T, are uniform. The S€Nes after the first few terms. This approach is similar to the

temporal variation of the granular temperature can be usual mqment method for solving the Boltzmann equa’Fion in
obtained from the Boltzmann equatiét) as the elastic case. Therefore, we take the leading Sonine ap-

proximation,
P2 Py o 9) m, (P
—=—a R ,
g ATt (V)= fa(V)| 1ot | Z2 g,
’ 2T, \ p2
wherep,=n,T,, 1
X| ViV, — aV25k/) : (16)
P2: sz' dVVVf2 (10)
wheref, ), is a Maxwellian distribution at the temperature of
. . - the gas, i.e.,
is the pressure tensor of the gas, and in the tracer limit
1 fom(V)=n m2 )dlzexp( - mzvz) 17
4/2: - —J de2V2J22[V| fz,fz]. (11) 2N 2 27TT2 2T2 .
dn,T,

With the approximation(16), the integrals appearing in the
The balance of energ®) shows the different nature of this expressions of the cooling rate and the collisional moment
state for molecular and granular systems. While for elastig\, . can be explicitly evaluated. The details of the calculation
fluids ({,=0) the temperature increases monotonically inare given in the Appendix. This allows us to get the explicit
time due to the viscous heating tea®,,,, a steady state is expressions of the nonzero elementsPgf They are given
possible for granular systems when the viscous heating iby
exactly compensated by the collisional cooling term

(d/2)p,¢,. In that case, the shear stréds,, and the cooling . . , d+l+(d—1l)ax
rate ' 2yy= P2z~ =P344= , (19
{, are related by Yy , : 2d+3—3ay,
d d+1+(d-1)«
aPyyy=—502P2. (12 * =—4d 22 a* (19
XY 2 2xy 24
(1+ a22)(2d+3_3a22)
As a consequence, for a given shear atthe (steady tem- * —d—(d—1)P% 20)
peratureT, is a function of the restitution coefficient,,. 2Xx 2yy?
This steady state is what we want to analyze. _ 204 2
The simple shear flow becomes spatially uniform when a*2:d+2 (1+az)(2d+3—3az)(1-az) (21)
one refers the velocities of the particles to a frame moving 32d d+1+(d=1)ay
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Moreover, the(reducedl cooling ratel’ is
1.5

_d+2

=g (1-ab). (22

1.0

Here,P5=P,/p,, a*=alv, {$={,/v, andv is a charac-
teristic collision frequency given by=p,/7, where 5 is
the shear viscosity coefficient of the gas in the elastic limit,
ie., 0.0

0.5

d+2 —(d—1)/ —(d—1) 1/2 | -
n=—g T(d2)o, (m, T2 (23 05 .

. _ , o 02 0.4 06 08 10
Equationq18)—(22) generalize previous results derived in o

the three-dimensional ca&7]. The expressioii2l) clearly
ncicates th intinsic connection betveen the velocy gack,, 1.1 Flofh educed lement of e pressre ensorof e
ent and dissipation in the system. As a matte_r of faCt’ g'.ver?wo-dimensional case. The solid lines correspond to the present
that _6“22$1' the range ofreduced shear rates is defined in theory, the dotted ones to that of RET8], and the dashed ones to
the interval G=a*?<(d+2)(3+2d)%/32d(d+1). The pa- ot of Ref [19].

rametera* can be considered as the relevant nonequilibrium

parameter of the system. In the elastic limit,g=1, which
impliesa* =0), the equilibrium results of the molecular gas
are recovered, i.eR3, = . As was said in the Introduc- AP 1 /m+ a/mP1km=B (26)
tion, the steady simple shear flow for a monocomponent ' ' ’ '

granular fluid has been the subject of many previous worksypere

Two interesting studies have been carried out by Jenkins and

Richman for smooth inelastic disk48] and by Breyet al.

