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Renormalization-group approach to an Abelian sandpile model on planar lattices
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One important step in the renormalization-groliffG) approach to a lattice sandpile model is the exact
enumeration of all possible toppling processes of sandpile dynamics inside a cell for RG transformations. Here
we propose a computer algorithm to carry out such exact enumeration for cells of planar lattices in the RG
approach to the Bak-Tang-Wiesenfeld sandpile mpehls. Rev. Lett59, 381 (1987 ] and consider both the
reduced-high RG equations proposed by Pietronero, Vespignani, and Z&pyeyi Phys. Rev. Lett72, 1690
(1994], and the real-height RG equations proposed by Ivashkéhkis. Rev. Lett76, 3368(1996]. Using
this algorithm, we are able to carry out RG transformations more quickly with large cell size,>x 3y.cé&l for
the squargSQ) lattice in PVZ RG equations, which is the largest cell size at the present, and find some
mistakes in a previous papgPhys. Rev. B51, 1711(1995]. For SQ and plane triangulaPT) lattices, we
obtain the only attractive fixed point for each lattice and calculate the avalanche exparehthe dynamical
exponentz. Our results suggest that the increase of the cell size in the PVZ RG transformation does not lead
to more accurate results. The implication of such result is discussed.
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I. INTRODUCTION new z;<z., then randomly choose a site again, say ktte
site, to add a patrticle; &=z, then theith site topples and
In 1987, Bak, Tang, and WiesenfelBTW) [1] proposed its heightz; becomesz; —z.. At the same time, each of the
the concept of self-organized criticalif8OC in order to  nearest neighboiNN) sites of theith site receives one par-
understand the automatice., without a tuning parameter, ticle, i.e.,z, jy—Z.qj+1, V | wherew(i,j) is the label
such as temperatureappearance of abundant self-similar of the jth NN site of theith site. This relaxation procedure

structures and scaling quantities in nature. BTW also progxes timet,, and we assumg, /T,— 0. If some of the new

posed a lattice sandpile model and used Monte Carlo Sim'“kwu i, ¥ |, are equal or larger tham, again, these sites are

Iati(_)ns to simullate this model| on square and simple Cupi%enoted byw(i,j'). Then, the toppling process continues in
lattices. They did observe self-similar structures and Scalm%arallel for ,each i ,with 7 s 2 and
w(i,j") w(i,j") “c

quantities in the simulation data without tuning any param- . .
eter. Since 1987, many natural phenomena have been relat o(i )0 Zo((i ) 1 Wherew(o(i,j") k) is the kth
y P % site of thej’th NN site of theith site. The relaxation

to SOC, such as earthquakey, forest fires[3], biological _ ) -
evolution [4], rice pile dynamics[5], turbulence[6], etc. time for these parallel toppling and receiving processes be-

