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Tracer diffusion in granular shear flows

Vicente Garzo´
Departamento de Fı´sica, Universidad de Extremadura, E-06071 Badajoz, Spain

~Received 15 April 2002; published 30 August 2002!

Tracer diffusion in a granular gas in simple shear flow is analyzed. The analysis is made from a perturbation
solution of the Boltzmann kinetic equation through first order in the gradient of the mole fraction of tracer
particles. The reference state~zeroth-order approximation! corresponds to a Sonine solution of the Boltzmann
equation, which holds for arbitrary values of the restitution coefficients. Due to the anisotropy induced in the
system by the shear flow, the mass flux defines a diffusion tensorDi j instead of a scalar diffusion coefficient.
The elements of this tensor are given in terms of the restitution coefficients and mass and size ratios. The
dependence of the diffusion tensor on the parameters of the problem is illustrated in the three-dimensional case.
The results show that the influence of dissipation on the elementsDi j is in general quite important, even for
moderate values of the restitution coefficients. In the case of self-diffusion~mechanically equivalent particles!,
the trends observed in recent molecular-dynamics simulations are similar to those obtained here from the
Boltzmann kinetic theory.

DOI: 10.1103/PhysRevE.66.021308 PACS number~s!: 45.70.2n, 05.20.Dd, 51.10.1y, 47.50.1d
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I. INTRODUCTION

Granular systems under rapid flow conditions can
modeled as a fluid of inelastic hard spheres. In the simp
model, the grains are taken to be smooth so that the ine
ticity is characterized through a constant coefficient of n
mal restitution. The essential difference with respect to m
lecular fluids is the absence of energy conservation yield
modifications of the usual hydrodynamic equations. Due
the kinetic-energy dissipation in collisions, energy must
externally injected to the granular gas in order to achiev
stationary state. In some experimental situations, the gran
system is driven into flow by the presence of a shear field
this case, a steady state is possible when the amount o
ergy supplied by shearing work is balanced by that lost
to the inelastic cooling. The study of the rheological prop
ties of this steady shear flow state has received a great de
attention in recent years, especially in the case of o
component systems@1#. However, much less is known in th
more complicated case of multicomponent mixtures
grains.

An interesting problem is the analysis of diffusion
granular shear flows. The understanding of mass transpo
granular systems is of practical interest since, for instan
powders must frequently be mixed together before any
of processing can begin. The self-diffusion phenomenon
granular flows was studied earlier. Experimental studies
clude both systems with macroscopic flows@2,3# and verti-
cally vibrated systems@4#. Complementary computer simu
lation studies have also been carried out@5#, with special
emphasis on the influence of the solid volume fraction on
diffusive motion of the grains. In general, all these previo
studies were limited to observing the diffusion in only o
direction, usually the direction parallel to the velocity grad
ent. However, due to the anisotropy induced in the system
the presence of shear flow, a diffusion tensor is required
describe the diffusion process instead of a single diffus
coefficient. To the best of my knowledge, the only attemp
measure the elements of this self-diffusion tensor has b
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made by Campbell@6#. He measured these elements v
molecular-dynamics simulations by using both particle tra
ing and through velocity correlations. Both methods we
found to agree with reasonable accuracy. Very recently@7#,
the self-diffusion coefficients have been experimentally m
sured in a granular system under Couette flow by employ
image technology.

In the context of kinetic theory, studies on granular flow
in mixtures are scarcer. Most of them@8# are based on a
Navier-Stokes description and, therefore, they are restric
to small velocity gradients, which for the steady simple sh
flow is equivalent to the low-dissipation limit. For this rea
son, the diffusion is only characterized by a single coeffici
which is not affected by the presence of the shear field
addition, although these studies permit in principle differe
temperatures for the two species, they assume equal pa
granular temperaturesTi in the quasielastic limit. Neverthe
less, given the intrinsic connection between the shear
and dissipation in this problem, energy nonequipartition
expected as the restitution coefficient decreases. As a m
of fact, some recent results obtained in molecular-dynam
simulations of granular sheared mixtures@9# as well as in
real experiments of vibrated mixtures in three@10# and two
dimensions@11# clearly show the breakdown of energy equ
partition. This implies that the temperaturesTi are different
from the mixture temperatureT. The consequences of thi
effect on the transport properties are in general significan
has been recently found in the freely cooling case@12,13#. In
conclusion, a consistent theory describing diffusion in gra
lar shear flows must take into account both the tensorial c
acter of the mass transport as well as the possibility of te
perature differences.

The aim of this paper is to get the diffusion tensor in
binary granular mixture under simple shear flow in t
framework of the Boltzmann equation. Due to the comple
ity of the general problem, here we consider the special c
in which one of the components~say, for instance, the spe
cies 1! is present in tracer concentration. The tracer probl
is more amenable to analytical treatment. First, the tra
©2002 The American Physical Society08-1
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particles are directly enslaved to the granular gas, and se
there are fewer parameters@14–16#. Therefore, in this situa-
tion one can assume that the velocity distribution functionf 2
of the excess component~granular gas! obeys a~closed! non-
linear Boltzmann equation while the velocity distributio
function f 1 of the tracer particles~impurities! satisfies a
Boltzmann-Lorentz equation. The starting point of our stu
is a recent solution of the set of Boltzmann equations fo
binary mixture of inelastic hard spheres under shear fl
@17#. The corresponding Boltzmann-Lorentz equation for
impurities is solved by means of a perturbative scheme
powers of the gradient of the mole fraction of tracer p
ticles. The main feature of this expansion is that the re
ence state around which we perturb is not restricted to sm
values of the shear rate, which for the steady shear fl
problem is equivalent to an arbitrary degree of dissipation
the first order of the expansion, the tracer diffusion tenso
identified from the mass flux. Explicit expressions for t
nonzero elements of this tensor are obtained by using a
Sonine polynomial approximation. These elements are gi
in terms of the restitution coefficients and the parametes
the mixture~masses and sizes!.

