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Renormalization-group approach to an Abelian sandpile model on planar lattices
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One important step in the renormalization-group~RG! approach to a lattice sandpile model is the exact
enumeration of all possible toppling processes of sandpile dynamics inside a cell for RG transformations. Here
we propose a computer algorithm to carry out such exact enumeration for cells of planar lattices in the RG
approach to the Bak-Tang-Wiesenfeld sandpile model@Phys. Rev. Lett.59, 381 ~1987!# and consider both the
reduced-high RG equations proposed by Pietronero, Vespignani, and Zapperi~PVZ! @Phys. Rev. Lett.72, 1690
~1994!#, and the real-height RG equations proposed by Ivashkevich@Phys. Rev. Lett.76, 3368~1996!#. Using
this algorithm, we are able to carry out RG transformations more quickly with large cell size, e.g., 333 cell for
the square~SQ! lattice in PVZ RG equations, which is the largest cell size at the present, and find some
mistakes in a previous paper@Phys. Rev. E51, 1711 ~1995!#. For SQ and plane triangular~PT! lattices, we
obtain the only attractive fixed point for each lattice and calculate the avalanche exponentt and the dynamical
exponentz. Our results suggest that the increase of the cell size in the PVZ RG transformation does not lead
to more accurate results. The implication of such result is discussed.
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I. INTRODUCTION

In 1987, Bak, Tang, and Wiesenfeld~BTW! @1# proposed
the concept of self-organized criticality~SOC! in order to
understand the automatic~i.e., without a tuning paramete
such as temperature! appearance of abundant self-simil
structures and scaling quantities in nature. BTW also p
posed a lattice sandpile model and used Monte Carlo si
lations to simulate this model on square and simple cu
lattices. They did observe self-similar structures and sca
quantities in the simulation data without tuning any para
eter. Since 1987, many natural phenomena have been re
to SOC, such as earthquakes@2#, forest fires@3#, biological
evolution @4#, rice pile dynamics@5#, turbulence@6#, etc.
Many lattice models have also been proposed to illustrate
behavior of SOC or avalanche processes@7,8#. It has been
found that the BTW’s sandpile model is Abelian@9# and
some quantities for this model could be calculated exa
@9–12#. The BTW’s Abelian sandpile model~ASM! @1# has
been considered to be a prototypical model for SOC. Ma
ideas about behavior of SOC models, such as univers
and scaling@13#, or methods for studying SOC models, su
as renormalization-group theory@14–17#, are often tested in
the BTW’s ASM. In the present paper, we propose a co
puter algorithm which is useful for carrying ou
renormalization-group transformations for the BTW’s ASM

The BTW’s ASM on a latticeR of N sites is defined as
follows. Each site ofR is assigned a height integer; thei th
site is assignedzi for 1< i<N. In the beginning of the simu
lation, the height integer at each site is randomly chose
be 0,1, . . . , orzc21, where the critical height iszc21 and
zc is the coordination number of the lattice. For each tim
interval Ta , one particle falls on a randomly chosen latti
site, say thei th site; the heightzi then becomeszi11. If the
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new zi,zc , then randomly choose a site again, say thekth
site, to add a particle; ifzi>zc , then thei th site topples and
its heightzi becomeszi2zc . At the same time, each of th
nearest neighbor~NN! sites of thei th site receives one par
ticle, i.e.,zv( i , j )→zv( i , j )11, ; j wherev( i , j ) is the label
of the j th NN site of thei th site. This relaxation procedur
takes timetw and we assumetw /Ta→0. If some of the new
zv( i , j ) , ; j , are equal or larger thanzc again, these sites ar
denoted byv( i , j 8). Then, the toppling process continues
parallel for each j 8 with zv( i , j 8)→zv( i , j 8)2zc and
zv„v( i , j 8),k…→zv„v( i , j 8),k…11 wherev„v( i , j 8),k… is the kth
NN site of the j 8th NN site of thei th site. The relaxation
time for these parallel toppling and receiving processes
tweenv( i , j 8) andv„v( i , j 8),k… takes another timetw . Usu-
ally, the open boundary conditions are used so that whe
boundary site topples, the particle can leave the system.
dynamical process continues until the heights of all sites
less thanzc . In general, if the last toppling site isv(v„••

•(v„v( i ,i 1),i 2…,i 3)•••…,i n), the total toppling process take
time ntw . In this way, a series of toppling processes w
toppling areas ~i.e., the total number of toppled sites! and
relaxation time ntw[t appears and forms an avalanc
which has no characteristic size.

After repeating many times the process of adding o
particle on a randomly chosen site with subsequent re
ation when the height of the site is equal or larger thenzc ,
we can obtain a distribution of toppling areaP(s) and cal-
culate the average relaxation time^t& for avalanches with
toppling areas. It has been found thatP(s);s2t with the
avalanche exponentt and ^t&;sz/2 with the dynamical ex-
ponentz. Manna@18# used Monte Carlo simulations to ca
culatet51.22 andz51.21 for the BTW model on the squar
~SQ! lattice. Majumdar and Dhar conjectured thatz55/4
which is consistent with their own numerical simulatio
@19#, and Priezzhevet al. @20# proposed thatt55/4. By scal-
ing argument, Tebaldiet al. @21# suggestedt56/5. Many
investigations have just focused on numerical simulations
©2002 The American Physical Society07-1
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exact results for height probabilities and exponents for
SQ lattice and there is little attention to other kinds of l
tices. It is not clear whether the sandpile model on tw
dimensional lattices have the same set of critical expone

The renormalization-group~RG! theory has been use
successfully to calculate critical exponents, order parame
etc., of ordinary phase-transition models, e.g., the Is
model@22#, the Potts model@23#, and the percolation mode
@24–26#; it has also been used to understand universality
scaling in ordinary phase-transition models. It is of inter
to know whether one can also use RG theory to calcu
critical exponents for lattice SOC models, e.g., the BT
sandpile model. In 1994, Pietronero, Vespignani, and Zap
~PVZ! @14# proposed a RG theory to calculate critical exp
nents of the BTW sandpile model on the SQ lattice. Th
used a stationary condition to provide a feedback mechan
that drives the system to its critical state. In fact, in th
approach, the height of a sitezi is reduced to only three case
corresponding to three classes: stable forzi,zc21, critical
for zi5zc21, and unstable forzi>zc . The obtained
renormalization-group equations allow them to get an attr
tive fixed point. At this fixed point, they obtained avalanc
exponentt51.253 and dynamical exponentz51.168. In
1995, PVZ@15# described in more detail their RG approa
to the BTW sandpile model. In 1996, Ivashkevich@16# gen-
eralized PVZ’s RG scheme with real height parameterszi by
kinetic equations and used the technique of generating fu
tion to construct RG equations to obtain the exponent
51.248 and height probabilities. In addition, Ivashkevi
found that for the SQ lattice critical particle transfer pro
abilities are close to branching probabilities for spann
tree. However, Papoyan and Povolotsky@17# pointed out that
such connections could be wrong and used the exampl
the plane triangular~PT! lattice to illustrate their ideas. In
1996, Vespignani, Zapperi, and Loreto@27# proposed a real-
space dynamical-driven renormalization group to provid
theoretical basis for previous RG studies of the ASM.
1997, Lübeck and Usadel used extensive Monte Carlo sim
lations to find thatt'1.33 @28#.