Many lattice models have also been proposed to illustrate théveene(i.j’) andw(w(i,j’),k) takes another timg, . Usu-
behavior of SOC or avalanche procesggs]. It has been ally, the open boundary conditions are used so that when a
found that the BTW’s sandpile model is Abelid8] and boundary site topples, the particle can leave the system. The
some quantities for this model could be calculated exactlyynamical process continues until the heights of all sites are
[9-12. The BTW'’s Abelian sandpile mod¢ASM) [1] has less thanz.. In general, if the last toppling site ®(w(- -
been considered to be a prototypical model for SOC. Many (w(w(i,i1),iz),i3)- - -),i,), the total toppling process takes
ideas about behavior of SOC models, such as universalitime nt,,. In this way, a series of toppling processes with
and scalind 13], or methods for studying SOC models, suchtoppling areas (i.e., the total number of toppled sijeand
as renormalization-group theof§4—17, are often tested in relaxation timent,=t appears and forms an avalanche
the BTW’s ASM. In the present paper, we propose a comwhich has no characteristic size.
puter algorithm which is wuseful for carrying out  After repeating many times the process of adding one
renormalization-group transformations for the BTW’s ASM. particle on a randomly chosen site with subsequent relax-
The BTW’s ASM on a latticé’ of N sites is defined as ation when the height of the site is equal or larger tkgn
follows. Each site ofR is assigned a height integer; thin ~ we can obtain a distribution of toppling ar®4s) and cal-
site is assigned; for 1<i=<N. In the beginning of the simu- culate the average relaxation tije) for avalanches with
lation, the height integer at each site is randomly chosen ttoppling areas. It has been found tha®(s)~s™ " with the
be 0,1, ..., oz;—1, where the critical height i,.—1 and  avalanche exponent and (t)~s?2 with the dynamical ex-
z. is the coordination number of the lattice. For each timeponentz. Manna[18] used Monte Carlo simulations to cal-
interval T,, one particle falls on a randomly chosen lattice culater=1.22 andz=1.21 for the BTW model on the square
site, say thath site; the heighg; then becomesg;+ 1. If the  (SQ lattice. Majumdar and Dhar conjectured that5/4
which is consistent with their own numerical simulations
[19], and Priezzheet al.[20] proposed that=5/4. By scal-
*Email address: lincy@phys.sinica.edu.tw ing argument, Tebaldet al. [21] suggestedr=6/5. Many
"Email address: huck@phys.sinica.edu.tw investigations have just focused on numerical simulations or
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exact results for height probabilities and exponents for theice, and we can carry out ax<33 cell to one-site RG trans-
SQ lattice and there is little attention to other kinds of lat-formation (RGT) for the SQ lattice.
tices. It is not clear whether the sandpile model on two- In the present paper, we consider both PVZ and Ivash-
dimensional lattices have the same set of critical exponentkevich RGTs. Using the PVZ reduced-height RG equations,
The renormalization-grougRG) theory has been used We calculate the density of critical sitpsthe probability for
successfully to calculate critical exponents, order parameter§ne site to transfer sands talifferent nearest neighbogs,
etc., of ordinary phase-transition models, e.g., the Isinghe avalanche exponentand the dynamical exponertby
model[22], the Potts mod€23], and the percolation model 2X2 and 3x3 cells to one site RGTs for the SQ lattice, and
[24-26; it has also been used to understand universality anthree sites cell to one-site RGT for the PT lattice. Using the
scaling in ordinary phase-transition models. It is of interestvashkevich's real-height RG equations, we calculate the
to know whether one can also use RG theory to calculatéritical height probabilities, the critical sand transfer prob-
critical exponents for lattice SOC models, e.g., the BTwabilities, the avalanche exponentand the dynamical expo-
sandpile model. In 1994, Pietronero, Vespignani, and Zappefientz by a 2x2 cell to one-site RGT for the SQ lattice and
(PVZ) [14] proposed a RG theory to calculate critical expo-three-site cell to one-site RGT for the PT lattice. We find that
nents of the BTW sandpile model on the SQ lattice. Theyour calculated height probabilities are consistent with the
used a stationary condition to provide a feedback mechanis@xact and numerical simulations.
that drives the system to its critical state. In fact, in their ~The outline of this paper is as follows. In Sec. I, we
approach, the height of a siteis reduced to only three cases introduce the reduced-height RG equations. Here, we extend
corresponding to three classes: stableZerz,—1, critical ~PVZ's formulation for the SQ lattice to a general lattice. In
for z=z,—1, and unstable forz=z.. The obtained the Appendix, we present a systematic computer algorithm
renormalization-group equations allow them to get an attracfor the exact enumeration of all possible toppling processes
tive fixed point. At this fixed point, they obtained avalancheof sandpile dynamics inside a cell for RGT. By using this
exponent7=1.253 and dynamical exponemt=1.168. In  algorithm, we present the obtained fixed points of reduced-
1995, PVZ[15] described in more detail their RG approach height RG equations and the critical exponents in Sec. lll. In
to the BTW sandpile model. In 1996, Ivashkevid®] gen-  Sec. IV, we apply real-height RG equations to the BTW
eralized PVZ's RG scheme with real height parametelsy ~ model on SQ and PT lattices. For a different definition of the
kinetic equations and used the technique of generating fund®G cell for the HC lattice, in Sec. V, we calculate the critical
tion to construct RG equations to obtain the exponent Sand transfer probabilities and find that they are different
=1.248 and height probabilities. In addition, Ivashkevichfrom branching probabilities of spanning trees on the same
found that for the SQ lattice critical particle transfer prob- (HC) lattice. This result confirms Papoyan and Povolotsky's
abilities are close to branching probabilities for spanningesult[17] for the PT lattice. Finally, we summarize our re-
tree. However, Papoyan and Povolot$ky] pointed out that sults and discuss problems for further studies in Sec. VI.
such connections could be wrong and used the example of
the plane trlangula(PT) Iattice to illustrate their ideas. In Il. REDUCED-HEIGHT RENORMALIZATION-GROUP
1996, Vesp|gnan|, Z_apperl, and Lordt®7] proposed a real- EQUATIONS
space dynamical-driven renormalization group to provide a
theoretical basis for previous RG studies of the ASM. In In this section we extend PVZ's formulation of RG trans-
1997, Libeck and Usadel used extensive Monte Carlo simuformation[14] for the SQ lattice to a general latti®@ and
lations to find thatr~1.33[28]. present a simplified version which is useful for realization by
One important step in the RG approach to a lattice sandd computer program. Then, we propose an algorithm for
pile model is the exact enumeration of all possible topplingcounting events of RG procedure. In the Appendix, we will
processes of sandpile dynamics inside a cell for RG transfoishow that this calculation is basically consistent with that of
mation. PVZ and Ivashkevich divided the height configura-Ref.[15] for a 2X 2 cell of the square lattice. However, there
tions inside a RG cell into subsets with the same number ofire some mistakes in RéfL5].
critical height by hand. After this procedure, for each height As in ordinary real-space RG transformations for the spin
configuration, PVZ counted the possible toppling events byand percolation model22-29, in the RG transformation
hand and Ivashkevich did this by the technique of generatingor the BTW sandpile model on the latticg with lattice-
function. Based on Ref§14—16, in the present paper we constanta, we first divide =% into gxg cells, then
formulate a computer algorithm for RG studies of the BTWconsider the transformation from eagtx g cell into a cell
sandpile model on the SQ, PT, and honeycdh®) lattices.  with a smaller number of sites or a supersite. In the present
The advantage of our method is that we do not need to clagaper, we consider only the later case. From the relationship
sify all height configurations inside a RG cell into different between the cell and the supersite, the properties of the
subsets by hand which is different for different kinds of lat- specified cell can be approximately represented by the super-
tices and RG cell sizes. Therefore, it is easier for us to extenglite. After the first step of RG transformation, we have a
the same algorithm to different cell sizes and different kinddattice, called®’ =R, of supersites with lattice-constant
of lattices. Another advantage of our method is that we camg. We can carry out the second step RG transformation on
study larger RG cells. For example, [ih4,16,29 and[30], P’ to obtain a latticér” =% with lattice-constanag? and
they have only carried out a>22 cell to one site and a we can continue such RG transformation to obtain a series of
five-site cell to one-site RG transformations for the SQ lat-lattices9i¥ with lattice-constanag®. Examples of RG cells
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2 . ® . FIG. 2. The picture of toppling rules for a site of the square
P * I ¢ lattice. Thee; denotes one unstable sitwill transfere; particles to
® ® g, different nearest neighbors. For eagh there arecgi possible

toppling rules.

(© @

the ASM model on the original square lattice, the height and

transferring probability can take valze=0,1,2, or 3 ancﬁ
=(0,0,0,1), respectively. On the other hand, after the RG
transformation, the height configuration set and toppling rule

configuration set ar& and E, respectively, wherd={e}

| ={(e1,65, ... .en)| &=1.2,..., orq,Vei}.
, , In this way, the transferring probability and the initial
FIG. 1. (a) and(b) Transformation from a cell to a site for the heiah bability i = h is th
RG transformation. Herdg) and (b) are for the square lattice with 1€!9nt proba ilityn=(no,ny, ....nq_1), wheren; is the

2% 2 cells and for the plane triangular lattice witf8x \3 cells, probability that the height of the supersiteijsare useful to
respectively. Blocks of sites of the coarse-grained lattisds 1) characterize the proE)ertles of the coarse-grained sarldp|le dy-
become supersites on the renormalized laff¢€. (c) and(d) We  namics. We use p(k):(p(lk) ,p(zk), - ,pgk)) and n®

show that the directions outgoing from the blocks, which are en-=(ngk) ,n(lk), .. ,nék,)l) to denote the transferring probabil-
circled by rectangle corner roundness, are coupled to the directiorlgy and initial height probability on latticér . (ﬁ(k),b’(k))

of the lattice at the next scale. > > . .
and (& pk=1)y are linked by th&th RG transformation.
Instead ofp{”=0 for i <q andp?’=1 and={ - n{®=1 in

for SQ and PT lattices are shown in Figsaland 1b),  the original level, the normalized conditigf_,p® =1 and

respectively, whose linear dimensiofi®., g values are 2 Eiqz—olni(k)zl are used in the coarse-grained level.