The plan of the paper is as follows. In Sec. II, we intr
duce the set of coupled Boltzmann equations describing
mixture and state the problem we are interested in. The s
of the mixture in the absence of diffusion is analyzed and
particular, the nonzero elements of the pressure tensorP2 of
the granular gas are obtained in the leading Sonine appr
mation. Comparison of these results with previous theorie
also presented. The section ends studying the state of tr
particles with special emphasis on the evaluation of the s
cific dependence of the temperature ratioT1 /T2 on restitu-
tion coefficients, mass ratio, and size ratio. Section III de
with the perturbation scheme used to solve the Boltzma
Lorentz equation of the tracer particles when the diffus
takes place in the system. This section contains the m
results of the paper since we determine the tracer diffus
tensor in the first order of the expansion of the concentra
gradient. The dependence of the nonzero elements of
tensor on the different parameters of the problem is ill
trated in the three-dimensional case, showing a good qu
tative agreement with Campbell’s simulations@6#. Finally, in
Sec. IV we close the paper with some concluding remar

II. DESCRIPTION OF THE PROBLEM: GRANULAR
MIXTURE IN SIMPLE SHEAR FLOW

We consider a granular binary mixture composed
smooth inelastic disks (d52) or spheres (d53) of masses
m1 and m2 and diameterss1 and s2. Collisions between
particles are inelastic and characterized by three constant
titution coefficientsa11, a22, anda125a21, wherea i j <1
refers to the restitution coefficient for collisions between p
ticles of speciesi and j. In the low-density regime, the one
particle velocity distribution functionsf i(r ,v1 ;t) ( i 51,2)
obey the set of nonlinear Boltzmann kinetic equations,

S ]

]t
1v1•“ D f i~r ,v1 ;t !5(

j
Ji j @v1u f i~ t !, f j~ t !#, ~1!
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where the Boltzmann collision operatorJi j @v1u f i , f j # de-
scribing the scattering of pairs of particles is

Ji j @v1u f i , f j #5s i j
d21E dv2E dŝ Q~ŝ•g12!~ŝ•g12!

3@a i j
22f i~r ,v18 ,t ! f j~r ,v28 ,t !

2 f i~r ,v1 ,t ! f j~r ,v2 ,t !#. ~2!

Here, d is the dimensionality of the system,s i j 5(s i

1s j )/2, ŝ is a unit vector along their line of centers,Q is
the Heaviside step function, andg125v12v2. In addition,
the primes on the velocities denote the initial values$v18 ,v28%
that lead to$v1 ,v2% following a binary collision,

v185v12m j i ~11a i j
21!~ŝ•g12!ŝ,

v285v21m i j ~11a i j
21!~ŝ•g12!ŝ, ~3!

wherem i j 5mi /(mi1mj ). At a hydrodynamic level, the rel
evant quantities are the number densitiesni , the flow veloc-
ity u, and the ‘‘granular’’ temperatureT. They are defined in
terms of moments of the distributionf i as

ni5E dvf i~v!, ru5(
i

r iui5(
i
E dvmivf i~v!,

~4!

nT5(
i

niTi5(
i
E dv

mi

d
V2f i~v!, ~5!

wheren5n11n2 is the total number density,r5r11r2 is
the total mass density, andV5v2u is the peculiar velocity.
Equations~4! and~5! also define the flow velocityui and the
partial temperatureTi of speciesi, which measures the mea
kinetic energy of speciesi.

The collision operators conserve the particle number
each species and the total momentum, but the total energ
not conserved. This implies that

(
i , j

E dv1
2 miV

2Ji j @vu f i , f j #52
d

2
nTz, ~6!

wherez is identified as the ‘‘cooling rate’’ due to inelasti
collisions among all species. At a kinetic level, it is al
convenient to discuss energy transfer in terms of the ‘‘co
ing rates’’ z i for the partial temperaturesTi . They are de-
fined as

z i52
1

dniTi
(

j
E dvmiV

2Ji j @vu f i , f j #. ~7!

The total cooling ratez can be expressed in terms ofz i as

z5T21(
i

xiTiz i , ~8!

wherexi5ni /n is the mole fraction of speciesi.
8-2
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Let us now describe the problem we are interested in.
consider a granular binary mixture in which the masses
sizes of both species are arbitrary. Our aim is to analyz
diffusion problem in a mixture of grains driven into flow b
the action of shear forces. Here, we consider the simple
of the tracer limit, namely a binary mixture in which one
the components~say, for instance, 1! is present in tracer con
centration (x1!1). In the tracer limit, one expects that th
state of the granular gas is not affected by the presence o
tracer particles so that its velocity distribution functionf 2
obeys a ~closed! nonlinear Boltzmann equation. Furthe
more, the mole fraction of tracer particles is so small t
their mutual interactions can be neglected in the kine
equation off 1. As a consequence, the velocity distributio
function of tracer particlesf 1 satisfies a~linear! Boltzmann-
Lorentz equation. Let us start by describing the state of
mixture in the absence of diffusion.

A. Granular gas „excess component…

We assume that the granular gas is subjected to the sim
shear flow. From a macroscopic point of view, this state
characterized by a constant linear velocity profileu5u25a
•r , where the elements of the tensora areakl 5adkxd l y , a
being the constant shear rate. In addition, the partial den
n.n2 and the granular temperatureT.T2 are uniform. The
temporal variation of the granular temperatureT2 can be
obtained from the Boltzmann equation~1! as

]p2

]t
52aP2,xy2

d

2
z2p2 , ~9!

wherep25n2T2,

P25m2E dvVV f 2 ~10!

is the pressure tensor of the gas, and in the tracer limit

z252
1

dn2T2
E dvm2V2J22@vu f 2 , f 2#. ~11!