One important step in the RG approach to a lattice sa
pile model is the exact enumeration of all possible toppl
processes of sandpile dynamics inside a cell for RG trans
mation. PVZ and Ivashkevich divided the height configu
tions inside a RG cell into subsets with the same numbe
critical height by hand. After this procedure, for each heig
configuration, PVZ counted the possible toppling events
hand and Ivashkevich did this by the technique of genera
function. Based on Refs.@14–16#, in the present paper w
formulate a computer algorithm for RG studies of the BT
sandpile model on the SQ, PT, and honeycomb~HC! lattices.
The advantage of our method is that we do not need to c
sify all height configurations inside a RG cell into differe
subsets by hand which is different for different kinds of la
tices and RG cell sizes. Therefore, it is easier for us to ext
the same algorithm to different cell sizes and different kin
of lattices. Another advantage of our method is that we
study larger RG cells. For example, in@14,16,29# and @30#,
they have only carried out a 232 cell to one site and a
five-site cell to one-site RG transformations for the SQ l
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tice, and we can carry out a 333 cell to one-site RG trans
formation ~RGT! for the SQ lattice.

In the present paper, we consider both PVZ and Iva
kevich RGTs. Using the PVZ reduced-height RG equatio
we calculate the density of critical sitesr, the probability for
one site to transfer sands toi different nearest neighborspi ,
the avalanche exponentt and the dynamical exponentz by
232 and 333 cells to one site RGTs for the SQ lattice, an
three sites cell to one-site RGT for the PT lattice. Using
Ivashkevich’s real-height RG equations, we calculate
critical height probabilities, the critical sand transfer pro
abilities, the avalanche exponentt, and the dynamical expo
nentz by a 232 cell to one-site RGT for the SQ lattice an
three-site cell to one-site RGT for the PT lattice. We find th
our calculated height probabilities are consistent with
exact and numerical simulations.

The outline of this paper is as follows. In Sec. II, w
introduce the reduced-height RG equations. Here, we ex
PVZ’s formulation for the SQ lattice to a general lattice.
the Appendix, we present a systematic computer algorit
for the exact enumeration of all possible toppling proces
of sandpile dynamics inside a cell for RGT. By using th
algorithm, we present the obtained fixed points of reduc
height RG equations and the critical exponents in Sec. III
Sec. IV, we apply real-height RG equations to the BT
model on SQ and PT lattices. For a different definition of t
RG cell for the HC lattice, in Sec. V, we calculate the critic
sand transfer probabilities and find that they are differ
from branching probabilities of spanning trees on the sa
~HC! lattice. This result confirms Papoyan and Povolotsk
result @17# for the PT lattice. Finally, we summarize our re
sults and discuss problems for further studies in Sec. VI.

II. REDUCED-HEIGHT RENORMALIZATION-GROUP
EQUATIONS

In this section we extend PVZ’s formulation of RG tran
formation @14# for the SQ lattice to a general latticeR and
present a simplified version which is useful for realization
a computer program. Then, we propose an algorithm
counting events of RG procedure. In the Appendix, we w
show that this calculation is basically consistent with that
Ref. @15# for a 232 cell of the square lattice. However, the
are some mistakes in Ref.@15#.

As in ordinary real-space RG transformations for the s
and percolation models@22–25#, in the RG transformation
for the BTW sandpile model on the latticeR with lattice-
constanta, we first divide R[R(0) into g3g cells, then
consider the transformation from eachg3g cell into a cell
with a smaller number of sites or a supersite. In the pres
paper, we consider only the later case. From the relation
between the cell and the supersite, the properties of
specified cell can be approximately represented by the su
site. After the first step of RG transformation, we have
lattice, calledR8[R(1), of supersites with lattice-constan
ag. We can carry out the second step RG transformation
R8 to obtain a latticeR9[R(2) with lattice-constantag2 and
we can continue such RG transformation to obtain a serie
latticesR(k) with lattice-constantagk. Examples of RG cells
7-2
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RENORMALIZATION-GROUP APPROACH TO AN . . . PHYSICAL REVIEW E 66, 021307 ~2002!
for SQ and PT lattices are shown in Figs. 1~a! and 1~b!,
respectively, whose linear dimensions~i.e., g values! are 2
andA3, respectively.

Here, we briefly review PVZ’s RG approach to th
BTW’s ASM @14,15#. If we consider a sandpile RG cell wit
m5g2 sites, the initial heightzi of each sitei inside a RG
cell can take integer values 0,1, . . . , orq21, whereq is the
coordination number of latticeR; for example Figs. 1~a! and
1~b! correspond to the SQ and the PT lattices, withq54 and
6, respectively. After adding one particle to one lattice s
say sitei, if the site i is unstable~i.e., zi>zc), the sitei will
topple and transfer particles toei different nearest neighbors
In general,ei can take values 1,2, . . . , or q after RG trans-
formation which is different fromei5q for the original
sandpile evolution onR(0). As an illustration, the pictures o
ei for the SQ lattice are shown in Fig. 2. The toppling ruleei

can be described by the transferring probabilityp¢
5(p1 ,p2 , . . . ,pq) wherepei

is the probability that the un

stable sitei transfers particles toei different nearest neigh
bors; if ei is smaller thanq, one should also specify whic
directions the particles go into, which will be explained
more details in the next section. In general, the evolution
the ASM at the initial stageR(0), is characterized by the
initial height configuration setZ5$zW%5$(z1 ,z2 , . . . ,zm)u
zi50,1, . . . , or q21,; i % and the toppling rule eW
5(e1 ,e2 , . . . ,em)5(q,q, . . . ,q). That is p15p25•••

5pq2150 andpq51 for p¢ at this stage. For example, fo

FIG. 1. ~a! and ~b! Transformation from a cell to a site for th
RG transformation. Here,~a! and~b! are for the square lattice with
232 cells and for the plane triangular lattice withA33A3 cells,
respectively. Blocks of sites of the coarse-grained latticesR(k21)

become supersites on the renormalized latticeR(k). ~c! and ~d! We
show that the directions outgoing from the blocks, which are
circled by rectangle corner roundness, are coupled to the direc
of the lattice at the next scale.
02130
,

f

the ASM model on the original square lattice, the height a
transferring probability can take valuezi50,1,2, or 3 andp¢
5(0,0,0,1), respectively. On the other hand, after the
transformation, the height configuration set and toppling r
configuration set areZ and E, respectively, whereE5$eW%
5$(e1 ,e2 , . . . ,em)u ei51,2, . . . , or q,; i %.