and 3, respectively. In order to simplify the RG transformation, PVZ reduced

Here, we briefly review PVZ's RG approach to the yhe peight of a site; to only three cases corresponding to
BTW’s ASM [14,15. If we consider a sandpile RG cell with e classesh;=0 which is stable forzj<z,—1, h;=1

el 2 ) A
Z;ﬁ ?:a r?lttaelfé tirrllfeic]neltrlz\illa:]ueelghgjléf,eoe:i]h—sllt,awlr?esrlgg iz tﬁg which is critical forzi=zc—1., andh;=2 which is unstable
coordination number of lattic®; for example Figs. () and ffr 4=2c. Therefore,_Z will- be 'replaced byH—{h}
1(b) correspond to the SQ and the PT lattices, wjth4 and ._{(hl’hZ’ o )| hi=0 or 1¥ 1. The exolutlon rule
6, respectively. After adding one particle to one lattice site,Is as foII.ows.' Ifa (':r|t|cfal site \Lv'th he'ghth‘_l receives
say sitei, if the sitei is unstable(i.e., z=z,), the sitei will  °ne Particle, its height is nol; =2 and sitel becomes un-
topple and transfer particles & different nearest neighbors. stgble. 'Ijhen,.th|s gnstable site W'll transfer“Eartlcles o
In general,g; can take values 1,2. ., orq after RG trans- Neighboring sites with the transferring probabiliy After
formation which is different frome,=q for the original this action, this toppled site becomes stable wifk0. In
sandpile evolution o). As an illustration, the pictures of this _approach, the stable S|t(_e is still stable even if th|s_S|te
e, for the SQ lattice are shown in Fig. 2. The toppling reje  '€ceives more than one _part|c_le. It_mean§ that the multitop-
can be described by the transferring probabilify pI.|ng process of one site is omltted in PVZ's RG approaches.
= (P1.Ds . . . Pe) Wherep, is the probability that the un- Slncg PVZ used helght' configuratidt and'toppllng'rules
eyt & . . configurationE to describe the RG sandpile evolution, the
stable sitei transfers particles te; different nearest neigh-

bors; if e is smaller tharg, one should also specify which height probability vecton can be simplified to one param-

directions the particles go into, which will be explained in eter p, which is the probability of critical sites, and

S . . Nk k) () Rk
more details in the next section. In general, the evolution of " +P' ) becomes £, p™™). _
the ASM at the initial stager(©), is characterized by the An.avalanche event sp(_acmes how a toppling process goes
on. Figure 3 shows a typical avalanche event of a sandpile

initial_height configuratign se‘rZ={z}={(zl,z.2, T ’Zm)l evolution on a three-site cell of the PT lattice. The labels of
z=01,..., orq—1V i} and the toppling rulee  sjtes and toppling directions are shown in Figa)3 Figure
=(er,e, ... .em)=(9,9, ...,09). That is p;=p,=---  3(b) shows a starting height configuration with site 1 being

=Ppg-1=0 andp,=1 for 5 at this stage. For example, for critical, site 2 being critical, and site 3 being stable, i.e.,
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(a) transfers into one supersite 8 as shown in Figs. (b)
and 3c); a site of "<~ can transfer particles to six direc-
tions shown in the right-hand side of FigaBand a supersite
/) of | can transfer particles to six directions shown in the
4 1 right-hand side of Fig. @), which correspond to six outgo-
(o) o ing directions of Fig. Ud). In the avalanche event of Fig.
5 6 3(b), the particles which leave the cell in directions 6, 1, and
2 contribute to outgoing particles in directions 5, 1, and 2,
(b) respectively, in the figure at the right-hand side of Fi(r) 3
[see also Fig. ™)]. Thus the avalanche event of Figbgin
R&~D contributes tap$ for the supersite of™®.
° In general, the probability of one avalanche event is de-
termined by the initial height configuration, the starting site
fo) o) of the avalanche, and the detail of the toppling process. If the
\ initial height configuration is th¢th element ofH and con-
tainsm’ critical sites, the starting site is site the toppling
process consists o, unstable sites which transfér par-
ticles tok different directions for ¥k=q, the probability of
this avalanche event is

3 PE(j,CY,al,az, ,aq)

@ 4 6 1 ag 1 ap 1 ag
=W.W N [ e | — , 1

5

_.m m—m’ _

FIG. 3. A toppling process on a three-site cell of the planeWhere Wi=p" (1~ p) . .and W(a)=1/m, al”,az L
triangular lattice. Open dots represent stable sites, black dots reprg-ndaq are zero or positive |nt§ger arﬁfL 18=m" which is .
sent critical sites, and encircled black dots represent unstable sitg?e t,Otal numt_)er of topp!ed sites. Slnce we do not consider
(a) The label of sites inside a cell and the label of toppling direc-Multiple toppling eventdi.e., one site can topple at most

tions of an unstable sitéb) A series of toppling process from leftto  ©Nc8, M” should be equal to or smaller tham _
right. For site 1 and 2, their toppling rufg andr, are(0, 1, 0, 0, To construct RGT, we should first collect all possible

0,1 and(1, 1,0, 0, 1, 1, respectively(c) After the RG transfor-  €Vents on a RG cell 0%(!( Y. Consider the set of events
mation, the three-site cell af) the toppling processes ¢b) are  Cj(@,a1,a, ... aq,1t) which are initiated by theth initial
represented a supersite and the toppling ref¢1,1,0,0,1,0) on the helght conflgurajuon oH and SFartlng S'te_"’ ha_lve r_elaxatlon
supersite. Note that the toppling directions(@ can be obtained timet, topplea, times by toppling rule witfk directions. For
from (b) by rotating 30° counterclockwise. the setCj(a,a,,a,, ...,a4,t), we count the number of
events ok~ 1) which topplei directions in point of view
of site on MK, This number is denoted by