[19] for a d-dimensional system. The latter description has Bk/=m1f dvVv,V, 3.4 V|f;,f,]. (27)
been subsequently extended to dense gf2ek The ap-

The nonzero elements &f; obey the set of equations

proximated theory of Jenkins and Richmdg] is based on

a generalized Maxwellian distribution to model the stead)/b‘S don?Bbef%retmkt'he E[:r?S(T Bgd,lweéastl'mate the cplllstlpnalf
shear flow. On the other hand, Breyal. [19] solved a ki- moments,~ by taking the feading sonin€ approximation o

netic model equation of the Boltzmann equation and comfl’
pared their predictions for the reduced temperature, shear
stress, and normal stress differences with Monte Carlo simu- £ (V) frn(V
. . e . 1(V)— 1,M( )
lations. Comparison between kinetic model results and simu-
lation shows in general a good agreement. Our results differ
from those reported in Refgl8] and[19], although for prac- %
tical purposes, the discrepancies between the different ap-
proaches are quite small, even for moderate values,ef . . o
As an illustration, in Fig. 1 we compare the different theorieswherep,=n;T; and nowf, is a Maxwellian distribution
for the (reduced elements of the pressure tenddf in a  at the temperature of the tracer particles i.e.,
two-dimensional systemd=2). It is seen that the agree-
d/i2 m V2
1
ex“( 2T,

ment is remarkable, although the discrepancies slightly in-
crease as the restitution coefficient decreases. fim(V)=ng
B. Tracer component As will be shown later, the partial temperaturés and T,
are in general different so that the granular energy per par-
r;icle is not equally distributed between both species.
Once the collisional momerd, , is determinedsee the
9 Appendi®, the (reduced nonzero components ofP}
—aVny1=le[V|f1,fz]- (249 =p,/x,p, can be easily obtained from E6). These com-
X ponents can be written in terms of the temperature ratio

The most relevant moment at this level of approximation is= 11/T2. the restitution coefficientsr,, and ay,, and the

m, (Plk/ )
14— |
2T\ ps K

1.
ViV, — aV Sk || (28)

. (29

27TT1

In the absence of diffusion, the velocity distribution func-
tion f, of tracer particles satisfies the steady kinetic equatio

the pressure tensét, defined as parameters of the mixture. After some algebra, one gets
* * * F+H P’Z\_,)’y
Pi=my [ dVVV (V). (25) yy=Plzz= =Plge=——(—» (30

021308-4



TRACER DIFFUSION IN GRANULAR SHEAR FLOWS PHYSICAL REVIEW 66, 021308 (2002

* _ ar iyy_ H P;,xy (31)
1xy G '
Pf,xx:dY_(d_ 1)P’1"yy, (32 o
where B
V2 o\t [1+6\™
F=24 Pt B & (1+a)
M21
X 1+7(d_1)(l+6)(1+a12) ’ (33) . I . I . 1 N 1
0.5 0.6 0.7 o 0.8 0.9 1.0
\/5 o871 12
G=— E<_H> a1 ) (1+ ayy) F_IG_. 2. Depgr_ldence of the te_mperature _r@t'reT_l/Tz on the
022 ( ) restitution coefficientr,,= a1,=«a in the two-dimensional case for

w=2 and three different values of the mass ratio The dashed
line corresponds to the prediction given by the theory of Jenkins
(349  and Mancini[21] in the caseu=5.

X{2[(d+2)0+d+3]—3u(1+ 0)(1+ a1y},

H— \/_E T12 -t vz 1+ unforced casgl2,14-18. To the best of my knowledge, the
~4d\ oy H12 0(1+0) (1+a) only previous theories including temperature differences
have been proposed by Jenkins and Mang&ii] and by
X[3uai(1+ 6)(1+ agr)—2]. (39 Huilin et al.[22]. However, both works are phenomenologi-

cal with no attempt to solve the kinetic equation. Instead,
they assume that the velocity distribution function is a local

. S PR . Maxwellian. This is reasonable for estimating the dense gas
problem at this stage of approximation, it still remains to get

) . . collisional transfer contributions to the fluxes, but not for
the temperature ratig. It can be obtained, for instance, from

h : t€12) and it ai : tf evaluating their kinetic contributions. Both theories are ap-
€ requirements_L2) and ItS corresponding counterpart for plicable to a general flow field. In particular, the results ob-
species 1. This yields

tained by Jenkins and Mancif21] for the temperature ratio
in the low-density limit for inelastic disks can be written as