In this way, the transferring probabilityp¢ and the initial
height probabilityn¢5(n0 ,n1 , . . . ,nq21), where ni is the
probability that the height of the supersite isi, are useful to
characterize the properties of the coarse-grained sandpile
namics. We use p¢ (k)5(p1

(k) ,p2
(k) , . . . ,pq

(k)) and n¢ (k)

5(n0
(k) ,n1

(k) , . . . ,nq21
(k) ) to denote the transferring probabi

ity and initial height probability on latticeR(k). (n¢ (k),p¢ (k))
and (n¢ (k21),p¢ (k21)) are linked by thekth RG transformation.
Instead ofpi

(0)50 for i ,q andpq
(0)51 and( i 50

q21ni
(0)51 in

the original level, the normalized condition( i 51
q pi

(k)51 and
( i 50

q21ni
(k)51 are used in the coarse-grained level.

In order to simplify the RG transformation, PVZ reduce
the height of a sitezi to only three cases corresponding
three classes:hi50 which is stable forzi,zc21, hi51
which is critical forzi5zc21, andhi52 which is unstable
for zi>zc . Therefore, Z will be replaced by H5$hW %
5$(h1 ,h2 , . . . ,hm)u hi50 or 1,; i %. The evolution rule
is as follows: If a critical sitei with height hi51 receives
one particle, its height is nowhi52 and sitei becomes un-
stable. Then, this unstable site will transfer particles
neighboring sites with the transferring probabilityp¢ . After
this action, this toppled site becomes stable withhi50. In
this approach, the stable site is still stable even if this s
receives more than one particle. It means that the multit
pling process of one site is omitted in PVZ’s RG approach
Since PVZ used height configurationH and toppling rules
configurationE to describe the RG sandpile evolution, th
height probability vectorn¢ can be simplified to one param
eter r, which is the probability of critical sites, an
(n¢ (k),p¢ (k)) becomes (r (k),p¢ (k)).

An avalanche event specifies how a toppling process g
on. Figure 3 shows a typical avalanche event of a sand
evolution on a three-site cell of the PT lattice. The labels
sites and toppling directions are shown in Fig. 3~a!. Figure
3~b! shows a starting height configuration with site 1 bei
critical, site 2 being critical, and site 3 being stable, i.

-
ns

FIG. 2. The picture of toppling rules for a site of the squa
lattice. Theei denotes one unstable sitei will transferei particles to
ei different nearest neighbors. For eachei , there areCei

q possible
toppling rules.
7-3
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CHAI-YU LIN AND CHIN-KUN HU PHYSICAL REVIEW E 66, 021307 ~2002!
hW 5(h1 ,h2 ,h3)5(1,1,0). This starting height configuratio
appears with a probabilityr2(12r). When we add one par
ticle to site 1, site 1 becomes unstable and transfers
particle to site 2 via directions 2 and out of cell via directi
6. Note that the probability of adding one particle to site 1
1/3 since there are three sites inside the RG cell and
probability of transferring particles to directions 2 and
from site 1 isp2 /C2

6 since there areC2
6 possible toppling

rules for transferring two particles to six directions. After s
2 receives one particle from site 1 it becomes unstable
transfers one particle to site one via direction 5, one part
to site 3 via direction 6, and two particles out of cell v
directions 1 and 2; the probability of transferring particles
four NN sites from site 2 via directions 1, 2, 5, and 6
p4 /C4

6. Since site 1 will not topple again and site 3 is a sta
site, the toppling process stops. In summary, the probab
of the avalanche event and the relaxation time~t! of Fig. 3~b!
are (1/3)r2(12r)(1/15)p2(1/15)p4 and 2 ~we set tw51),
respectively.

Under RG transformation, each three-site cell ofR(k21)

FIG. 3. A toppling process on a three-site cell of the pla
triangular lattice. Open dots represent stable sites, black dots re
sent critical sites, and encircled black dots represent unstable
~a! The label of sites inside a cell and the label of toppling dire
tions of an unstable site.~b! A series of toppling process from left t

right. For site 1 and 2, their toppling ruler¢1 and r¢2 are ~0, 1, 0, 0,
0, 1! and ~1, 1 ,0, 0, 1, 1!, respectively.~c! After the RG transfor-
mation, the three-site cell of~a! the toppling processes of~b! are

represented a supersite and the toppling ruler¢5(1,1,0,0,1,0) on the
supersite. Note that the toppling directions in~c! can be obtained
from ~b! by rotating 30° counterclockwise.
02130
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transfers into one supersite ofR(k) as shown in Figs. 1~b!
and 3~c!; a site ofR(k21) can transfer particles to six direc
tions shown in the right-hand side of Fig. 3~a! and a supersite
of R(k) can transfer particles to six directions shown in t
right-hand side of Fig. 3~c!, which correspond to six outgo
ing directions of Fig. 1~d!. In the avalanche event of Fig
3~b!, the particles which leave the cell in directions 6, 1, a
2 contribute to outgoing particles in directions 5, 1, and
respectively, in the figure at the right-hand side of Fig. 3~c!
@see also Fig. 1~d!#. Thus the avalanche event of Fig. 3~b! in
R(k21) contributes top3

(k) for the supersite ofR(k).
In general, the probability of one avalanche event is

termined by the initial height configuration, the starting s
of the avalanche, and the detail of the toppling process. If
initial height configuration is thej th element ofH and con-
tainsm8 critical sites, the starting site is sitea, the toppling
process consists ofak unstable sites which transferk par-
ticles tok different directions for 1<k<q, the probability of
this avalanche event is

PE~ j ,a,a1 ,a2 , . . . ,aq!