ﬁ:(hl,hz,h3)=(l,1,0). This starting height configuration Bi(j,aa;,a;, . . . aq.t). Therefore, for &i=<q

appears with a probability>(1— p). When we add one par-
ticle to site 1, site 1 becomes unstable and transfers one

particle to site 2 via dire_<_:ti0ns 2 a_nd out of ce_II via dir_ectio_n i :2 2 2 Bi(j,@,a1,az, . .. aq,t)

6. Note that the probability of adding one particle to site 1 is a a8, ...y ag t

1/3 since there are three sites inside the RG cell and the ay a, aq
probability of transferring particles to directions 2 and 6 < W ip(k—l) ip(k—l) ip(k—l)
from site 1 isp,/C5 since there areC$ possible toppling N\ g™ cg? leat

rules for transferring two particles to six directions. After site

2 receives one particle from site 1 it becomes unstable and _ E

transfers one particle to site one via direction 5, one patrticle @ aj.a

to site 3 via direction 6, and two particles out of cell via

directions 1 and 2; the probability of transferring particles to X Pe(j,@,a1,az, ... ,2g)/W, 2

four NN sites from site 2 via directions 1, 2, 5, and 6 is

p4/C?1. Since site 1 will not topple again and site 3 is a stableis the summation of probability of toppling events 2%~

site, the toppling process stops. In summary, the probabilityvhich evolve under théth initial configuration ongt<~ %)

of the avalanche event and the relaxation tief Fig. 3b)  and contribute to the® on R, Note that it is possible to

are (1/3p%(1—p)(1/15)p,(1/15)p, and 2 (we sett,=1), have toppling processes inside a cell but transfer nothing

respectively. outside a cell. PVZ omits all of these events and Ivashkevich
Under RG transformation, each three-site celt®ft™ et al.[31] simply assumed these events appear with probabil-

2 Bi(j,a,ay,ay, ... ,aq,t)
Qg t

.....
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TABLE |. Critical density and transferring probabilities at the RG fixed point.

p* p1 P> p3 p3 Pz Ps
SQ[2x2] 2 0.515 0.327 0.437 0.205 0.031
SQ[2x2]°P 0.468 0.240 0.442 0.261 0.057
SQ[3x3] 2 0.663 0.572 0.353 0.070 0.005
PT([3 siteg 2 0.214 0.000002 0.0005 0.040 0.314 0.582 0.073
HC [6 siteq @ 0.763 0.702 0.285 0.013

#This work based on PVZ approach.
bpv/Z [14].

ity po. Now the properties of the system are fully character-culation from the small-scale transformation for square and

ized by the distribution 4™, p®) at this scale. Then, the RG
equation can be written as

(k)

Pi f11/Fy f12/Fy
p(zk) fo1lFy f2lFy
:WllNW 2 w =+ ..
p(qk) fqllFl fq2/F2
fin/Fn
fon/F
W N T (3
fqn/Fn

wheren is the total number of configurations id which
could contribute to the right-hand side of E®), W;, the
weight of thejth element ofH, is a function ofp*~ 1) N,
andF; are the normalized constants \8f, and f;; with N,,
=X;W; andF;=Z;f;;, respectively. This RG equation can

triangle lattices which are shown in Fig. 1. All bonds outgo-
ing from a given cell into another are included into one
renormalized bond of the supersite, as is shown in Figs. 1
and Xd). It is one of the simplest choices where supersites of
Figs. 1c) and Xd) contain just a few sites of Figs(d) and

1(b), respectively. A block of sites iR~V (i.e., an RG
cell) is replaced by a site dik®. Here,g is equal to 2 and

V3 for square and triangle lattices, respectively. A more com-
plex choice for the square lattice can be foundda] where

one supersite contains five sites. In the present paper, for the
square lattice we will extend this study to the case where one
RG cell contains nine sites. This is the largest RG cell which
has been considered for the RG approach to the BTW sand-
pile model.

By using the algorithm of appendix, we enumerate all
possible toppling events for two kinds of cells shown in Fig.
1. However, as 14,15 we drop those events in which the
number of toppled sites are smaller thgy=2; here it is
assumed that such events contributepgowhich has been
discussed in Sec. Il. In other words, these events are assumed
to transfer no particle to nearest-neighbor cells. Of course,
this is an approximation. From the procedures stated above,

be well understood by the transition rate and master equatiofye can expres¥V; andf;; of Eq. (3) in term of p~1) and

of sandpile evolutio27,31].
Another important assumption is the inflow of particles

equals the flow of particles out of the system, i.e., in the

stationary state/dt (p)=0 [14,31]. This impliesp 1 is a
function of p](k_l) for j from 1 toqg and can be written as

1

> ixpk D

plk D= @

Replacingo™® Y in W; andN,, of Eq. (3) by Eq.(4), p{ is
a pure function op{~ " for j from 1 tog. From RG assump-

tion, at k—o, the critical transferring probabilityﬁ*
=(p1.p3, .. ..,pg) and the critical density* can be ob-
tained.

Ill. CALCULATIONS OF CRITICAL EXPONENTS

In the following calculations, we use the RG approach in

the form of Eqs(3) and(4). First, we consider the RG cal-

p~1. The normalized factorg/, andF; can also be calcu-
lated. By using initial values ap(® and p(® to iterate Eqs.

(3) and (4) until k—«, we can obtain the fixed point cﬁ‘
and p shown in Table I. Note that our results for the<2

cell to one-site RG transformation for the square lattice are
slightly different from those of Ref§14,15. This is due to
the difference in values oA;(i,a;,a,,as,a,) discussed in
the Appendix. For each lattice, we choose some different

starting points ofp(® and p®. We find that all starting
points evolve into the same fixed point which is shown in
Fig. 4. This shows that there is only one attractive fixed point
of the RG equation for square and triangle lattices in this RG
transformation.

In [14], the critical exponent of the avalanche distribution
7 in P(s)~s™ 7 is calculated at the fixed point of the RG
transformation through the fixed point parametpi’s and

f)*. First, the probability that one avalanche occurs on
RK=1) put doesn’t occur oMR(K) can be written as

q
K=2, pf(1-p*)" (5)
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In addition, the probabilityk can also be understood as the also holds. Using Eqs(5) and (6), we obtain7 which is

probability that the linear dimension of the avalandhis listed in part(A) of Table Il. We find that ourr for square

larger thanag“ ! (the lattice constant oA %) and and triangle lattices are close to the numerical simulations

smaller thanag® (the lattice constant ofR¥). Thus, [28,37 for the square lattice.

