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Averaging method of granular materials

H. P. Zhu and A. B. Yu*
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~Received 12 February 2002; published 23 August 2002!

This paper presents an averaging method to link discrete to continuum variables of granular materials.
Compared to the other methods proposed in the literature, it has advantages of being applicable to all flow
regimes, and to granular flows with or without the effect of physical boundaries. Its application is demonstrated
in the determination of the macroscopic properties such as mass density, velocity, stress, and couple stress
distributions of a hopper flow, where the discrete results are generated by means of discrete particle simulation.
While highlighting the need for considering properly the effect of physical boundaries, the results indicate that
the proposed method is an effective way to determine the flow properties of granular materials.
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I. INTRODUCTION

Granular materials, which can be either wet or dry a
range in size from nanometers to centimeters, are wid
encountered in industries and in nature. As with solids, t
can withstand deformation and form heaps; as with liqui
they can flow; as with gases, they exhibit compressibil
These features give rise to another state of matter tha
poorly understood@1,2#. This can be highlighted from the
study of granular flow—the area concerned in this wo
Corresponding to the fluidlike and solidlike modes, differe
regimes have been identified in the past: quasistatic reg
rapid flow regime, and a transitional regime that lies in b
tween. However, development of a general theory to desc
granular flow has still been a challenging problem~see Ref.
@3#, for example!.

Essentially, the existing approaches to granular flow
be classified into two categories: the continuum approac
a macroscopic level and the discrete approach at a mi
scopic level. In the continuum approach, the macrosco
behavior of granular flow is described by the balance eq
tions facilitated with constitutive relations and boundary co
ditions. The most difficult problem in implementing this a
proach lies in the determination of suitable constitut
relations. In the past, different theories have been devised
different materials and for different flow regimes. For e
ample, models have been proposed to derive the constitu
equations for the rate-independent deformation of gran
materials based on either the plasticity theory or the dou
shearing theory@4–6#; rapid flow of granular materials ha
been described by extending the kinetic theory of de
gases@7,8#; the transitional regime that involves both col
sional and frictional mechanisms is studied by use of
kinetic theory combined with the Mohr-Coulomb quasista
theory@9#. However, to date, there is no accepted continu
theory applicable to all flow conditions.

The discrete approach is based on the analysis of the
tion of individual particles and has the advantage that ther
no need for global assumptions on the solids such as ste

*Corresponding author, Fax:161 2 9385 5956. Email address
a.yu@unsw.edu.au
1063-651X/2002/66~2!/021302~10!/$20.00 66 0213
d
ly
y
,
.
is

.
t
e,
-
e

n
at
o-
ic
a-
-

or

ve
ar
le

e

e

o-
is
y-

state behavior, uniform constituency, and/or constitutive
lations. A major type of discrete approach is based on
so-called distinct element method~DEM! originally devel-
oped by Cundall@10# for rock mechanics or its extende
version applied to granular materials@11#. The method con-
siders a finite number of discrete particles interacting
means of contact and noncontact forces, and every partic
a considered system is described by Newton’s equation
motion related to translational and rotational motions. DE
based simulation has been recognized as an effective me
to study the fundamentals of granular materials~see Ref.
@12#, for example!. However, it is difficult to adapt this ap
proach to process modeling because of the limited part
numbers which can be handled with the present compu
capacity.

Extensive research has been carried out to develop
averaging theory to link the microscopic variables in the d
crete approach to the macroscopic variables in the continu
approach. Drescher and de Josselin de Jong@13# first sug-
gested a volume averaging method to define the stress te
where the average stress of an assembly of particles
arbitrary shape is expressed in terms of the external fo
acting at the boundary points of the assembly. Rothenb
and Selvadurai@14#, Christoffersen, Mehrabadi, and Nema
Nasser@15#, and Kanatani@16#, respectively, proposed dif
ferent average equations based on different theoretical
siderations. Under the conditions of equilibrium, th
equations proposed by these authors are actually equiva
to each other. The key feature of the treatments involve
that the stress tensor is expressed in terms of individual c
tact forces within an assembly of particles, and the iner
terms are neglected. This volume averaging technique, o
with some modifications, has been used by various inve
gators to study the strain tensor and stress-strain relation
under various flow conditions@17–24#. The micromechani-
cal definition of couple stress has also been considere
some recent studies~see Refs.@4,22–24#, for example!. In
particular, the models of La¨tzel, Luding, and Herrmann
@22,23# and Luding@24# included more macroscopic chara
teristics such as volume fraction and fabric tensor. Wal
and Braun@25,26# proposed an alternative method based
time-volume averaging in their study of a rapid granu
flow, which was later improved by Zhang and Campbell@27#
©2002 The American Physical Society02-1
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and Campbell@28,29# to include a couple stress term.
The above methods have been applied to the dynam