5WjW^a&S 1

C1
q

p1D a1S 1

C2
q

p2D a2

•••S 1

Cq
q

pqD aq

, ~1!

where Wj5rm8(12r)m2m8 and W^a&51/m, a1 ,a2 , . . . ,
andaq are zero or positive integer and( i 51

q ai5m9 which is
the total number of toppled sites. Since we do not consi
multiple toppling events~i.e., one site can topple at mos
once!, m9 should be equal to or smaller thanm.

To construct RGT, we should first collect all possib
events on a RG cell ofR(k21). Consider the set of event
Cj (a,a1 ,a2 , . . . ,aq ,t) which are initiated by thej th initial
height configuration ofH and starting sitea, have relaxation
time t, toppleak times by toppling rule withk directions. For
the set Cj (a,a1 ,a2 , . . . ,aq ,t), we count the number o
events onR(k21) which topplei directions in point of view
of site on R(k). This number is denoted by
Bi( j ,a,a1 ,a2 , . . . ,aq ,t). Therefore, for 1< i<q

f i j 5(
a

(
a1 ,a2 , . . . ,aq

(
t

Bi~ j ,a,a1 ,a2 , . . . ,aq ,t !

3W^a&S 1

C1
q

p1
(k21)D a1S 1

C2
q

p2
(k21)D a2

. . . S 1

Cq
q

pq
(k21)D aq

5(
a

(
a1 ,a2 , . . . ,aq

(
t

Bi~ j ,a,a1 ,a2 , . . . ,aq ,t !

3PE~ j ,a,a1 ,a2 , . . . ,aq!/Wj ~2!

is the summation of probability of toppling events onR(k21)

which evolve under thej th initial configuration onR(k21)

and contribute to thepi
(k) on R(k). Note that it is possible to

have toppling processes inside a cell but transfer noth
outside a cell. PVZ omits all of these events and Ivashkev
et al. @31# simply assumed these events appear with proba

re-
ite.
-

7-4
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TABLE I. Critical density and transferring probabilities at the RG fixed point.

r* p1* p2* p3* p4* p5* p6*

SQ @232# a 0.515 0.327 0.437 0.205 0.031
SQ @232# b 0.468 0.240 0.442 0.261 0.057
SQ @333# a 0.663 0.572 0.353 0.070 0.005
PT @3 sites# a 0.214 0.000002 0.0005 0.040 0.314 0.582 0.07
HC @6 sites# a 0.763 0.702 0.285 0.013

aThis work based on PVZ approach.
bPVZ @14#.
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ity p0. Now the properties of the system are fully charact
ized by the distribution (r (k),p¢ (k)) at this scale. Then, the RG
equation can be written as

S p1
(k)

p2
(k)

A

pq
(k)

D 5W1 /NwS f 11/F1

f 21/F1

A

f q1 /F1

D 1W2 /NwS f 12/F2

f 22/F2

A

f q2 /F2

D 1•••

1Wn /NwS f 1n /Fn

f 2n /Fn

A

f qn /Fn

D , ~3!

where n is the total number of configurations inH which
could contribute to the right-hand side of Eq.~3!, Wj , the
weight of the j th element ofH, is a function ofr (k21), Nw
andF j are the normalized constants ofWj and f i j with Nw
5( jWj and F j5( i f i j , respectively. This RG equation ca
be well understood by the transition rate and master equa
of sandpile evolution@27,31#.

Another important assumption is the inflow of particl
equals the flow of particles out of the system, i.e., in
stationary state,]/]t ^r&50 @14,31#. This impliesr (k21) is a
function of pj

(k21) for j from 1 to q and can be written as

r (k21)5
1

(
i

i 3pi
(k21)

. ~4!

Replacingr (k21) in Wj andNw of Eq. ~3! by Eq. ~4!, pi
(k) is

a pure function ofpj
(k21) for j from 1 toq. From RG assump-

tion, at k→`, the critical transferring probabilityp¢*
5(p1* ,p2* , . . . ,pq* ) and the critical densityr* can be ob-
tained.

III. CALCULATIONS OF CRITICAL EXPONENTS

In the following calculations, we use the RG approach
the form of Eqs.~3! and ~4!. First, we consider the RG ca
02130
-

on

e

culation from the small-scale transformation for square a
triangle lattices which are shown in Fig. 1. All bonds outg
ing from a given cell into another are included into o
renormalized bond of the supersite, as is shown in Figs.~c!
and 1~d!. It is one of the simplest choices where supersites
Figs. 1~c! and 1~d! contain just a few sites of Figs. 1~a! and
1~b!, respectively. A block of sites inR(k21) ~i.e., an RG
cell! is replaced by a site ofR(k). Here,g is equal to 2 and
A3 for square and triangle lattices, respectively. A more co
plex choice for the square lattice can be found in@30# where
one supersite contains five sites. In the present paper, fo
square lattice we will extend this study to the case where
RG cell contains nine sites. This is the largest RG cell wh
has been considered for the RG approach to the BTW sa
pile model.

By using the algorithm of appendix, we enumerate
possible toppling events for two kinds of cells shown in F
1. However, as in@14,15# we drop those events in which th
number of toppled sites are smaller thangt52; here it is
assumed that such events contribute top0 which has been
discussed in Sec. II. In other words, these events are assu
to transfer no particle to nearest-neighbor cells. Of cou
this is an approximation. From the procedures stated ab
we can expressWj and f i j of Eq. ~3! in term of p¢ (k21) and
r (k21). The normalized factorsWn andFi can also be calcu-
lated. By using initial values ofp¢ (0) andr (0) to iterate Eqs.
~3! and ~4! until k→`, we can obtain the fixed point ofp¢
and r shown in Table I. Note that our results for the 232
cell to one-site RG transformation for the square lattice
slightly different from those of Refs.@14,15#. This is due to
the difference in values ofAj ( i ,a1 ,a2 ,a3 ,a4) discussed in
the Appendix. For each lattice, we choose some differ
starting points ofr (0) and p¢ (0). We find that all starting
points evolve into the same fixed point which is shown
Fig. 4. This shows that there is only one attractive fixed po
of the RG equation for square and triangle lattices in this
transformation.