P(s)ds=P(l)dl~s "ds=1""?7dl, where the toppling area  Another independent critical exponent is the dynamical

s~17, and we have exponentz. From the scaling laws at the fixed point we know
that the average time of a dynamical process scales with the
linear length as(t)~1?. Therefore, the time scalg of a

agk relaxation event on lattic andt,_, on the latticer(~ 1
Lgklp(l)dl are related by the relatiot /t,_;=(ag®/agk—1)z=g=
K= w—:1_92(1—f) (6)  On the other hand, the time scalgcan be obtained as a
J P(1)dl function of the time scalé,_, from the RG equations. The

agk? relation is given byt,=(t* )t _;, and

Wi WaBj(i,a,al,az, e ,aq,tk,l)

fk-1)y —
< > ij,a,ap,ay, ..., aq'tk—l NW Fi
1 a1 q az 1 aq
—pe | [ Zpen || pleD
8 C‘jpl ) (cgpz ) (Cgpq ) (tk—1), )

kil . - - . . .
where (t*~Y) is the average number of subprocesses ofe ahove calculationsn( p) is used in this section, where

9%(k~1) needed to have a relaxation processhf?. By in- A= (. ne 1) With Nyt +n. =1 andn,
serting the fixed point parameters into the calculatiortpf is_theoyrolb’a.b'il'it’ ?f_lét the heio ht iéThereforcé_ %h_ aV. of E !
:I|m_kﬂ|m<t(k)>’ vvrﬁelA(f)]btam the following result for the dy- D is feplaced {)inznm 1n£j And the stea;dy-stlate egija-
rramicel expone ' tion of Eq. (4) is now ch;ractcjarized by the following condi-
L Indt). ® tions: Nng=n;=- - - =n,_,=0 [16]. Therefore, the relation-
In(g) ships between concentration of heigitt) and transferring

ility p) at the stati tate i
Using Eqgs(7) and(8), we obtainz which is listed in parfA) probability p™™ at the stationary state is

of Table II. We find that our result=1.284 for the triangle

lattice is not far from the theoretical prediction valae i

=1.25[19]. If the universality is valid for square and tri- n(® :( > p(k),)/w (9)
angle lattices, the obtainedmust be the same both lattices. e e '

In our RG calculations, we find for the square lattice has a

larger deviation from the theoretical predicted value:

=1.25. wherep®=119_,i x p? is the average number of particles
We also consider the 83 cell for the square lattice, sent from one site to other sites.

which is shown in Fig. 5. Herg,= 3. The critical density of By using the computer algorithm in the Appendix, we

sites and transferring probabilities are shown in Table |. Wesount all events oveZ ® ¥ ® R. Here, for height configura-

find that there are some difference betweenghendp” in  tion (z;,2,, . . . ,z,,), there arey possible states for each site,

the 2x2 cell to one site and the>33 cell to one-site RG i.e., z=0,1,..., org—1. Totally, g™ possible configura-

transformations. The exponents o&ndz shown in Table Il tions are considered. Therefore, the number of events with

have larger deviations from the simulation and theoreticateal heightZ is much larger than that withl. According to
prediction results than the results obtained from the22  Egs. (3) and (9), the p{ andn’ can be obtained after re-

cell. peated iterations. In Table Ill, we compare the critical height
probabilities with the exadtl0] and numerical results. The
IV. REAL-HEIGHT RENORMALIZATION-GROUP numerical results are obtained from simulations on 1000
EQUATIONS X 1000 SQ and PT lattices and in each cas& ddnhfigura-

tions are generated to obtain the data. We also list the results
In the above study, the height configuratidnis simply  of RG calculations reported in Refd.6,17. We find that our
characterized by4. In this section, the real-height configu- RG fixed point is very close to previous RG calculations
rationZ is used to build the RG equation. Instead pf ) in ~ [16,17). It means that our RG calculation is reliable. We also
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1.0 L L S s A S TABLE II. Avalanche exponent and dynamical exponeuntfor
@—esq; square and plane triangular lattices.
A—r_\:3
;—Zs?: (A) Reduced parameter 7 (SQ z(SQ 7(PT) z(PT)
....... pt
- SQ[2x2] 2 1.243 1.147
e pid SQ[2x2]°P 1.253 1.168
oo SQI5 siteg © 1.235 1.236
@ SQ[3x3] 2 1.122 1.082
PT[3 siteg 2 1.363 1.284
/ (B) Real parameter
§;.nu&a»n-m-ﬂ»ﬂ--m--a--s»--a-~a-~ﬂ-ﬂ-ﬁ~~G~~n~~u~ﬂ-ﬂ~-n»-ﬁ--a-ﬁ--n--@»a»n SQ[2x2] 2 1.248 1.150
SQ[2x2] ¢ 1.248
e PT[3 siteg 2 1.367 1.433
002 4 & & 10 12 14k1s 18 20 22 24 26 28 30 PT[3 sited © 1.367
(a)
10 Simulation 1.33 1.254'
ool € Prediction 128 and 1.2" 1.25'
os | 8 &This work
o7l | °PVZ [14].
' “‘Moreno, Gomez, and Pachef20].
06 | divashkevich[16].
% 05 ®Papoyan and PovolotsKyL7].
fLubek and Usadd28].
04T 48 9Priezzhev, Ktitarev, and Ivashkevi¢ao].
03} Mebaldi, Menech, and Stel21].
ozl 'Majumdar and Dhaf19].
01}
N angle lattice which are shown in p&B) of Table IIl. We find
0 2 4 6 8 10 12 14k1e 18 20 22 24 26 28 30 that the value ofr is very close to previous calculation for

(b)

FIG. 4. Iteration results for different initial values pf® and

SQ and triangle lattice. It shows again that our computer
algorithm and calculation are equivalent to lvashkevich’s al-

p(©. The solid line with symbol©, [J, A, andV represent the gorithm. In Refs[16,17], they did not calculate the dynami-

2x2 cell transformation on square lattice with initial valugs
and p©@
=0.1,0.8,0.1, and 0.8, respectively. The dashed line with symb
O, O, A, andV represent the three-site cell transformation on

=(0,0,0,,(0,0,0,1), §.%.7.3), and G,7%.%)

cal exponent. Here, by Eqs(7) and (8), we calculate this
quality which is shown in partB) of Table II. We find that
0Ehe obtainedz on the triangle lattice is far from the value of
exact and numerical results for the square lattice.

triangle lattice with initial valueg®=(0,0,0,0,0,1), (0,0,0,0,0,1),

(3:5.5:8:6.5) and G.5.5.5,5.5) p9=0.1,0.8,0.1, and 0.8, re- V. CALCULATIONS FOR HONEYCOMB LATTICE

spectively.(a) A plot of the p® against thekth iteration numbek. _ _ _ _

(b) A plot of the |p(9]2= (pf®) 2+ (p¥)2+ . . . + (p{)? against the There is no overlap of sites between RG cells in the Figs.
q

kth iteration numbek.