The balance of energy~9! shows the different nature of thi
state for molecular and granular systems. While for ela
fluids (z250) the temperature increases monotonically
time due to the viscous heating termaP2,xy , a steady state is
possible for granular systems when the viscous heatin
exactly compensated by the collisional cooling te
(d/2)p2z2. In that case, the shear stressP2,xy and the cooling
ratez2 are related by

aP2,xy52
d

2
z2p2 . ~12!

As a consequence, for a given shear ratea, the~steady! tem-
peratureT2 is a function of the restitution coefficienta22.
This steady state is what we want to analyze.

The simple shear flow becomes spatially uniform wh
one refers the velocities of the particles to a frame mov
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with the flow velocityu: f 2(r ,v)→ f 2(V). Consequently, the
stationary Boltzmann equation for the excess component
comes

2aVy

]

]Vx
f 2~V!5J22@Vu f 2 , f 2#. ~13!

We are mainly interested in computing the nonzero eleme
of the pressure tensorP2. These elements can be obtained
multiplying the Boltzmann equation~13! by m2VkVl and
integrating overV. The result is

akmP2,l m1al mP2,km5Akl , ~14!

where

Akl 5m2E dVVkVl J22@Vu f 2 , f 2#. ~15!

To get an explicit expression forP2 one needs to comput
the right-hand side of the set of Eq.~14!. This requires the
explicit knowledge off 2, which is not known even in the
elastic limit. However, one expects to get a good estimate
the low moments of the Boltzmann collisional operator
expandingf 2 in Sonine polynomials and then to truncate t
series after the first few terms. This approach is similar to
usual moment method for solving the Boltzmann equation
the elastic case. Therefore, we take the leading Sonine
proximation,

f 2~V!→ f 2,M~V!F11
m2

2T2
S P2,kl

p2
2dkl D

3S VkVl 2
1

d
V2dkl D G , ~16!

wheref 2,M is a Maxwellian distribution at the temperature
the gas, i.e.,

f 2,M~V!5n2S m2

2pT2
D d/2

expS 2
m2V2

2T2
D . ~17!

With the approximation~16!, the integrals appearing in th
expressions of the cooling ratez2 and the collisional momen
Akl can be explicitly evaluated. The details of the calculati
are given in the Appendix. This allows us to get the expli
expressions of the nonzero elements ofP2. They are given
by

P2,yy* 5P2,zz* 5•••5P2,dd* 5
d111~d21!a22

2d1323a22
, ~18!

P2,xy* 524d
d111~d21!a22

~11a22!~2d1323a22!
2

a* , ~19!

P2,xx* 5d2~d21!P2,yy* , ~20!

a* 25
d12

32d

~11a22!~2d1323a22!
2~12a22

2 !

d111~d21!a22
. ~21!
8-3
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VICENTE GARZÓ PHYSICAL REVIEW E 66, 021308 ~2002!
Moreover, the~reduced! cooling ratez2* is

z2* 5
d12

4d
~12a22

2 !. ~22!

Here,P2* 5P2 /p2 , a* 5a/n, z2* 5z2 /n, andn is a charac-
teristic collision frequency given byn5p2 /h, whereh is
the shear viscosity coefficient of the gas in the elastic lim
i.e.,

h5
d12

8
p2(d21)/2G~d/2!s2

2(d21)~m2T2!1/2. ~23!

Equations~18!–~22! generalize previous results derived
the three-dimensional case@17#. The expression~21! clearly
indicates the intrinsic connection between the velocity gra
ent and dissipation in the system. As a matter of fact, gi
that a22<1, the range of~reduced! shear rates is defined i
the interval 0<a* 2<(d12)(312d)2/32d(d11). The pa-
rametera* can be considered as the relevant nonequilibri
parameter of the system. In the elastic limit (a2251, which
impliesa* 50), the equilibrium results of the molecular ga
are recovered, i.e.,P2,kl* 5dkl . As was said in the Introduc
tion, the steady simple shear flow for a monocompon
granular fluid has been the subject of many previous wo
Two interesting studies have been carried out by Jenkins
Richman for smooth inelastic disks@18# and by Breyet al.
@19# for a d-dimensional system. The latter description h
been subsequently extended to dense gases@20#. The ap-
proximated theory of Jenkins and Richman@18# is based on
a generalized Maxwellian distribution to model the stea
shear flow. On the other hand, Breyet al. @19# solved a ki-
netic model equation of the Boltzmann equation and co
pared their predictions for the reduced temperature, sh
stress, and normal stress differences with Monte Carlo si
lations. Comparison between kinetic model results and si
lation shows in general a good agreement. Our results d
from those reported in Refs.@18# and@19#, although for prac-
tical purposes, the discrepancies between the different
proaches are quite small, even for moderate values ofa22.
As an illustration, in Fig. 1 we compare the different theor
for the ~reduced! elements of the pressure tensorP2* in a
two-dimensional system (d52). It is seen that the agree
ment is remarkable, although the discrepancies slightly
crease as the restitution coefficient decreases.

B. Tracer component

In the absence of diffusion, the velocity distribution fun
tion f 1 of tracer particles satisfies the steady kinetic equa

2aVy

]

]Vx
f 15J12@Vu f 1 , f 2#. ~24!

The most relevant moment at this level of approximation
the pressure tensorP1 defined as

P15m1E dVVV f 1~V!. ~25!
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The nonzero elements ofP1 obey the set of equations

akmP1,l m1al mP1,km5Bkl , ~26!

where

Bkl 5m1E dVVkVl J12@Vu f 1 , f 2#. ~27!

As done before in the case ofP2, we estimate the collisiona
momentBkl by taking the leading Sonine approximation
f 1,

f 1~V!→ f 1,M~V!F11
m1

2T1
S P1,kl

p1
2dkl D

3S VkVl 2
1

d
V2dkl D G , ~28!

wherep15n1T1 and nowf 1,M is a Maxwellian distribution
at the temperature of the tracer particlesT1, i.e.,

f 1,M~V!5n1S m1

2pT1
D d/2

expS 2
m1V2

2T1
D . ~29!