In @14#, the critical exponent of the avalanche distributio
t in P(s);s2t is calculated at the fixed point of the RG
transformation through the fixed point parametersr* and
p¢* . First, the probability that one avalanche occurs
R(k21) but doesn’t occur onR(k) can be written as

K5(
i 51

q

pi* ~12r* ! i . ~5!
7-5
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In addition, the probabilityK can also be understood as th
probability that the linear dimension of the avalanchel is
larger than agk21 ~the lattice constant ofR(k21)) and
smaller than agk ~the lattice constant ofR(k)). Thus,
P(s)ds5P( l )dl;s2tds5 l 122tdl, where the toppling area
s; l 2, and we have

K5

E
agk21

agk

P~ l !dl

E
agk21

`

P~ l !dl

512g2(12t) ~6!
o

-

i-
s.
a

,

W

ica

-
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also holds. Using Eqs.~5! and ~6!, we obtaint which is
listed in part~A! of Table II. We find that ourt for square
and triangle lattices are close to the numerical simulati
@28,32# for the square lattice.

Another independent critical exponent is the dynami
exponentz. From the scaling laws at the fixed point we kno
that the average time of a dynamical process scales with
linear length aŝ t&; l z. Therefore, the time scaletk of a
relaxation event on latticeR(k) andtk21 on the latticeR(k21)

are related by the relationtk /tk215(ag(k)/ag(k21))z5gz.
On the other hand, the time scaletk can be obtained as
function of the time scaletk21 from the RG equations. The
relation is given bytk5^t (k21)&tk21, and
^t (k21)&5 (
i , j ,a,a1 ,a2 , . . . ,aq ,tk21

Wi

Nw

WaBj~ i ,a,a1 ,a2 , . . . ,aq ,tk21!

Fi

3S 1

C1
q

p1
(k21)D a1S 1

C2
q

p2
(k21)D a2

•••S 1

Cq
q

pq
(k21)D aq

~ tk21!, ~7!
e

-

i-

s

e

,

ith

-
ht

00

ults

ns
so
where ^t (k21)& is the average number of subprocesses
R(k21) needed to have a relaxation process onR(k). By in-
serting the fixed point parameters into the calculation of^t&
5 limk→`^t (k)&, we obtain the following result for the dy
namical exponent@14#:

z5
ln^t&
ln~g!

. ~8!

Using Eqs.~7! and~8!, we obtainz which is listed in part~A!
of Table II. We find that our resultz51.284 for the triangle
lattice is not far from the theoretical prediction valuez
51.25 @19#. If the universality is valid for square and tr
angle lattices, the obtainedz must be the same both lattice
In our RG calculations, we findz for the square lattice has
larger deviation from the theoretical predicted value:z
51.25.

We also consider the 333 cell for the square lattice
which is shown in Fig. 5. Heregt53. The critical density of
sites and transferring probabilities are shown in Table I.
find that there are some difference between ther* andpi* in
the 232 cell to one site and the 333 cell to one-site RG
transformations. The exponents oft andz shown in Table II
have larger deviations from the simulation and theoret
prediction results than the results obtained from the 232
cell.

IV. REAL-HEIGHT RENORMALIZATION-GROUP
EQUATIONS

In the above study, the height configurationZ is simply
characterized byH. In this section, the real-height configu
rationZ is used to build the RG equation. Instead of (r, p¢) in
n

e

l

the above calculations, (n¢ , p¢) is used in this section, wher

n¢5(n0 ,n1 , . . . ,nq21) with n01n11•••1nq2151 andni

is the probability that the height isi. Therefore, theWi of Eq.
~1! is replaced byWi5P j 51

m nzj
. And the steady-state equa

tion of Eq. ~4! is now characterized by the following cond

tions: ṅ05ṅ15•••5ṅq2150 @16#. Therefore, the relation-

ships between concentration of heightn¢ (k) and transferring

probability p¢ (k) at the stationary state is

ni 21
(k) 5S (

j 51

i

pq2 j
(k) D /p(k), ~9!

wherep(k)5P i 51
q i 3pi

(k) is the average number of particle
sent from one site to other sites.

By using the computer algorithm in the Appendix, w
count all events overZ^ C ^ R. Here, for height configura-
tion (z1 ,z2 , . . . ,zm), there areq possible states for each site
i.e., zi50,1, . . . , or q21. Totally, qm possible configura-
tions are considered. Therefore, the number of events w
real heightZ is much larger than that withH. According to
Eqs. ~3! and ~9!, the pi* and ni* can be obtained after re
peated iterations. In Table III, we compare the critical heig
probabilities with the exact@10# and numerical results. The
numerical results are obtained from simulations on 10
31000 SQ and PT lattices and in each case 106 configura-
tions are generated to obtain the data. We also list the res
of RG calculations reported in Refs.@16,17#. We find that our
RG fixed point is very close to previous RG calculatio
@16,17#. It means that our RG calculation is reliable. We al
7-6
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find that the RG results of the critical height probabilitiesni*
have the same behavior as the numerical or exact result

For critical exponentt, Eq. ~6! is still useful but Eq.~5!

should be revised to satisfy the definition ofn¢ . The new
equation is

K5(
i 51

q

pi* ~12nq* ! i , ~10!

wherer* in Eq. ~5! has to be replaced bynq* . By Eqs.~6!
and ~10!, the critical exponentt is obtained for SQ and tri-

FIG. 4. Iteration results for different initial values ofp¢ (0) and
r (0). The solid line with symbolss, h, n, and, represent the

232 cell transformation on square lattice with initial valuesp¢ (0)

5(0,0,0,1),(0,0,0,1), (14 , 1
4 , 1

4 , 1
4 ), and (14 , 1

4 , 1
4 , 1

4 ) and r (0)

50.1,0.8,0.1, and 0.8, respectively. The dashed line with sym
s, h, n, and , represent the three-site cell transformation

triangle lattice with initial valuesp¢ (0)5(0,0,0,0,0,1), (0,0,0,0,0,1)

( 1
6 , 1

6 , 1
6 , 1

6 , 1
6 , 1

6 ), and (16 , 1
6 , 1

6 , 1
6 , 1

6 , 1
6 ) r (0)50.1,0.8,0.1, and 0.8, re

spectively.~a! A plot of the r (k) against thekth iteration numberk.

~b! A plot of the up¢ (k)u25(p1
(k))21(p2

(k))21•••1(pq
(k))2 against the

kth iteration numberk.
02130
angle lattice which are shown in part~B! of Table II. We find
that the value oft is very close to previous calculation fo
SQ and triangle lattice. It shows again that our compu
algorithm and calculation are equivalent to Ivashkevich’s
gorithm. In Refs.@16,17#, they did not calculate the dynam
cal exponentz. Here, by Eqs.~7! and ~8!, we calculate this
quality which is shown in part~B! of Table II. We find that
the obtainedz on the triangle lattice is far from the value o
exact and numerical results for the square lattice.