1 and 5. In other words, from these two figures, if one site
belongs to one specified cell, this site does not belong to
other cells. Due to this property of cells, Ed5)—(10) can

find that the RG results of the critical height probabilitrés P& used to calculate critical exponents. Consider the RG
have the same behavior as the numerical or exact results. transformation cell for the honeycontbC) lattice shown in
For critical exponent, Eq. (6) is still useful but Eq.(5) Fig. 6. This kind of RG cell allows one site to belong to two

should be revised to satisfy the definition of The new

equation is

q
K:; pr(1—n¥),

different RG cells. If we use the cell transformation in Figs.
6(a) and 8b), we can still obtain the fixed point @f andp; .
However, it seems that it is inappropriate to get the critical
exponentsr andz for the HC lattic by Eqs(5)—(10).

(10) The algorithm in the Appendix is still useful for the cal-

culation of transferring probabilities for the honeycomb lat-
tice. First, for the reduced-height RG equation, we count all

wherep* in Eqg. (5) has to be replaced btyg . By EQs.(6) possible toppling events and drop those events gjth3.
and (10), the critical exponent is obtained for SQ and tri- Then, using Eqs(3) and(4) to obtainp* andp;* which are

021307-7
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(a) TABLE lIl. Comparisons of critical height probabilities® for

® 6 & 06 o ¢ o o o square(SQ), plane triangularPT), and honeycomi{HC) lattices

e © o 6 ¢ o © o o obtained by RG transformation, numerical simulations, and exact
calculation. In the numerical simulations with statistics of £6n-

¢ 6 0 (0 0 o o o o figurations on 1008 1000 lattices are generated to obtain the data.

e o o [0 o o ¢ o o

ng ny n} n} n, ng

[ ] [ ] ® o [ ] ® [ ] o [ ]
RG(SQ ? 0.021 0.134 0.349 0.496

o of(e o ofle o o RG(SQ " 0.021 0.134 0.349 0.496

e o o (06 o o o o o Simulation(SQ # 0.074 0.174 0.306 0.446

c o o le6 o o © o o Exact(SQ ° 0.074 0.174 0.306 0.446

® & 6 [0 0 o0 o o RG (PT) 2 0.036 0.135 0.198 0.210 0.211 0.211
RG (PT) d 0.036 0.135 0.198 0.210 0.211 0.211

Simulation(PT)* 0.058 0.094 0.139 0.188 0.240 0.281

® RG (HC) @ 0.014 0.308 0.678
Simulation(HC) ® 0.083 0.293 0.624
Op 2 Ogy 20, ) .
&This work based on real height RG approach.
b4 blvashkevich[16].

°PriezzheV{10].
dPapoyan and Povolotskit7].

(b)

G(ri—ry)
® o o _fznfzwl f(X1,X2,Y1,Y2,a,8) d_ad_,B
“Jo Jo 2 1 4 4 colad 2m 27’
® O o —5( CoS a4 cosa cosf)
] ® @ (12)
where

FIG. 5. Transformation from a cell with nine sites on the squaref(xl X2,¥1,Y2, )
lattice. (a) This shows the transformation from a cell to a sits.

— — — 2 _
We show that the directions outgoing from the blocks, which are ~ — 0% @(X1=X2) B(y1~Y2) 5 COS @)COd ar(X1 —X;)
encircled by rectangle corner roundness, are coupled to the direc- 1
tions of the lattice at the next scale. X B(y1—Y2) 15 coda(X;—X2) B(y1—Y2)8)— 1. (12

Following the same procedure as RE34], we obtain the

shown in Table I. For real-height RG equation, the obtainedranching probability of a spanning trgg for the honey-

n’ andp; are shown in Tables Il and 1V, respectively. We comb lattice. The values @, for SQ and PT latticeEl7,34
find that the height probabilities; are quite consistent with are also listed in Table IV. In Table IV, we compare the RG
the numerical simulations on 1080000 honeycomb lat- transferring probabilitiesi* with the branching probabilities
tice, where 10 configurations are generated to obtain nu-of spanning tre; . We find that they have the same behav-
merical data. ior on the square lattice. However, they are not on the tri-

The branching probability of a spanning ti&s E,k isthe angle and honeycomb lattices. Thus, we can conclude that
probability for any site of a random spanning tree to have ghe hypothesis about the coincidenceppfand p; proposed
coordination numbek. The Green’s function of the Laplace in [16] is not valid.
equation for the square, triangle, and honeycomb lattices are
well known [33]. For an infinite latticeG depends only on
the difference of site coordinates rather than their values.
Here, we show the Green’s function for the honeycomb lat- In this paper we use a computer algorithm to calculate the
tice as an example: effective toppling events for two kinds of RG equations. We

VI. SUMMARY AND DISCUSSION
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(a) defined for the BTW sandpile modg21] and therefore RGT
cannot be used to obtain the critical exponent.

Every avalanche of a BTW sandpile model can be repre-
sented as a sequence of more elementary events, called top-
pling waves[12,13,35; each toppled site in a wave topples
exactly once in that wave. Since the RG transformation
(RGT) presented in the present paper does not allow the
multiple toppling events, it seems that the RGT can be used
to calculate critical behavior of waves. It is well known that
the critical exponent of the size distribution of all toppling
waves is 1[12,13,35. Table Il shows that in the reduced-
parameter RG calculations for the SQ lattice, when the linear
size of the RG cell increases from 3 to #,SQ) decreases
from 1.243 to 1.122 which is very close to 1: the critical
exponent for all waves. However, it seems that the RGT can
only give approximate critical exponent for all waves be-
cause the height configuration after relaxation of a wave is
usually still unstablgexcept the last wavgl2,13,36) and

(® after the RGT, the system has a stable height configuration. It
® is worth mentioning that as the dimension of the BTW model
O

®

increases, the multiple toppling events become [farg Un-
der this condition, an avalanche usually only have one wave
and the RGT can give better a result.