Here,#=m;T,/m,T, is the mean-square velocity of the gas

3P,
Y= g*—*xy (36)
172xy 1+p|l+w m(1+p)
, o y=l-Trnl 2y (a5 (1-ay)).
where the cooling raté} = ¢, /v for the tracer particles is r 38
(see the Appendix (38)
. (d+2)V2 {05971 1+6\Y2 In Fig. 2, we plot the temperature ratipversus the restitu-
{1 =7 4d 0—2 Ha1l 7y (1+ai) tion coefficienta for a size ratiow=2 and three values of
the mass ratiqu in the two-dimensional casel & 2). For the
X[2— poy(1+ 0)(1+ aq0)]. (37) sake of simplicity, henceforth we will assume that the

spheres or disks are made of the same material, @e.,

The solution to Eq.(36) gives y as a function of the =g4,,=q,,. Also for comparison, we show the prediction
restitution coefficientsr,, and a3, and the mechanical pa- given by Eq.(38) in the caseu=>5. Important discrepancies
rameters of the mixture, i.e., the mass ratiem;/m, and  petween both theories appear even for values ofose to 1.
the size ratiov= o4 /0,. Except for some limiting cases, Eq. As a matter of fact, the theory of Jenkins and Mancini pre-
(36) must be solved numerically. Thus, in the elastic caselicts a violation of energy equipartition much more signifi-
(azo=a1,=1), we recover the well-known equilibrium re- cant than our theory. It must be remarked that the quantita-
sults with y=1 and #—m, /m;, as required by the equipar- tive predictions of our theory at the level of the temperature
tition theorem. In the case of mechanically equivalent parratio have been recently confirmed by Monte Carlo simula-
ticles (my=m,, ax=a,, 01=0,), Egs. (18)—(22) and  tions[17,23. Regarding the influence of the parameters of
(30—(35) lead toP5 =P} and {3 ={7, so thaty=1. Be-  the mixture, we observe that for large mass ratios the tem-
yond the above limit cases, as expected, our results yield perature differences are quite significant, even for moderate
# 1. The violation of energy equipartition in driven granular dissipation(say «=0.9). The temperature of the tracer par-
mixtures has been recently observed in molecular-dynamicscles is larger than that of the excess species when the tracer
simulations of sheared mixturg¢8] and in real experiments grains are heavier than the grains of the gas. This behavior
[10,11]. This effect is generic of multicomponent granular has been also found in the recent computer simulations car-
systems and is consistent with previous results derived in theed out in rapid shear flof9].
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1. TRACER DIFFUSION UNDER SIMPLE SHEAR FLOW ments(related to the pressure tend®y) is necessary to get

We want to study the diffusion of tracer particles im- (e diffusion tensor in the S?lr)nne approximation.
mersed in a batkgranular gassubjected to the simple shear _ 1he kinetic equation forf;” can be obtained from the
flow. The diffusion process is induced in the system by aBoltzmann-Lorentz equatiof89) by collecting all the terms
weak concentration gradien¥x,. However, given that the ©f first order inVx:
strength of the shear rateis arbitrary, the mass flugwvhich

is generated by the gradieftx;) can be modified by the if(lO)_avyif(11>+(vk+ak/r/)if(10)
presence of the shear flow. As stated above, in the tracer limit at IV drg
the state of particles of species 1 is mainly governed by the =34 V|FD £,]. (43)

collisions with particles of species 2, so that the self-

collisions among particles 1 can be neglected. Thus, the kiaccording to the balance equatig#0), one has
netic equation governing the evolution of the velocity distri-

bution functionf; reads ot @ ot gx, ax, of )
—— = =yl =, (44)
ot axq at K7 0r, axy
ﬁfl_avyo"_\/)(f1+(vk+ak/r/)akallez[V”l’fZ]’ where use has been made of the fact that the zeroth-order
(39)  approximation to the mass flux vanishes, ij&)=0. More-
over,
where here the derivativé/dry is taken at constanV.
Tracer particles may freely exchange momentum and energy ot 9t ox,
with the particles of the granular gas, and, therefore, these e OXg Ny (49)

are not invariants of the collision operatdy, f1,f,]. Only
the number density of tracer particles is conserved. Mor&Jsing Eqgs.(44) and (45), Eqg. (43) can be written as
specifically, the mole fractior; obeys the conservation law