V. CALCULATIONS FOR HONEYCOMB LATTICE

There is no overlap of sites between RG cells in the Fi
1 and 5. In other words, from these two figures, if one s
belongs to one specified cell, this site does not belong
other cells. Due to this property of cells, Eqs.~5!–~10! can
be used to calculate critical exponents. Consider the
transformation cell for the honeycomb~HC! lattice shown in
Fig. 6. This kind of RG cell allows one site to belong to tw
different RG cells. If we use the cell transformation in Fig
6~a! and 6~b!, we can still obtain the fixed point ofr andpi .
However, it seems that it is inappropriate to get the criti
exponentst andz for the HC lattic by Eqs.~5!–~10!.

The algorithm in the Appendix is still useful for the ca
culation of transferring probabilities for the honeycomb la
tice. First, for the reduced-height RG equation, we count
possible toppling events and drop those events withgt53.
Then, using Eqs.~3! and~4! to obtainr* andpi* which are

ol

TABLE II. Avalanche exponentt and dynamical exponentz for
square and plane triangular lattices.

~A! Reduced parameter t ~SQ! z ~SQ! t ~PT! z ~PT!

SQ @232# a 1.243 1.147
SQ @232# b 1.253 1.168
SQ @5 sites# c 1.235 1.236
SQ @333# a 1.122 1.082
PT @3 sites# a 1.363 1.284

~B! Real parameter

SQ @232# a 1.248 1.150
SQ @232# d 1.248
PT @3 sites# a 1.367 1.433
PT @3 sites# e 1.367

Simulation 1.33f 1.254i

Prediction 1.25g and 1.2h 1.25i

aThis work
bPVZ @14#.
cMoreno, Gomez, and Pacheco@30#.
dIvashkevich@16#.
ePapoyan and Povolotsky@17#.
fLubek and Usadel@28#.
gPriezzhev, Ktitarev, and Ivashkevich@20#.
hTebaldi, Menech, and Stella@21#.
iMajumdar and Dhar@19#.
7-7
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CHAI-YU LIN AND CHIN-KUN HU PHYSICAL REVIEW E 66, 021307 ~2002!
shown in Table I. For real-height RG equation, the obtain
ni* andpi* are shown in Tables III and IV, respectively. W
find that the height probabilitiesni are quite consistent with
the numerical simulations on 100031000 honeycomb lat-
tice, where 106 configurations are generated to obtain n
merical data.

The branching probability of a spanning tree@9# p̂k is the
probability for any site of a random spanning tree to hav
coordination numberk. The Green’s function of the Laplac
equation for the square, triangle, and honeycomb lattices
well known @33#. For an infinite lattice,G depends only on
the difference of site coordinates rather than their valu
Here, we show the Green’s function for the honeycomb
tice as an example:

FIG. 5. Transformation from a cell with nine sites on the squ
lattice. ~a! This shows the transformation from a cell to a site.~b!
We show that the directions outgoing from the blocks, which
encircled by rectangle corner roundness, are coupled to the d
tions of the lattice at the next scale.
02130
d

-

a

re

s.
t-

G~r 12r 2!

5E
0

2pE
0

2p1

2

f ~x1 ,x2 ,y1 ,y2 ,a,b!

12
4

9
~4 cos2a4 cosa cosb!

da

2p

db

2p
,

~11!

where

f ~x1 ,x2 ,y1 ,y2 ,a,b!

5cos@a~x12x2!b~y12y2!# 2
3 cos~a!cos@a~x12x2!

3b~y12y2!# 1
3 cos~a~x12x2!b~y12y2!b!21. ~12!

Following the same procedure as Ref.@34#, we obtain the
branching probability of a spanning treep̂k for the honey-
comb lattice. The values ofp̂k for SQ and PT lattices@17,34#
are also listed in Table IV. In Table IV, we compare the R
transferring probabilitiespi* with the branching probabilities

of spanning treep̂i . We find that they have the same beha
ior on the square lattice. However, they are not on the
angle and honeycomb lattices. Thus, we can conclude
the hypothesis about the coincidence ofpi and p̂i proposed
in @16# is not valid.

VI. SUMMARY AND DISCUSSION

In this paper we use a computer algorithm to calculate
effective toppling events for two kinds of RG equations. W

e

e
c-

TABLE III. Comparisons of critical height probabilitiesni* for
square~SQ!, plane triangular~PT!, and honeycomb~HC! lattices
obtained by RG transformation, numerical simulations, and ex
calculation. In the numerical simulations with statistics of 106 con-
figurations on 100031000 lattices are generated to obtain the da

n0* n1* n2* n3* n4* n5*

RG ~SQ! a 0.021 0.134 0.349 0.496
RG ~SQ! b 0.021 0.134 0.349 0.496
Simulation~SQ! a 0.074 0.174 0.306 0.446
Exact~SQ! c 0.074 0.174 0.306 0.446

RG ~PT! a 0.036 0.135 0.198 0.210 0.211 0.21
RG ~PT! d 0.036 0.135 0.198 0.210 0.211 0.21
Simulation~PT! a 0.058 0.094 0.139 0.188 0.240 0.28

RG ~HC! a 0.014 0.308 0.678
Simulation~HC! a 0.083 0.293 0.624

aThis work based on real height RG approach.
bIvashkevich@16#.
cPriezzhev@10#.
dPapoyan and Povolotsky@17#.
7-8
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RENORMALIZATION-GROUP APPROACH TO AN . . . PHYSICAL REVIEW E 66, 021307 ~2002!
find that the values of critical exponentst and z for the 2
32 cell to one-site RG transformation for the SQ lattice a
closer to conjectured exact values and simulation values
those for the 333 cell to one-site RG transformation. The
are two possible reasons. The first reason is that we do
consider the multiple toppling events in the RG calculatio
The errors arising from the multiple toppling events a
larger for the 333 cell. Therefore, when the cell size in
creases, we should consider the multiple toppling event
order to get accurate values oft andz. This cannot be done
easily in exact enumeration approach to RG transformatio
but can be done by Monte Carlo RG calculations. Anot
possible reason is that the critical exponentt is not well

FIG. 6. Transformation from a cell with six sites on the hone
comb lattice~a! This shows a transformation from a cell to a sit
~b! We show that the directions outgoing from the blocks, which
encircled by rectangle corner roundness, are coupled to the d
tions of the lattice at the next scale.
02130
e
an

ot
.

in

s,
r

defined for the BTW sandpile model@21# and therefore RGT
cannot be used to obtain the critical exponent.