For the PVZ approach, the critical density of sij&s is
equivalent to height probabilities; in the Ivashkevich ap-
proach. If we compare the value pf with the numerical or
exactng , we find thatp* is larger thamy . This is related to

(b)

the rule that in the PVZ approach, the stable site will not
topple even the stable site receive more than one particles.
Therefore, the obtaineg® must be larger to compensate the
loss of stable sites which have the potential of toppling.
Again, when the cell size is larger, the compensation effect is
also larger. For exampleg* obtained from the & 3 cell of
the square lattice is larger than that obtained from the22
There is no such kind of problem in Ivashkevich’s approach.
We find then;" is consistent with the numerical simulations
and exact results.

In summary, it is worthwhile to consider the multiple top-
pling events in the real-height RG treatment in order to an-

] o swer the question discussed above. However, it is hard to
F:)GI' 6. Tranithrmz:]tlon from a Cfe" with S"; sites on ltlhe honey- carry out exact enumerations for larger cell sizes. In the next
ﬁ?)”\}v atrflce(g)] X t;]s Z.wa a tranf OFma;'O“ {ﬁmb? CE tohg E'te' step, we plan to use Monte Carlo simulations to construct
Ve show that the directions outgoing from the blocks, WhiCh arep 4.4 ystormations with large cells and include multiple top-
encircled by rectangle corner roundness, are coupled to the direc-. I
. . pling events. Such generalization of the RG method could be
tions of the lattice at the next scale. "
also valuable to calculate critical exponents for the Manna
) N model[38], which has well-defined avalanche exponents.
find that the values of critical exponentsand z for the 2
X 2 cell to one-site RG transformation for the SQ lattice are
closer to conjectured exact values and simulation values than
those for the X 3 cell to one-site RG transformation. There  We thank D. Dhar and V. B. Priezzhev for a useful dis-
are two possible reasons. The first reason is that we do naussion and A. M. Povolotsky for a critical reading of the
consider the multiple toppling events in the RG calculationspaper. This work was supported by the National Science
The errors arising from the multiple toppling events areCouncil of the Republic of Chinéraiwan under Grant No.
larger for the 3<3 cell. Therefore, when the cell size in- NSC 90-2112-M-001-074.
creases, we should consider the multiple toppling events in
order to get accurate values sfandz. This cannot be done
. . . APPENDIX
easily in exact enumeration approach to RG transformations,
but can be done by Monte Carlo RG calculations. Another In lattices R for k=1 obtained after RG transforma-
possible reason is that the critical exponents not well  tions, one site can transfer particles to one, two, , orq
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TABLE IV. Fixed point of transferring probabilitp;*

PHYSICAL REVIEW E 66, 021307 (2002

and branching probabilitie@BP) of spanning trees

Pi.

pY (p1) P} (P2) P} (P3) i (Pa) P (Ps) P (Pe)
RG (SQ a 0.295 0.435 0.229 0.041
RG (SQ b 0.295 0.435 0.229 0.041
BP (SQ ¢ 0.295 0.447 0.222 0.036
RG (PT) 2 0.000 0179 0.002 26 0.0558 0.296 0.471 0.174
RG (PT) ¢ 0.000 0179 0.002 26 0.0558 0.296 0.471 0.174
BP (PT) ¢ 0.322 0.417 0.207 0.049 0.006 0.0002
RG (HC) a 0.546 0.432 0.022
BP(HC)? 0.25 0.5 0.25

&This work based on real height RG approach.
blvashkevich 199616].

‘Manna, Dhar, and Majumdar 19924].
9Papoyan and Povolotsky 19977].

different directions with probabilitieg,,p,, ..., andpg,
respectively. There are totallg different directions which
can be labeled byl ,d,, ..., anddy. In a more precise

right-hand side of Eq(3). Consider a RG cell ofm sites,
whose initial high configuration ish(,h,, ... h,) and the

toppling rule configuration isF(l,Fz, cen ,Fm). If we add one

description, a site can transfer one particle or nothing t0 &ticle to sitea, the sandpile evolution starts and finally

specified directiord; which is denoted by the variabiedi
with vaIuesrdiz 1 or 0, respectively. Therefore, the toppling

rules of sites are exactly determined by the vector

evolves into one state where all néwyvare stable. In order to
count all possible avalanche events, we prepare a Fortran
computer progransOCRGto generate such events. $0CRG

=(rapldy - - ,rdq)_ Since one unstable site sends nothing towe consider three subconfigurations sets and ose %) do

its neighbors is omitted in PVZ RG transformation,
(rdl,rdz, e ,rdq)=(0,0, e ,0)=6 is forbidden. For a given
r, the site will send =Eﬁ:1rdi particles toj different direc-
tions. If we divide the toppling rule configuration sat
={(ra,,"a, ...,rdq)|rdi=0 or 1V i and=l,rq #0} into
subsets J;={(rg,,fa, - - - qu)|fdi:0 or 1, Vi and
3{Lirq =]} according to the valug g subsets can be ob-

loops to generate such subconfigurations

(1) The initial height configuratiotd: There are two pos-
sible states for each site, i.da,=0 or 1. Therefore, totally,
2™ possible configurations are considered. However, some of
these 2' configurations will not induce sandpile evolution,
for example,h;=0 for all i. In SOCRG we use the first do
loop to generate all possible configurationsHn

(2) The starting point set of sandpile dynamick
={ala=1,2,..., orm}, where a denotes the site on

tained. And it is straightforward to show that the number ofwhich we add one particle: There arepossible positions to

elements of thejth subsetJ; and J are Cj' and ={_,C{
=29-1, respectively.