As will be shown later, the partial temperaturesT1 and T2
are in general different so that the granular energy per p
ticle is not equally distributed between both species.

Once the collisional momentBkl is determined~see the
Appendix!, the ~reduced! nonzero components ofP1*
5P1 /x1p2 can be easily obtained from Eq.~26!. These com-
ponents can be written in terms of the temperature ratiog
5T1 /T2, the restitution coefficientsa22 and a12, and the
parameters of the mixture. After some algebra, one gets

P1,yy* 5P1,zz* 5•••5P1,dd* 52
F1HP2,yy*

G
, ~30!

FIG. 1. Plot of the reduced elements of the pressure tensor o
granular gas as functions of the restitution coefficienta22[a in the
two-dimensional case. The solid lines correspond to the pre
theory, the dotted ones to that of Ref.@18#, and the dashed ones t
that of Ref.@19#.
8-4
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TRACER DIFFUSION IN GRANULAR SHEAR FLOWS PHYSICAL REVIEW E66, 021308 ~2002!
P1,xy* 5
a* P1,yy* 2HP2,xy*

G
, ~31!

P1,xx* 5dg2~d21!P1,yy* , ~32!

where

F5
A2

2d S s12

s22
D d21

m12S 11u

u3 D 1/2

~11a12!

3F11
m21

2
~d21!~11u!~11a12!G , ~33!

G52
A2

4d S s12

s22
D d21

m21S 1

u~11u! D
1/2

~11a12!

3$2@~d12!u1d13#23m21~11u!~11a12!%,

~34!

H5
A2

4d S s12

s22
D d21

m12S 1

u~11u! D
1/2

~11a12!

3@3m21~11u!~11a12!22#. ~35!

Here,u5m1T2 /m2T1 is the mean-square velocity of the g
particles relative to that of the tracer particles. To close
problem at this stage of approximation, it still remains to g
the temperature ratiog. It can be obtained, for instance, from
the requirements~12! and its corresponding counterpart f
species 1. This yields

g5
z2* P1,xy*

z1* P2,xy*
, ~36!

where the cooling ratez1* 5z1 /n for the tracer particles is
~see the Appendix!

z1* 5
~d12!A2

4d S s12

s2
D d21

m21S 11u

u D 1/2

~11a12!

3@22m21~11u!~11a12!#. ~37!

The solution to Eq.~36! gives g as a function of the
restitution coefficientsa22 and a12 and the mechanical pa
rameters of the mixture, i.e., the mass ratiom5m1 /m2 and
the size ratiow5s1 /s2. Except for some limiting cases, Eq
~36! must be solved numerically. Thus, in the elastic ca
(a225a1251), we recover the well-known equilibrium re
sults withg51 andu→m1 /m2 as required by the equipar
tition theorem. In the case of mechanically equivalent p
ticles (m15m2 , a225a12, s15s2), Eqs. ~18!–~22! and
~30!–~35! lead toP2* 5P1* and z2* 5z1* , so thatg51. Be-
yond the above limit cases, as expected, our results yieg
Þ1. The violation of energy equipartition in driven granul
mixtures has been recently observed in molecular-dynam
simulations of sheared mixtures@9# and in real experiments
@10,11#. This effect is generic of multicomponent granul
systems and is consistent with previous results derived in
02130
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unforced case@12,14–16#. To the best of my knowledge, th
only previous theories including temperature differenc
have been proposed by Jenkins and Mancini@21# and by
Huilin et al. @22#. However, both works are phenomenolog
cal with no attempt to solve the kinetic equation. Inste
they assume that the velocity distribution function is a lo
Maxwellian. This is reasonable for estimating the dense
collisional transfer contributions to the fluxes, but not f
evaluating their kinetic contributions. Both theories are a
plicable to a general flow field. In particular, the results o
tained by Jenkins and Mancini@21# for the temperature ratio
in the low-density limit for inelastic disks can be written a

g512
11m

11w F11w

2m
~12a12!2Am~11m!

2
~12a22!G .

~38!

In Fig. 2, we plot the temperature ratiog versus the restitu-
tion coefficienta for a size ratiow52 and three values o
the mass ratiom in the two-dimensional case (d52). For the
sake of simplicity, henceforth we will assume that t
spheres or disks are made of the same material, i.ea
[a225a12. Also for comparison, we show the predictio
given by Eq.~38! in the casem55. Important discrepancie
between both theories appear even for values ofa close to 1.
As a matter of fact, the theory of Jenkins and Mancini p
dicts a violation of energy equipartition much more signi
cant than our theory. It must be remarked that the quan
tive predictions of our theory at the level of the temperatu
ratio have been recently confirmed by Monte Carlo simu
tions @17,23#. Regarding the influence of the parameters
the mixture, we observe that for large mass ratios the te
perature differences are quite significant, even for mode
dissipation~saya.0.9). The temperature of the tracer pa
ticles is larger than that of the excess species when the tr
grains are heavier than the grains of the gas. This beha
has been also found in the recent computer simulations
ried out in rapid shear flow@9#.

FIG. 2. Dependence of the temperature ratiog[T1 /T2 on the
restitution coefficienta225a12[a in the two-dimensional case fo
w52 and three different values of the mass ratiom. The dashed
line corresponds to the prediction given by the theory of Jenk
and Mancini@21# in the casem55.
8-5
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III. TRACER DIFFUSION UNDER SIMPLE SHEAR FLOW

We want to study the diffusion of tracer particles im
mersed in a bath~granular gas! subjected to the simple shea
flow. The diffusion process is induced in the system by
weakconcentration gradient“x1. However, given that the
strength of the shear ratea is arbitrary, the mass flux~which
is generated by the gradient“x1) can be modified by the
presence of the shear flow. As stated above, in the tracer
the state of particles of species 1 is mainly governed by
collisions with particles of species 2, so that the se
collisions among particles 1 can be neglected. Thus, the
netic equation governing the evolution of the velocity dist
bution functionf 1 reads

]

]t
f 12aVy

]

]Vx
f 11~Vk1akl r l !