J o of{®
g J Vi aVyv, Tk VoV, (40
AT, o Xy =0, (40) *
at ary mqn, _ .
where A is the Boltzmann-Lorentz collision operator
where the mass flujq is defined as AFD =3, V|FD £,]. (47)
jl:mlJ dVV (V). (41) The solution to Eq(46) is proportional toVxy, i.e., it has
the form
Whena,,= a1,=1 (which givesa* =0), the well-known fBOV)=AV)-Vx,. (48

Fick law establishes a linear relationship between the mass o )

flux j, and the concentration gradie¥itx,. This law defines ~ Substitution of this into Eq(46) yields
the diffusion coefficient. For finite values of tHeeduced £(0)
shear ratea/v (which meansa,,# 1), one expects that a a!

generalized Ficks’'s law holds but now a diffusion tensor Xy

rather than a scalar should appear. Our aim is to get this : . o
tensor in terms ofws,, a1n, w, andw. To this end, and The first-order approximation to the mass flux is given by
assuming that the mole fraction is slightly nonuniform we

solve Eq.(39) by means of a perturbation expansion around J(ll)=m1f dVVf(ll)(V): ~D-Vxy, (50)

a nonequilibrium state with arbitrary shear rate, which is

equivalent to strong dissipation in the simple shear fleae
Eq. (21)]. Thus, we write

Jd
aV, +A

yav, TAA=

V. (49

where the tracer diffusion tensor is

fi=fO+fB+. .. (42) Dy, =~ m1J dVViAA(V). (51

wheref{¥ is of orderk in Vx, but applies for ararbitrary ~ The solution to the integral equatidd9) allows one to de-
degree of dissipation since this distribution retains all thetermine the quantityd. From this solution one can determine
orders ina. The solution(42) qualifies as a normal solution the tracer diffusion tensor by means of E§1).

since all the space and time dependencg, afccurs entirely In order to get an explicit expression for the tenBorwe
through x,(r;t) and their gradients. The zeroth-order ap-need to know the quantityl. A good estimate ofd to evalu-
proximationf{?) corresponds to the simple shear flow distri- ate the mass flug’ is given by the first Sonine approxima-
bution but taking into account now the local dependence omion, in which only the leading term in the expansion of
the mole fractiorx,. Although the explicit form oif(lo) isnot  A(V) in Sonine polynomials is kept. Thus, we take the fol-
exactly known, only the knowledge of its second-degree molowing approximation ta4:
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1 ]
A(V)—— ——V-Df (V). (52 >
nyTy '
. . e . . 4r .
Using Eq.(52), an equation for the diffusion tensor is easily Dxx*'Dyy*
derived from Eq(49). The result can be written as 3 |
- D * 4
(a+Q)-D=p,P%¥, (53 > (1/3)D*
where the nonzero components Bf are given by Egs. - ]
30)—(32) and we have introduced the tensorial quantit -
(30—(32) q y L D* p_*D
ml [
Q:_ f dVV AVflM . (54) - T - T — " s
n,Ty : 0
0.0 0.2 04 o 0.6 0.8 1.0
The expresion of the tens& has been obtained in the Ap- ) .
pendix with the result FIG. 3. Dependence of the diagonal and off-diagonal elements
of the reduced self-diffusion tensbB* on the restitution coefficient
2 pld=1)2 ay=a,=c in the three-dimensional case.

Q—aanﬂzlaggl(2T2/m2)1/2(1+ @1p) _ , _
the systemX axis) due to a concentration gradient parallel to
d+1 the gradient of the flow velocityy( axis). Both off-diagonal
X[(1+6)6]" Y2 | 1+ dr2 01+ d+2P4' (55 elements are negative.