Every avalanche of a BTW sandpile model can be rep
sented as a sequence of more elementary events, called
pling waves@12,13,35#; each toppled site in a wave topple
exactly once in that wave. Since the RG transformat
~RGT! presented in the present paper does not allow
multiple toppling events, it seems that the RGT can be u
to calculate critical behavior of waves. It is well known th
the critical exponent of the size distribution of all topplin
waves is 1@12,13,35#. Table II shows that in the reduced
parameter RG calculations for the SQ lattice, when the lin
size of the RG cell increases from 3 to 2,t(SQ) decreases
from 1.243 to 1.122 which is very close to 1: the critic
exponent for all waves. However, it seems that the RGT
only give approximate critical exponent for all waves b
cause the height configuration after relaxation of a wave
usually still unstable~except the last wave@12,13,36#! and
after the RGT, the system has a stable height configuratio
is worth mentioning that as the dimension of the BTW mod
increases, the multiple toppling events become rare@37#. Un-
der this condition, an avalanche usually only have one w
and the RGT can give better a result.

For the PVZ approach, the critical density of sitesr* is
equivalent to height probabilitiesnq* in the Ivashkevich ap-
proach. If we compare the value ofr* with the numerical or
exactnq* , we find thatr* is larger thannq* . This is related to
the rule that in the PVZ approach, the stable site will n
topple even the stable site receive more than one partic
Therefore, the obtainedr* must be larger to compensate th
loss of stable sites which have the potential of topplin
Again, when the cell size is larger, the compensation effec
also larger. For example,r* obtained from the 333 cell of
the square lattice is larger than that obtained from the 232.
There is no such kind of problem in Ivashkevich’s approa
We find theni* is consistent with the numerical simulation
and exact results.

In summary, it is worthwhile to consider the multiple top
pling events in the real-height RG treatment in order to
swer the question discussed above. However, it is hard
carry out exact enumerations for larger cell sizes. In the n
step, we plan to use Monte Carlo simulations to constr
RG transformations with large cells and include multiple to
pling events. Such generalization of the RG method could
also valuable to calculate critical exponents for the Man
model @38#, which has well-defined avalanche exponents.
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APPENDIX

In latticesR(k) for k>1 obtained after RG transforma
tions, one site can transfer particles to one, two,. . . , or q

-

e
c-
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TABLE IV. Fixed point of transferring probabilitypi* and branching probabilities~BP! of spanning trees

pî .

p1* (p1̂) p2* (p2̂) p3* (p3̂) p4* (p4̂) p5* (p5̂) p6* (p6̂)

RG ~SQ! a 0.295 0.435 0.229 0.041
RG ~SQ! b 0.295 0.435 0.229 0.041
BP ~SQ! c 0.295 0.447 0.222 0.036

RG ~PT! a 0.000 0179 0.002 26 0.0558 0.296 0.471 0.174
RG ~PT! d 0.000 0179 0.002 26 0.0558 0.296 0.471 0.174
BP ~PT! d 0.322 0.417 0.207 0.049 0.006 0.0002

RG ~HC! a 0.546 0.432 0.022
BP ~HC! a 0.25 0.5 0.25

aThis work based on real height RG approach.
bIvashkevich 1996@16#.
cManna, Dhar, and Majumdar 1992@34#.
dPapoyan and Povolotsky 1997@17#.
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different directions with probabilitiesp1 ,p2 , . . . , andpq ,
respectively. There are totallyq different directions which
can be labeled byd1 ,d2 , . . . , anddq . In a more precise
description, a site can transfer one particle or nothing t
specified directiondi which is denoted by the variabler di

with valuesr di
51 or 0, respectively. Therefore, the topplin

rules of sites are exactly determined by the vectorr¢
5(r d1

,r d2
, . . . ,r dq

). Since one unstable site sends nothing
its neighbors is omitted in PVZ RG transformatio
(r d1

,r d2
, . . . ,r dq

)5(0,0, . . . ,0)50W is forbidden. For a given

r¢, the site will sendj 5( i 51
q r di

particles toj different direc-

tions. If we divide the toppling rule configuration setI

5$(r d1
,r d2

, . . . ,r dq
)ur di

50 or 1,; i and ( i 51
q r di

Þ0% into

subsets Ij5$(r d1
,r d2

, . . . ,r dq
)ur di

50 or 1, ; i and

( i 51
q r di

5 j % according to the valuej, q subsets can be ob
tained. And it is straightforward to show that the number
elements of thej th subsetIj and I are Cj

q and ( j 51
q Cj

q

52q21, respectively.
Now we define Prob(r¢) as the probability that an unstab

site transfers particles with a given toppling ruler¢. The rela-
tion pj5( r¢PIj

Prob(r¢) can be obtained. On the other han

we assume that the probability Prob(r¢) is the same for allr¢
PIj because of the isotropy of latticeR. Therefore, we con-
clude that Prob(r¢)5pi /Ci

q for r¢PIi . For example, Prob@r¢

5(1,0, . . . ,0)# 5 Prob@r¢5(0,1, . . . ,0)# 5••• 5Prob@r¢5(0,
0, . . . ,1)#5p1 /q and Prob@r¢5(1,1, . . . ,0)#5p2 /C2

q . In

this way, R5$(r¢1 ,r¢2 , . . . ,r¢m)ur¢iPI,; i % can be used to
represent the toppling rule configuration of an RG cell;R
contains more information thanE5$eW% introduced in Sec. II.

In Sec. II, we presented the PVZ approach to constr
RG transformation of Eq.~3! by using avalanche events an
we used Fig. 3 as an illustrative example. In this section,
will use the idea of toppling rule configurationR and a com-
puter algorithm to calculate all terms which contribute to t
02130
a

o

f

,

ct

e

right-hand side of Eq.~3!. Consider a RG cell ofm sites,
whose initial high configuration is (h1 ,h2 , . . . ,hm) and the

toppling rule configuration is (r¢1 ,r¢2 , . . . ,r¢m). If we add one
particle to sitea, the sandpile evolution starts and final
evolves into one state where all newhi are stable. In order to
count all possible avalanche events, we prepare a For
computer programSOCRGto generate such events. InSOCRG,
we consider three subconfigurations sets and use (m12) do
loops to generate such subconfigurations

~1! The initial height configurationH: There are two pos-
sible states for each site, i.e.,hi50 or 1. Therefore, totally,
2m possible configurations are considered. However, som
these 2m configurations will not induce sandpile evolution
for example,hi50 for all i. In SOCRG, we use the first do
loop to generate all possible configurations inH.