]

]r k
f 15J12@Vu f 1 , f 2#,

~39!

where here the derivative]/]r k is taken at constantV.
Tracer particles may freely exchange momentum and en
with the particles of the granular gas, and, therefore, th
are not invariants of the collision operatorJ12@ f 1 , f 2#. Only
the number density of tracer particles is conserved. M
specifically, the mole fractionx1 obeys the conservation law

S ]

]t
1akl r l

]

]r k
D x11

“• j1

m1n2
50, ~40!

where the mass fluxj1 is defined as

j15m1E dVV f 1~V!. ~41!

Whena225a1251 ~which givesa* 50), the well-known
Fick law establishes a linear relationship between the m
flux j1 and the concentration gradient“x1. This law defines
the diffusion coefficient. For finite values of the~reduced!
shear ratea/n ~which meansa22Þ1), one expects that a
generalized Ficks’s law holds but now a diffusion tens
rather than a scalar should appear. Our aim is to get
tensor in terms ofa22, a12, m, and w. To this end, and
assuming that the mole fractionx1 is slightly nonuniform, we
solve Eq.~39! by means of a perturbation expansion arou
a nonequilibrium state with arbitrary shear rate, which
equivalent to strong dissipation in the simple shear flow@see
Eq. ~21!#. Thus, we write

f 15 f 1
(0)1 f 1

(1)1•••, ~42!

where f 1
(k) is of orderk in “x1 but applies for anarbitrary

degree of dissipation since this distribution retains all
orders ina. The solution~42! qualifies as a normal solutio
since all the space and time dependence off 1 occurs entirely
through x1(r ;t) and their gradients. The zeroth-order a
proximation f 1

(0) corresponds to the simple shear flow dist
bution but taking into account now the local dependence
the mole fractionx1. Although the explicit form off 1

(0) is not
exactly known, only the knowledge of its second-degree m
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ments~related to the pressure tensorP1) is necessary to ge
the diffusion tensor in the Sonine approximation.

The kinetic equation forf 1
(1) can be obtained from the

Boltzmann-Lorentz equation~39! by collecting all the terms
of first order in“x1:

]

]t
f 1

(0)2aVy

]

]Vx
f 1

(1)1~Vk1akl r l !
]

]r k
f 1

(0)

5J12@Vu f 1
(1) , f 2#. ~43!

According to the balance equation~40!, one has

] f 1
(0)

]t
5

] f 1
(0)

]x1

]x1

]t
52akl r l

]x1

]r k

] f 1
(0)

]x1
, ~44!

where use has been made of the fact that the zeroth-o
approximation to the mass flux vanishes, i.e.,j1

(0)50. More-
over,

] f 1
(0)

]r k
5

] f 1
(0)

]x1

]x1

]r k
. ~45!

Using Eqs.~44! and ~45!, Eq. ~43! can be written as

S aVy

]

]Vx
1L D f 1

(1)5
] f 1

(0)

]x1
~V•“x1!, ~46!

whereL is the Boltzmann-Lorentz collision operator

L f 1
(1)5J12@Vu f 1

(1) , f 2#. ~47!

The solution to Eq.~46! is proportional to“x1, i.e., it has
the form

f 1
(1)~V!5A~V!•“x1 . ~48!

Substitution of this into Eq.~46! yields

S aVy

]

]Vx
1L DA5

] f 1
(0)

]x1
V. ~49!

The first-order approximation to the mass flux is given by

j1
(1)5m1E dVV f 1

(1)~V!52D•“x1 , ~50!

where the tracer diffusion tensor is

Dkl 52m1E dVVkAl ~V!. ~51!

The solution to the integral equation~49! allows one to de-
termine the quantityA. From this solution one can determin
the tracer diffusion tensor by means of Eq.~51!.

In order to get an explicit expression for the tensorD, we
need to know the quantityA. A good estimate ofA to evalu-
ate the mass fluxj1

(1) is given by the first Sonine approxima
tion, in which only the leading term in the expansion
A(V) in Sonine polynomials is kept. Thus, we take the fo
lowing approximation toA:
8-6
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A~V!→2
1

n1T1
V•Df 1,M~V!. ~52!

Using Eq.~52!, an equation for the diffusion tensor is eas
derived from Eq.~49!. The result can be written as

~a1V!•D5p2P1* , ~53!

where the nonzero components ofP1* are given by Eqs.
~30!–~32! and we have introduced the tensorial quantity

V52
m1

n1T1
E dV V LV f 1,M . ~54!

The expresion of the tensorV has been obtained in the Ap
pendix with the result

V5
2

d

p (d21)/2

G~d/2!
n2m21s12

d21~2T2 /m2!1/2~11a12!

3@~11u!u#21/2F S 11
d11

d12
u D 11

u

d12
P2* G . ~55!

The solution of Eq.~53! is

D5p2~a1V!21
•P1* . ~56!

Equation~56! is the primary result of this paper. It provide
an explicit expression of the tracer diffusion tensor of
granular binary mixture in simple shear flow. The elemen
of this tensor give all the information on the physical mech
nisms involved in the diffusion of tracer particles in
strongly sheared granular gas. In the absence of shear
~which is equivalent toa225a1251), Dkl 5D0dkl , where

D05
d

4A2

G~d/2!

p (d21)/2s12
d21

Am~11m!~m2T2!1/2 ~57!

is the tracer diffusion coefficient of a molecular gas@24#. As
the restitution coefficients decrease, rheological effects
come important and the elements of the diffusion tensor
different from the one obtained in the equilibrium case. T
dependence of the diffusion coefficients on the restitut
coefficientsa22 anda12 as well as on the mass ratiom and
the size ratiow is highly nonlinear. As happens for elast
fluids @25#, Eq. ~56! shows that diffusion under simple she
flow is a very complex problem due basically to the anis
ropy induced in the system by the shear flow.