Before analyzing the influence of the mechanical param-
eters of the mixture on diffusion, it is instructive to explore
the particular case of self-diffusion, i.e., when the tracer par-
ticles are mechanically equivalent to the gas particles. This
situation involves only single-particle motion and it is there-
. . . . . fore somewhat simpler to compute the diffusion coefficients.
Equation(56) is the primary result of this paper. It provides In particular, the temperature of the tracer particles is the

an explicit expression of the tracer diffusion tensor of came as that of the aas particles anddsel in Eas (30)
granular binary mixture in simple shear flow. The elements - 9as p gs-(o%)=
: - : : : (35 and (55). In Fig. 3, we plotD* —DZ*, 6 D —D%*
of this tensor give all the information on the physical mecha- "~} A _g. - P QX Yy Jzz Ty
nisms involved in the diffusion of tracer particles in a (Pxxt Dyy*+Dz)/3=(1/3)Di, —Djy, and—Dyj, as f“nf'
strongly sheared granular gas. In the absence of shear rdi@ns of the restitution coefficieni= a1,=a,. Here,Dj
(which is equivalent tax,y=a;,=1), Dy, =Dody,, where ~ =Djj/Do, with Do given by Eq.(57). We see that the de-
viation from the functional form for elastic collisions is quite

The solution of Eq(53) is

D=p,(a+Q)"-Pt. (56)

important even for moderate dissipation. Thus, for instance

d I'(dr2)

0= = —Vu(l+p)(mT)¥ (570  at a=0.8, D},—D;},~0.76, D},—D;,~0.046, (1/3D},
a2 7 T12 =1.18, —D,~1.039, and—Dy,=0.42. The figure also

is th diffusi ffici f lecul shows that the anisotropy of the system, as measured by the
is the tracer diffusion coefficient of a molecular da4]. As differencesD}, — D}, andD},~ D}, grows with the inelas-

the restitution coefficients decrease, rheo!oglqal effects be['|city. This anisotropy is much more important in the plane of
come important and the elements of the diffusion tensor are % . . .
shear flow D,—Dy,) than in the plane perpendicular to the

different from the one obtained in the equilibrium case. The . * . . .
dependence of the diffusion coefficients on the restitutior] W Vfloc'ty*(Dzz_*Dyy)'_ This is basically due to the fact
coefficientsa,, and a;, as well as on the mass raipand ~ atPsx# Psyy=Ps ., with s=1,2. _

the size ratiow is highly nonlinear. As happens for elastic = AS said before, Campbelb] has carried out molecular-
fluids [25], Eq. (56) shows that diffusion under simple shear dynamics simulations to measure the nonzero elements of

flow is a very complex problem due basically to the anisot-the self-diffusion tensor. In his work, the self-diffusion coef-
ropy induced in the system by the shear flow. ficients were nondimensionalized by the product of the shear

To illustrate the dependence of the elemebts on the rate and the particle diameter. In our units, this corresponds
parameters of the problem, let us consider a mixture of into the reduced tensd;;=D/a*. Although the solid frac-
elastic hard spheresd&3). According to Eq.(56), D,, tions analyzed in his simulations prevent us in general from
=D,=D,,=D,,=0, in agreement with the symmetry of mgking a qu_antitative compa_rison betweeq our Fhe(mey
the problem. Consequently, there are five relevant elementstricted to dilute gasg¢sand his computer simulations, we
the three diagonal and twoD¢,, Dy,) off-diagonal ele- observe that the general qualitative dependence of the self-
ments. In generaD,,#Dy,#D,, andD,,#D,,. The off- diffusion tensor on dissipation agrees well with our results, at
diagonal elements measure cross effects in the diffusion deast for the lowest solid fraction considered. Thus, theory
particles induced by the shear flow. Thus, for instarizg, and simulation predict that the magnitude of the normal dif-
gives the transport of mass along the direction of the flow ofusion coefficients follow the patter,,>D,,> Byy while,
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' ' ' ' ' ' ' ' means strong dissipation. For this reason, the Boltzmann-
Lorentz equation corresponding to the tracer particles has
been solved by means of a perturbation expansion around a
nonequilibriumsheared state. This implies that the different
approximations of this expansion amenlinearfunctions of

the restitution coefficients as well as of the parameters of the
mixture (mass and size ratinsTo get explicit results, we
have used a first Sonine polynomial approximation to evalu-
ate the cooling rates and the collisional moments of the Bolt-
zmann operators. The reliablity of this approximation has
been recently assessed in thure shear flow problem