~2! The starting point set of sandpile dynamicsC
5$aua51,2, . . . , or m%, where a denotes the site on
which we add one particle: There arem possible positions to
add one particle to a RG cell withm sites. InSOCRG, we use
the second do loop to generate all possible sitea in C. If the
chosen sitea is not a critical site,SOCRG goes to the next
site.

~3! The toppling rule configurationR: There are 2q21
possible toppling rules for each site. Therefore, there
(2q21)m possible toppling configurations for anm-site cell.
In SOCRG, we use the third to the (m12)-th do-loops to
generate such toppling configurations.

For a specified configuration withhW s, as, (r¢1
s ,r¢2

s , . . . ,r¢m
s )

generated by these (m12) do loops, we can calculate th
toppled vectorOW 5(O1 ,O2 , . . . ,Om) whereOi51 or 0 de-
pending on whether sitei topples or it does not during th
sandpile evolution. For example, Fig. 3 shows an event o
three-site RG cell of the triangle lattice. In this examp
(h1

s ,h2
s ,h3

s) obtained from the first do loop,as obtained from

the second do loop,r¢1
s obtained from the third do loop, an

r¢2
s obtained from the fourth do loop, are~1, 1, 0!, 1, ~0, 1, 0,

0, 0, 1!, and ~1, 1 ,0, 0, 1, 1!, respectively. Then,
7-10
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RENORMALIZATION-GROUP APPROACH TO AN . . . PHYSICAL REVIEW E 66, 021307 ~2002!
OW 5(1,1,0) is obtained. The weight of this height configur
tion is r2(12r). The probability of this event is 1/3r2(1
2r)Prob(r¢1

s5(0,1,0,0,0,1))Prob@r¢2
s5(1,1,0,0,1,1)# and the

relaxation timet52. Finally, this event is classified asr¢
5(1,1,0,0,1,0) for the supersite of Fig. 3~c!. In this case,
since site 3 does not topple (O350). The probability of the
toppling process depends only onhW s, as, r¢1

s , andr¢2
s . The do

loop used to generater¢3
s can be skipped quickly~see below!.

In general, consider thei 1th element of the first do loop
hW i 1, the i 2-th element of the second do loopa i 2, and thej k-th
element of the (k12)-th do loopr¢ j k for 1<k<m; the com-
bination of such elements is denoted by t
D( i 1 ,i 2 , j 1 , . . . ,j k , . . . ,j m), which is a configuration of the
set consists ofH,C, andR. This configuration will generate
a toppling event with probability

PP~hW i 1,a i 2,$r¢ j k%!5WhW i 1W^a i 2&)
k51

m

@Prob~r¢ j k!#Ok. ~A1!

SinceOk50 means that sitek is not involved in the toppling
process, any choice ofr¢ in the (k12)-th loop will corre-
spond the same event represented by the configura
D( i 1 ,i 2 , j 1 , . . . ,j k , . . . ,j m). Define a set: which consists
of the configurations:D( i 1 ,i 2 ,J1 , . . . ,Jk , . . . ,Jm) with Jk
5 j k for Ok51 or J for Ok50, whereJ is an integer and 1
<J<2q21. From OW , we can calculate the total number
toppled sites: m95O11O21•••1Om . There are (2q

21)m2m9 elements in: and every such element of: corre-
sponds to the same event which is generated by the con
ration D( i 1 ,i 2 , j 1 , . . . ,j k , . . . ,j m). In SOCRG, the do loops
corresponding to sites withOk50 are passed throug
quickly to save the computing time and the following tec
nique is used.

Define anm-dimensional array:V( j 1 , j 2 , . . . ,j m), where
1< j k<2q21 for 1<k<m. Immediately after a new heigh
configuration is chosen by the first do loop~say thei 1-th
step! and a new starting point is chosen by the second
loop ~say thei 2-th step!, all elements of the arrayV are set to
hy
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one. For eachD( i 1 ,i 2 , j 1 , . . . ,j k , . . . ,j m) configuration
generated in the third to the (m12)-th do loop, we first
check the value ofV( j 1 , j 2 , . . . ,j m). If V( j 1 , j 2 , . . . ,j m)
51, we record this event and obtain a set:. Then, we set
V(J1 ,J2 , . . . ,Jm)50 for D( i 1 ,i 2 ,J1 ,J2 , . . . ,Jm) in :. If
V( j 1 , j 2 , . . . ,j m)50, we skip this step to the next step u
der the third do loop to the (m12)-th do loop. In this way,
the do loops corresponding to sites withOk50 can be passed
through quickly. Repeat above procedure for different co
binations of height configuration and starting point and
finish the calculation of all do loops.

Basically, the form of Eq.~A1! can be transferred to th
form of Eq.~1!. Therefore, we can construct the RG Eqs.~3!
and~4!. In order to test this algorithm, we calculate RGT f
a 232 cell to one site on a square lattice, which is shown
Figs. 1~a! and 1~c! and has been done in details by Vesp
nani, Zapperi, and Pietronero~VZP! @15#. Define

Ai~k,a1 ,a2 ,a3 ,a4!

5(
j

(
a

(
t

Bi~ j ,a,a1 ,a2 ,a3 ,a4 ,t !

3S 1

C1
4D a1S 1

C2
4D a2S 1

C3
4D a3S 1

C4
4D a4

d@k,f~ j !#,

wheref( j ) is the number of critical sites of thej th configu-
ration of heights. We find that almost all of our calculat
values ofAi(k,a1 ,a2 ,a3 ,a4) are the same as those whic
appear in the appendix of@15#, except A3(3,0,1,1,1)
50.749 997,A2(4,0,4,0,0)50.177 2839, andA4(4,2,0,1,1)
51.460 250 in @15#. Our values of A3(3,0,1,1,1),
A2(4,0,4,0,0), andA4(4,2,0,1,1) are 1.750 000, 0.117 283
and 1.406 250, respectively. We find thatA2(4,0,4,0,0) and
A4(4,2,0,1,1) in Ref.@15# are only slightly different from our
values. They might be typographical errors in@15#. However,
there is an obvious difference between our value and VZ
value for A3(3,0,1,1,1). We believe that VZP’s value
wrong since all other 240 terms of VZP are exactly the sa
as ours and VZP calculatedAk( i ,a1 ,a2 ,a3 ,a4) by hand and
we calculateAk( i ,a1 ,a2 ,a3 ,a4) by a systematic algorithm.
.
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