Now we define Protf() as the probability that an unstable
site transfers particles with a given toppling ruleThe rela-
tion pj=2;e3jProb(F) can be obtained. On the other hand,
we assume that the probability Prop(s the same for alf
e J; because of the isotropy of latti®é. Therefore, we con-
clude that Prol()=p;/C? for r e J;. For example, Prdly
=(1,0,...,0]=Profr=(0,1,...,0)=--- =Profr= (0,
0,...,1]=pi/q and Probr=(1,1,...,0J=p,/CS. In
this way, R={(r1,f5, ... rm)|lieJ,V i} can be used to
represent the toppling rule configuration of an RG cRll;
contains more information tha={e! introduced in Sec. Il.

In Sec. Il, we presented the PVZ approach to construc

RG transformation of Eq.3) by using avalanche events and

we used Fig. 3 as an illustrative example. In this section, wi

will use the idea of toppling rule configuratidghand a com-

add one particle to a RG cell wittm sites. INSOCRG we use
the second do loop to generate all possible gite W. If the
chosen sitex is not a critical site, SOCRGgoes to the next
site.

(3) The toppling rule configuratiofR: There are 2—1
possible toppling rules for each site. Therefore, there are
(29—1)™ possible toppling configurations for an-site cell.

In socRG we use the third to thenf+2)-th do-loops to
generate such toppling configurations.

For a specified configuration wit®, o, (r5,r5, ... rS)
generated by thesem+2) do loops, we can calculate the
toppled vect0|(3=(01,02, ...,Om) whereO;=1 or 0 de-
pending on whether sitetopples or it does not during the
sandpile evolution. For example, Fig. 3 shows an event on a
three-site RG cell of the triangle lattice. In this example,
E 1,h3,h3) obtained from the first do loopy® obtained from

dhe second do Ioo;f,i obtained from the third do loop, and

r5 obtained from the fourth do loop, af#, 1, 0, 1, (0, 1, O,

puter algorithm to calculate all terms which contribute to the0, 0, 1, and (1, 1 ,0, 0, 1, 1 respectively. Then,
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0=(1,1,0) is obtained. The weight of this height configura-one. For eachD(iy,iz,j1, ... .jk,---.Jm) configuration
tion is p?(1—p). The probability of this event is 1/#(1 ~ generated in the third to them(t2)-th do loop, we first

. Ps_ >s_ check the value oV(j1,j2, -« -ujim)- 1f V(1,02 -« -sim)
p)Prob(;=(0.1,0,0,0,1))Prdb3=(1,1,0,0,1,1) and the =1, we record this event and obtain a SetThen, we set

relaxation timet=2. Finally, this event is classified as V(J1,d2, ..., dn)=0 for D(iq,ip,J1,d5, ... dm) in N. If
=(1,1,0,0,1,0) for the supersite of Fig(cR In this case, V/(j,,j,,...,im) =0, we skip this step to the next step un-
since site 3 does not toppl©¢=0). The probability of the  der the third do loop to theng+2)-th do loop. In this way,
toppling process depends only bfy o%, r$, andr$. The do tﬂe do r|IOODS Elorrespondin%to sites MEF Ofcargj?fe passed
loop used to generafg can be skipped quickljsee below. ~ through quickly. Repeat above procedure for different com-
I[; general?consi;%r thig th elelronpent gf they?irst do I\glop t?”?a“ons of helght configuration and starting point and we
- . . ) finish the calculation of all do loops.
h's, thei,-th element of the second do loag?, and thej-th Basically, the form of Eq(A1) can be transferred to the
element of the K+2)-th do loopr' for 1<k<m; the com-  form of Eq.(1). Therefore, we can construct the RG E.
bination of such elements is denoted by theand(4). In order to test this algorithm, we calculate RGT for
D(i1si2,j1s -+ ks - - - im), Which is a configuration of the g 2x 2 cell to one site on a square lattice, which is shown in
set consists oH, ¥, andR. This configuration will generate Figs. 1a) and Xc) and has been done in details by Vespig-
a toppling event with probability nani, Zapperi, and Pietrone®yZP) [15]. Define

I m - Ai(k,a;,a;,a3,a,)
Pp(h's,a'2,{rlk}) =Wﬁi1W<aiz>H [Prokrik)]%. (A1)
k=1

:; 2 Et Bi(j!avalia21a31a4!t)

SinceO,=0 means that sitk is not involved in the toppling

process, any choice af in the (k+2)-th loop will corre- 112 1122 1\%/ 1\

spond the same event represented by the configuration x(—4) (—4) (—4 (—4 ok, o(j)1,
D(i1,i9,j1, «--sks -+ -.im)- Define a sek which consists Cy C; Cs Ca

of the configurationsD(i1,i5,J1, ... Jk, -« . Jm) With Jy

o b v K ; whereg¢(j) is the number of critical sites of theh configu-
~lk forgk—l orJfor Ox=0, whereJis an integer and 1 4ii5 of heights. We find that almost all of our calculated
=J=<2d - From /O, we can calculate the total number of values ofAi(k,al,az,a3'a4) are the same as those which
toppled sites:m"=0;+0,+---+0Op,. There are (2  gppear in the appendix of15], except A(3,0,1,1,1)

- 1)""‘”“" elements ik and every such element 8fcorre-  =0.749997,A,(4,0,4,0,0=0.177 2839, andA\,(4,2,0,1,1)
sponds to the same event which is generated by the configu=1.460250 in [15]. Our values of A5(3,0,1,1,1),
ration D(iq,io,j1, - - - +jk» - - - 1im)- IN SOCRG the do loops A,(4,0,4,0,0), andA,(4,2,0,1,1) are 1.750 000, 0.117 2839,

corresponding to sites wittD,=0 are passed through and 1.406 250, respectively. We find th%&$(4,0,4,0,0) and
quickly to save the computing time and the following tech-A,(4,2,0,1,1) in Ref[15] are only slightly different from our
nigue is used. values. They might be typographical errorg 115]. However,
Define anm-dimensional arrayV(j1,j», - - - ,jm), Where there is an obvious difference between our value and VZP’s
1<j, <291 for 1<k=m. Immediately after a new height value for A;(3,0,1,1,1). We believe that VZP's value is
configuration is chosen by the first do lodggay thei;-th  wrong since all other 240 terms of VZP are exactly the same
step and a new starting point is chosen by the second das ours and VZP calculate¥l(i,a;,a,,as,a,) by hand and
loop (say thel »,-th step, all elements of the array are setto  we calculateA,(i,a;,a,,a;,a,4) by a systematic algorithm.
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