2k (d . where it has been shown to agree very well with Monte
. 1 . ! . ! . L . Carlo simulations in the case of hard sphdrkg.
0.5 0.6 0.7 o 0.8 0.9 1.0 The kinetic theory results show that the elemets of

the diffusion tensor present a complex dependence on the
FIG. 4 Dependence of the scaka 3D}, , the difference(b) restitution coefficientsy,, and a1, and on the mass ratio

Dyx—Dj,, and the off-diagonal elements) D5, and(d) Dy, ofthe ~ =m,/m, and the size rativ=0/0,. In the elastic case,
reduced tracer diffusion tensd@* on the restltutlon coefﬂment @i = 1, D D05ij , WwhereDy is given by Eq.(57) and one
az= 1= in the three-dimensional case far=2 and wo val-  recovers the expression of the diffusion coefficient for nor-
ues of the mass ratia: =2 (solid lines and..=4 (dashedlines  mal fluids. The deviations of the tensby; from the scalar

D, have two distinct origins. First, the presence of shear flow
in general, the elemenfsIJ decrease as the restitution coef- gives rise to the new tensorial terax+ Q on the left-hand

ficient decreases. An exception to the latter rule is the eleside of Eq.(53) instead of the corresponding collision fre-

mentf)xx, which does not depend sensitively an On the  quency of the elastic diffusion problem. Second, given that
other hand, in Campbell’s simulation wo&], he found that  the tracer and fluid particles are mechanically different, the
the values of-D,, were roughly of the same magnitude as "éférence statgzeroth-order approximation of the expansion
D, provided that the solid fraction is smaller than 0.4 ThisOf tracer part|cle§ is completely different from that of the gas
tre/%d is not completely followed by our theory siﬁce thepartlcles. In particular, whep.#1 and/orw=1, the tem-
~ - o _ ) perature ratioy is clearly different from 1(as can be seen in
values of—D,y andD,, are significantly different for highly  Fig. ), confirming the breakdown of the energy equiparti-
inelastic spheres. Thus, for instance, @+=0.8, —D,, tion. The effect of different temperatures for the tracer and
~2.43 andD,~2.15 but—D,,~2.54 andD,,~1.10 ate  9as particles is expressed by the appearande=qi/ y in P,
=0.4. [cf. Egs.(30)—(32)] and in Q. Each one of the two afore-
The dependence of the diffusion coefficiem on the Mmentioned effects is a different reflection of dissipation

restitution coefficient for different values of the mass ratio Present in the system. o _

is illustrated in Fig. 4. In this case, we take a size ratio A simple case is the self-diffusion problem, i.e., when the
=2 and two values of the mass ratjp=2 andu=4. Fora tracer and gas particles are mechanically equivalent. In this
given value of the inelasticity, we observe that the deviation§ase,P; =Py and y=1. This situation has been previously

from the elastic results are more important as the tracer pagtudied by Campbel[6] by means of molecular-dynamics
ticles are heavier than the gas particles. simulations. As has been discussed in Sec. lll, our predic-

tions for the self-diffusion tensor agree qualitatively well
with these simulations. On the other hand, when the tracer
and gas particles are mechanicatlifferent to my knowl-

In this paper, we have described diffusion of tracer paredge no previous studies on the diffusion tensor under shear
ticles in a granular gas subjected to the simple shear flow. Wow have been made. As pointed out in the Introduction,
have been interested in the steady state where the effect ofost of the works on granular mixturg8] are based on the
viscosity is compensated for by the dissipation in collisions. Chapman-Enskog expansion around a local equilibrium state
Under these conditions, the resulting diffusion is anisotropiaup to the Navier-Stokes order, and therefore they are re-
and, thus, cannot be described by a single diffusion coeffistricted to the low-dissipation limit in the simple shear flow.
cient. Instead, it must be described by a diffusion tensoin addition, they also assume a single temperature to de-
whose explicit determination has been the main objective ocribe the mixture. A more careful calculation which takes
this work. In order to capture the essential aspects of such iato account temperature differences has been recently made
nonlinear problem, we have considered here a granular mixy Garzoand Dufty [13,14. They have obtained explicit
ture in the low-density regime as a prototype granular sysexpressions for the transport coefficients of a granular binary
tem, which lends itself to a detailed description by means ofixture in terms of the restitution coefficients and the param-
the nonlinear Boltzmann kinetic equation. eters of the mixture. Since these results have been derived