To illustrate the dependence of the elementsDkl on the
parameters of the problem, let us consider a mixture of
elastic hard spheres (d53). According to Eq.~56!, Dxz
5Dzx5Dyz5Dzy50, in agreement with the symmetry o
the problem. Consequently, there are five relevant eleme
the three diagonal and two (Dxy , Dyx) off-diagonal ele-
ments. In general,DxxÞDyyÞDzz and DxyÞDyx . The off-
diagonal elements measure cross effects in the diffusio
particles induced by the shear flow. Thus, for instance,Dxy
gives the transport of mass along the direction of the flow
02130
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the system (x axis! due to a concentration gradient parallel
the gradient of the flow velocity (y axis!. Both off-diagonal
elements are negative.

Before analyzing the influence of the mechanical para
eters of the mixture on diffusion, it is instructive to explo
the particular case of self-diffusion, i.e., when the tracer p
ticles are mechanically equivalent to the gas particles. T
situation involves only single-particle motion and it is ther
fore somewhat simpler to compute the diffusion coefficien
In particular, the temperature of the tracer particles is
same as that of the gas particles and sou51 in Eqs.~30!–
~35! and ~55!. In Fig. 3, we plot Dxx* 2Dyy* , Dzz* 2Dyy* ,
(Dxx* 1Dyy* 1Dzz* )/3[(1/3)Dkk* , 2Dxy* , and2Dyx* as func-
tions of the restitution coefficienta[a125a22. Here, Di j*
[Di j /D0, with D0 given by Eq.~57!. We see that the de
viation from the functional form for elastic collisions is quit
important even for moderate dissipation. Thus, for insta
at a50.8, Dxx* 2Dyy* .0.76, Dzz* 2Dyy* .0.046, (1/3)Dkk*
.1.18, 2Dxy* .1.039, and2Dyx* .0.42. The figure also
shows that the anisotropy of the system, as measured by
differencesDxx* 2Dyy* andDzz* 2Dyy* , grows with the inelas-
ticity. This anisotropy is much more important in the plane
shear flow (Dxx* 2Dyy* ) than in the plane perpendicular to th
flow velocity (Dzz* 2Dyy* ). This is basically due to the fac
that Ps,xx* ÞPs,yy* 5Ps,zz* with s51,2.

As said before, Campbell@6# has carried out molecular
dynamics simulations to measure the nonzero element
the self-diffusion tensor. In his work, the self-diffusion coe
ficients were nondimensionalized by the product of the sh
rate and the particle diameter. In our units, this correspo
to the reduced tensorD̃ i j 5Di j* /a* . Although the solid frac-
tions analyzed in his simulations prevent us in general fr
making a quantitative comparison between our theory~re-
stricted to dilute gases! and his computer simulations, w
observe that the general qualitative dependence of the
diffusion tensor on dissipation agrees well with our results
least for the lowest solid fraction considered. Thus, the
and simulation predict that the magnitude of the normal d
fusion coefficients follow the patternD̃xx.D̃zz.D̃yy while,

FIG. 3. Dependence of the diagonal and off-diagonal eleme
of the reduced self-diffusion tensorD* on the restitution coefficient
a225a12[a in the three-dimensional case.
8-7



f-
el

as
is

he

n
pa

ar
W

ct
ns
pi
ffi

so
o

ch
i

ys
o

io
on
le

nn-
has
nd a
nt

the

lu-
olt-
as

te

the

,

or-

ow

-
hat
the
n
as

ti-
nd

-
on

he
this
ly
s
dic-
ll
cer

hear
n,

tate
re-

w.
de-
es
ade

t
ary
m-
ived
dif-
an-
ed

t

VICENTE GARZÓ PHYSICAL REVIEW E 66, 021308 ~2002!
in general, the elementsD̃ i j decrease as the restitution coe
ficient decreases. An exception to the latter rule is the
ment D̃xx , which does not depend sensitively ona. On the
other hand, in Campbell’s simulation work@6#, he found that
the values of2D̃xy were roughly of the same magnitude
D̃yy provided that the solid fraction is smaller than 0.4. Th
trend is not completely followed by our theory since t
values of2D̃xy andD̃yy are significantly different for highly
inelastic spheres. Thus, for instance, ata50.8, 2D̃xy

.2.43 andD̃yy.2.15 but2D̃xy.2.54 andD̃yy.1.10 ata
50.4.

The dependence of the diffusion coefficientsDi j* on the
restitution coefficient for different values of the mass ratiom
is illustrated in Fig. 4. In this case, we take a size ratiow
52 and two values of the mass ratio:m52 andm54. For a
given value of the inelasticity, we observe that the deviatio
from the elastic results are more important as the tracer
ticles are heavier than the gas particles.

IV. CONCLUDING REMARKS

In this paper, we have described diffusion of tracer p
ticles in a granular gas subjected to the simple shear flow.
have been interested in the steady state where the effe
viscosity is compensated for by the dissipation in collisio
Under these conditions, the resulting diffusion is anisotro
and, thus, cannot be described by a single diffusion coe
cient. Instead, it must be described by a diffusion ten
whose explicit determination has been the main objective
this work. In order to capture the essential aspects of su
nonlinear problem, we have considered here a granular m
ture in the low-density regime as a prototype granular s
tem, which lends itself to a detailed description by means
the nonlinear Boltzmann kinetic equation.

We have been concerned with the physical situat
where a weak concentration gradient coexists with a str
shear rate, which for the steady simple shear flow prob

FIG. 4. Dependence of the scalar~a! 1
3 Dkk* , the difference~b!