We have been concerned with the physical situatiortaking the freely cooling state as the reference one, the dif-
where a weak concentration gradient coexists with a stronfusion is characterized by a single scalar coefficient that can-
shear rate, which for the steady simple shear flow problenmot be directly compared to the diffusion tensor obtained

IV. CONCLUDING REMARKS
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2.5 T T T T T T T T T APPENDIX: EVALUATION OF ¢, A, B, AND ©

S | In this appendix, we evaluate the cooling ratgs the

. collisional velocity moment# andB, and the tensorial col-
lision frequencyQ by using the corresponding leading So-
nine approximations.

1. Evaluation of ¢;

The cooling ratel; of the tracer particles is defined as

1
g]_: — danlf dV1m1V§J12[V1|f1,f2]_ (Al)

0.5 0.6 0.7 0.8 0.9 1.0 A useful identity for an arbitrary functioh(V,) is given by

FIG. 5. Plot of the scala$ D}, and the reduced diffusion coef- )
ficient D* obtained in Ref[13] as functions of the restitution co- dVlh(Vl)JlZ[Vl“l fal
efficient a,,= a1,=« in the three-dimensional case far=2 and

two values of the mass ratiz: u=2 (solid lineg and u=4 _

(dashed lines =0 1] dvlf dV,f (V) (V)

here. However, it would be interesting to compare the diffu- X f do®(o-g)(o-g)[h(V])—h(Vy)],
sion results obtained here in the driven sheared case with

those found in the unforced caf&3]. In Fig. 5, we have (A2)

compared the behavior of the scalgby, (which can be )

understood as a generalized mutual diffusion coefficient in avith

sheared mixtunewith the (reduced diffusion coefficientD* L

obtained in Ref[13] in the tracer limit ;—0). We observe Vi=Vi— un(l+ap)(o-g)o. (A3)

that, although the reference states in both descriptions are

very different, the dependence of both diffusion coefficientsUsing Eq.(A2), Eq. (A1) can be written as

on dissipation is quite similar since they increaseaai-

creases. This trend is more significant in the unforced case m

than in the sheared case. ’ 1=~ dn—;rl“(ljgl(lJr“lZ)“ZlJ dvlf dVafi(Vo)f2(V2)
The evaluation of the diffusion tensor for practical pur-

poses requires the truncation of a Sonine polynomial expan- f Ll ~ 2

sion. In the case of thépure simple shear flow problem, X | doO(o-gp)(ogrp)

recent Monte Carlo simulatiorfd7,23 have shown the ac- . .

curacy of the leading-order truncation. We expect that this X[ #21(1+ a1 (0o g12) —2(Vy-0)]. (A4)

agreement may be extended to the elements of the diffusion

tensor for a wide range of values of dissipation. Exceptiond© perform the angular integrations, we need the results
to this agreement could be disparate mass binary mixtures
(e.g., electron-proton systej®r which the first Sonine so-
lution is not perhaps a good approximation and higher-order
terms should be considered. We hope that the results derived
in this paper will stimulate the performance of computer ~ oA - e no1
simulations to check the quality of the approximations given f doO(001)(0- 01" 0= B1191, J12,  (A6)
here for the diffusion tensor. Given the difficulties associated

with molecular-dynamics simulations in the low-density re-where

gime, one could perhaps use the direct simulation Monte

Carlo method 26], which is being shown to be fruitful in the (dfl)lzr((n_*— 1)/2)

context of granular systems. Ba=1 T(nd)2)’ (A7)

| dr0 00600 =gl a9
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where G,= u1,V1+ uoV, is the center-of-mass velocity. The corresponding expression foy can be easily obtained
Now, we take the Sonine approximations given by Bd)  from Eq.(A13) and the result is

for f, and Eq.(28) for f;. Neglecting nonlinear terms in the

tensorsC;=P} —1, one gets

(=112 s ,
men §2=\/§Wn202 vo(l—azz). (A14)
(LI I
§1= g, 012 oBamaltar) 67,(0),  (R9)
where 2. Evaluation of A and B