Dxx* 2Dyy* , and the off-diagonal elements~c! Dxy* and~d! Dyx* of the
reduced tracer diffusion tensorD* on the restitution coefficien
a225a12[a in the three-dimensional case forw52 and two val-
ues of the mass ratiom: m52 ~solid lines! andm54 ~dashed lines!.
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means strong dissipation. For this reason, the Boltzma
Lorentz equation corresponding to the tracer particles
been solved by means of a perturbation expansion arou
nonequilibriumsheared state. This implies that the differe
approximations of this expansion arenonlinear functions of
the restitution coefficients as well as of the parameters of
mixture ~mass and size ratios!. To get explicit results, we
have used a first Sonine polynomial approximation to eva
ate the cooling rates and the collisional moments of the B
zmann operators. The reliablity of this approximation h
been recently assessed in the~pure! shear flow problem
where it has been shown to agree very well with Mon
Carlo simulations in the case of hard spheres@17#.

The kinetic theory results show that the elementsDi j of
the diffusion tensor present a complex dependence on
restitution coefficientsa22 anda12 and on the mass ratiom
5m1 /m2 and the size ratiow5s1 /s2. In the elastic case
a i j 51, Di j 5D0d i j , whereD0 is given by Eq.~57! and one
recovers the expression of the diffusion coefficient for n
mal fluids. The deviations of the tensorDi j from the scalar
D0 have two distinct origins. First, the presence of shear fl
gives rise to the new tensorial terma1V on the left-hand
side of Eq.~53! instead of the corresponding collision fre
quency of the elastic diffusion problem. Second, given t
the tracer and fluid particles are mechanically different,
reference state~zeroth-order approximation of the expansio!
of tracer particles is completely different from that of the g
particles. In particular, whenmÞ1 and/orwÞ1, the tem-
perature ratiog is clearly different from 1~as can be seen in
Fig. 2!, confirming the breakdown of the energy equipar
tion. The effect of different temperatures for the tracer a
gas particles is expressed by the appearance ofu5m/g in P1
@cf. Eqs. ~30!–~32!# and in V. Each one of the two afore
mentioned effects is a different reflection of dissipati
present in the system.

A simple case is the self-diffusion problem, i.e., when t
tracer and gas particles are mechanically equivalent. In
case,P2* 5P1* andg51. This situation has been previous
studied by Campbell@6# by means of molecular-dynamic
simulations. As has been discussed in Sec. III, our pre
tions for the self-diffusion tensor agree qualitatively we
with these simulations. On the other hand, when the tra
and gas particles are mechanicallydifferent, to my knowl-
edge no previous studies on the diffusion tensor under s
flow have been made. As pointed out in the Introductio
most of the works on granular mixtures@8# are based on the
Chapman-Enskog expansion around a local equilibrium s
up to the Navier-Stokes order, and therefore they are
stricted to the low-dissipation limit in the simple shear flo
In addition, they also assume a single temperature to
scribe the mixture. A more careful calculation which tak
into account temperature differences has been recently m
by Garzó and Dufty @13,14#. They have obtained explici
expressions for the transport coefficients of a granular bin
mixture in terms of the restitution coefficients and the para
eters of the mixture. Since these results have been der
taking the freely cooling state as the reference one, the
fusion is characterized by a single scalar coefficient that c
not be directly compared to the diffusion tensor obtain
8-8
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TRACER DIFFUSION IN GRANULAR SHEAR FLOWS PHYSICAL REVIEW E66, 021308 ~2002!
here. However, it would be interesting to compare the dif
sion results obtained here in the driven sheared case
those found in the unforced case@13#. In Fig. 5, we have
compared the behavior of the scalar1

3 Dkk* ~which can be
understood as a generalized mutual diffusion coefficient
sheared mixture! with the ~reduced! diffusion coefficientD*
obtained in Ref.@13# in the tracer limit (x1→0). We observe
that, although the reference states in both descriptions
very different, the dependence of both diffusion coefficie
on dissipation is quite similar since they increase asa in-
creases. This trend is more significant in the unforced c
than in the sheared case.

The evaluation of the diffusion tensor for practical pu
poses requires the truncation of a Sonine polynomial exp
sion. In the case of the~pure! simple shear flow problem
recent Monte Carlo simulations@17,23# have shown the ac
curacy of the leading-order truncation. We expect that t
agreement may be extended to the elements of the diffu
tensor for a wide range of values of dissipation. Exceptio
to this agreement could be disparate mass binary mixt
~e.g., electron-proton systems! for which the first Sonine so
lution is not perhaps a good approximation and higher-or
terms should be considered. We hope that the results der
in this paper will stimulate the performance of compu
simulations to check the quality of the approximations giv
here for the diffusion tensor. Given the difficulties associa
with molecular-dynamics simulations in the low-density r
gime, one could perhaps use the direct simulation Mo
Carlo method@26#, which is being shown to be fruitful in the
context of granular systems.
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FIG. 5. Plot of the scalar13 Dkk* and the reduced diffusion coef
ficient D* obtained in Ref.@13# as functions of the restitution co
efficient a225a12[a in the three-dimensional case forw52 and
two values of the mass ratiom: m52 ~solid lines! and m54
~dashed lines!.
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APPENDIX: EVALUATION OF z i , A, B, AND V

In this appendix, we evaluate the cooling ratesz i , the
collisional velocity momentsA andB, and the tensorial col-
lision frequencyV by using the corresponding leading S
nine approximations.

1. Evaluation of z i

The cooling ratez1 of the tracer particles is defined as

z152
1

dn1T1
E dV1m1V1

2J12@V1u f 1 , f 2#. ~A1!

A useful identity for an arbitrary functionh(V1) is given by

E dV1h~V1!J12@V1u f 1
(0) , f 2#

5s12
d21E dV1E dV2f 1

(0)~V1! f 2~V2!

3E dŝ Q~ŝ•g!~ŝ•g!@h~V19!2h~V1!#,

~A2!

with

V195V12m21~11a12!~ŝ•g!ŝ. ~A3!

Using Eq.~A2!, Eq. ~A1! can be written as

z152
m1

dn1T1
s12

d21~11a12!m21E dV1E dV2f 1~V1! f 2~V2!

3E dŝ Q~ŝ•g12!~ŝ•g12!
2

3@m21~11a12!~ŝ•g12!22~V1•ŝ!#. ~A4!

To perform the angular integrations, we need the results

E dŝ Q~ŝ•g12!~ŝ•g12!
n5bng12

n , ~A5!

E dŝ Q~ŝ•g12!~ŝ•g12!
nŝ5bn11g12

n21g12, ~A6!

where

bn5p (d21)/2
G„~n11!/2…

G„~n1d!/2…
. ~A7!

Thus, the integration overŝ in Eq. ~A4! leads to

z15
m1

dn1T1
s12

d21b3~11a12!m21E dV1E dV2f 1~V1! f 2~V2!

3@m21g12
3 ~12a12!12g12~g12•G12!#, ~A8!
8-9



.

e

r

e

s-
is

he
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where G125m12V11m21V2 is the center-of-mass velocity
Now, we take the Sonine approximations given by Eq.~16!
for f 2 and Eq.~28! for f 1. Neglecting nonlinear terms in th
tensorsCi[Pi* 21, one gets

z15
m1n2

dT1
s12

d21v0
3b3m21~11a12!u

d/2I z~u!, ~A9!

where

I z~u!5p2dE dV1* E dV2* g12* @m21g12*
2~12a12!

12~g12* •G12* !#e2uV1*
2
2V2*

2
. ~A10!

Here, V i* 5V i /v0 , g12* 5g12/v0 , G12* 5G12/v0 , u
5m12/(m21g), g5T1 /T2, andv05A2T2 /m2. In Eqs.~A9!
and ~A10!, use has been made of the fact that the scalaz1
cannot be coupled to the traceless tensorCi so that the only
contributions toz1 come from the~pure! Maxwellian terms
in Eqs.~16! and~28!. The integralI z can be evaluated by th
change of variables

x5V1* 2V2* , y5uV1* 1V2* , ~A11!

with the Jacobian (11u)2d. The integralI z(u) can be now
easily computed with the result

I z~u!5
G„~d13!/2…

G„d/2…
u2(d13)/2~11u!1/2

3@22m21~11u!~11a12!#. ~A12!

Use of the result~A12! in Eq. ~A9! yields

z152
p (d21)/2

dG~d/2!
n2s12

d21v0m21~11a12!S 11u

u D 1/2

3@22m21~11u!~11a12!#. ~A13!
02130
The corresponding expression forz2 can be easily obtained
from Eq. ~A13! and the result is

z25A2
p (d21)/2

dG~d/2!
n2s2

d21v0~12a22
2 !. ~A14!

2. Evaluation of A and B

Since the tensorA can be easily obtained from the expre
sion of B, let us explicitly evaluate the latter tensor. It
defined as

B5E dV1m1V1V1J12@V1u f 1 , f 2#. ~A15!

Using Eq.~A2!, Eq. ~A15! can be written as

B52m1s12
d21b3m21~11a12!E dV1E dV2f 1~V1!

3 f 2~V2!g12Fg12G121G12g121
m21

d13
~2d1323a12!

3g12g122
m21

d13
~11a12!g12

2 1G , ~A16!

where use has been made of Eq.~A6! and

E dŝ Q~ŝ•g12!~ŝ•g12!
nŝŝ5

bn

n1d
g12

n22~ng12g121g12
2 1!.

~A17!

Substituting the Sonine approximations~16! and ~28! for f 2
and f 1, respectively, and retaining only linear terms in t
tensorsCi , one gets
B52m1s12
d21b3m21~11a12!n1n2v0

3ud/2p2dE dV1* E dV2* g12* e2uV1*
2
2V2*

2F11uC1 :S V1* V1* 2
1

d
V1*

21D
1C2 :S V2* V2* 2

1

d
V2*

21D GFg12* G12* 1G12* g12* 1
m21

d13
~2d1323a12!g12* g12* 2

m21

d13
~11a12!g12*

21G . ~A18!

This integral can be computed by the change of variables~A11!. After a lengthy algebra, the result is

B5
p (d21)/2

dG~d/2!
s12

d21m1n1n2m21~11a12!v0
3S 11u

u D 3/2H F l12

d12
1

d

d13
m21~11a12!G1

22
u

~11u!2 F S 11
~d13!

2~d12!

11u

u
l12Dg21P1* 2S 12

~d13!

2~d12!
~11u!l12DP2* G J , ~A19!
8-10
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where

l125
2

11u
2

3

d13
m21~11a12!. ~A20!

The corresponding expression forA can be easily inferred
from Eq. ~A19! by just making the change 1→2 and u
→1:

A5
A2p (d21)/2

2d~d12!G~d/2!
s2

d21m2n2
2v0

3~11a22!

3$@d111a22~d21!#12~2d1323a22!P2* %. ~A21!
h.

an

ica
d

02130
3. Evaluation of V

The tensorV is defined as

V52
m1

n1T1
E dV1V1J12@V1f 1,M , f 2#. ~A22!

The evaluation ofV can be made following similar math
ematical steps as above. Thus, using Eq.~A1! and the Sonine
approximation tof 2 in Eq. ~A22!, one gets
V5
m1

T1
p2ds12

d21m21~11a12!b3n2v0
3ud/2E dV1* E dV2* g12* g12* V1* F11C2 :S V2* V2* 2

1

d
V2*

21D Ge2uV1*
2
2V2*

2

52n2p2dm21~11a12!s12
d21ud/211v0b3~11u!2(11d)E dxEdy x x~x1y!@11~11u!22C2 :~y2ux!~y2ux!#

3e2bx22cy2
, ~A23!

whereb5u(11u)21 andc5(11u)21. This integral is easily performed, with the result

V5
2

d

p (d21)/2

G~d/2!
m21s12

d21n2v0~11a12!S 11u

u D 1/2F 11
1

d12

u

11u
~P2* 21!G . ~A24!

This expression yields Eq.~55! given in the text.
d

f
e,

n
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@25# V. Garzó, A. Santos, and J.J. Brey, Physica A163, 651~1990!;
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