Since the tensoh can be easily obtained from the expres-

L . sion of B, let us explicitly evaluate the latter tensor. It is
[(O)=m JdV jdV O 121975 (1— ag) defined as

+2(gt, G Je MTVE (A10)
B:J dVimV,V1Ji V4| 1,5l (A15)
Here, V{=Vilvg, 05=01o/vo, Gi1,=Gilvg, 0
:Mlz/(/.L21'y), '}/:T]_/Tz, andl}O: \/2T2/m2. In EQS(AQ)
and (A10), use has been made of the fact that the scalar
cannot be coupled to the traceless terSpso that the only
contributions tof; come from the(pure Maxwellian terms
in Egs.(16) and(28). The integral ; can be evaluated by the  B=—m, 0%, 1 Baup(1+ alz)f dvlf dV,f,(Vy)
change of variables

Using Eq.(A2), Eqg. (A15) can be written as

M21
X=V¥-V%, y=6Vi+V}, (A11) X fz(Vz)glz[ 012G 12+ G910+ m(2d+ 3—-3ay)
with the Jacobian (% ) 9. The integrall 0) can be now Mot 5
easily computed with the result X Gb12~ g7 53 (1+ @191l s (A16)
1 ,(0)= w —(d+3)/2(1 4 )12 where use has been made of E46) and
I'(d/2)
X[2= paa(1+ 60)(1+ ag))]. (A12)

Jd&®(&'912)(&'912)n&& nﬁdglz 2(Ngy012+ %))
(A17)

Use of the resultA12) in Eq. (A9) yields

ld=1)2 14 g\ 12
L= 24T dn) N20%; fwomar( 1+ alZ)( ) Substituting the Sonine approximatiofiss) and (28) for f,
and f,, respectively, and retaining only linear terms in the

X[2— o1+ 0)(1+ aq))]. (A13)  tensorsC;, one gets

1
UHERT eclz(v*;v*; - —vﬁ)

B: - ml(ng_ lﬂg/.tzj_(l'f' a’lz) nlnzvgf)dlzwfdf dV;_c f dV; g’{267 0VI27 d

+C,

. V*V* _ EV*ZH)
. 2V2 2

M21
d 01.Giot GlOit o = d 3 (2d +3—3a1) 0107~ m(l"‘ 0112)9’1(224 . (A18)

This integral can be computed by the change of variatdd4). After a lengthy algebra, the result is

312 |

0 ( (d+3) 1+6 ) s ( (d+3) ) .
Zareel\ M 2@y o PI—| 1= 5rgrgy (1 OMa2fP3 || (AL9)

Ad-1)2
m‘flz "myngnouo(1+ agpvy

1+6
0

g2 " graraltan)|l
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where 3. Evaluation of Q
2 3 . .
_ _ The tenso is defined as
Ao 1o d+3M21(1+ aiy). (A20)
The corresponding expression farcan be easily inferred my
from Eq. (A19) by just making the change—22 and 6 Q=- anJ dViV1did Vifim, fal. (A22)
—1:
2 pld=1)12
A=(—ag*1m2n§ug(1+a22) . o
2d(d+2)I'(d/2) The evaluation of(2 can be made following similar math-

. ematical steps as above. Thus, using &d.) and the Sonine
X{[d+1+ay(d—1)]1-(2d+3-3ay)P3}.  (A21)  approximation tof, in Eq. (A22), one gets

m * 2 * 2
ﬂzT—llw*da‘fglﬂﬂ(ualz)ﬁgnzvgedfz f dvy J dV3ghgh, V| 1+ Cy: e Vi V2

V*V*—EV*Zl)
2V2 d 2

=2n,7 Ypoi(1+ aqp) 09, 1092 Ly o Ba(1+ a)—<l+d>f dxfdyxx(x+ Y)[1+(1+6) 2C,:(y— x)(y— 6X)]

x g~ bX-cy?, (A23)

whereb=6(1+ )~ andc=(1+6) L. This integral is easily performed, with the result

o (d-1)2 - 149\ 12 P .
QZamMlez Novo(l+ agy) o +mm(Pz—l) : (A24)

This expression yields E@55) given in the text.
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