analysis of granular flows~e.g., Langston, Tu¨zün, and Heyes
@30# and Potapov and Campbell@31#!. However, some re-
strictive assumptions have to be employed in these mod
which limit their general application. For example, to a lar
degree, the volume averaging approach is valid for qu
static systems because the inertial effect is ignored an
static equilibrium condition is used. Although the tim
volume averaging has been demonstrated to be applicab
simple shear rapid flows, its applicability to other granu
flows has been questionable@32#. In recent years, variou
attempts have been made to develop a more general av
ing method@33–37#. Of particular interest is the weighte
time-space averaging method presented by Babic@32#, which
has been verified to be fully compatible with the kine
theory of rapid granular flows@33# and extended to study th
constitutive behavior of granular materials@35,36#. The
weighted time-space averaging method has two main ad
tages. First, the macroscopic quantities obtained conf
with those in the common balance equations in the c
tinuum approach so that they have clear physical mean
Second, it is in principle applicable to both solidlike an
fluidlike modes of granular materials. However, difficulti
may arise in the application of Babic’s method. For examp
the method thus far developed is only valid within the d
main far from the boundaries of a granular system, not
plicable to practical systems, e.g., granular flow in a hop
or any process vessel in industry, where physical bounda
are present and may affect granular flow significantly. In
dition, the weighting function used for averaging should
more constrained so that the resultant macroscopic quan
satisfy fully the conditions in the continuum mechanics su
as the continuity in a considered domain.

In this paper, we present modified average equation
overcome these problems in connection with our earlier
tempt where the rational motion of particles is ignored@37#.
We first develop average equations which are valid for
entire domain including the interior and physical boundar
of granular material and applicable to all flow regimes, a
propose a weighting function. Then, we carry out DE
simulation of granular flow in a cylindrical hopper with fla
bottom and obtain, by means of the proposed averag
method, its macroscopic quantities such as mass density
locity, stress, and couple stress distributions based on
discrete results.

II. AVERAGING METHOD

A. Discrete system and its balance equations

In general, a granular system is composed of discrete
ticles, and every particle in the system can be described
Newton’s equations of motion. If possible mass transfer
tween particles, say, due to chemical reactions, is not con
ered, the mass of every particle is constant, so that for
ticle i,

d

dt
mi50. ~1!
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The equations for translational and rotational motion and
ergy for this particle can be generally written as

d

dt
~mivi !5(

j
f i j 1f i

b1mig, ~2!

d

dt
~ l i•vi !5(

j
mi j 1mi

b , ~3!

d

dt
Ei5(

j
~Wi j 1Qi j !1Wi

b1Qi
b1Wi

g1Hi . ~4!

Equations~2! and ~3! have extensively been used in DEM
@11,12# whilst Eq.~4! is an extension version of Babic@32# to
take into account the effect of physical boundaries. T
quantities in these equations are explained in Table I. S
mation overj can extend over all particles in the system
although often limited to particles adjacent to particlei. The
forces between particlei and other particles and boundarie
include the short-range contact forces and the long-ra
noncontact forces such as van der Waals and electros
forces. The torques acting on the particle include those a
ing from the tangential forces and the rolling resistance. T
energy of particlei generally consists of intrinsic energy« i
and kinetic energyKi , so that Ei5« i1Ki , where Ki
5 1

2 (mivi•vi1vi• l i•vi). The rates of mechanical work don
by the body force on the particle isWi

g5mig•vi .
For convenience, letX i5(mi ,mivi ,l i•vi ,Ei) denote the

vector of the physical quantities in the left side
above equations, and Pi j 5(0,f i j ,mi j ,Wi j 1Qi j ), Bi

5(0,f i
b,mi

b,Wi
b1Qi

b) andGi5(0,mig,0,Wi
g1Hi). Then, the

above equations can be generally written as

d

dt
X i5(

j
Pi j 1Bi1Gi . ~5!

This equation gives a full description of granular flow at
particle scale and is hence used in the following discuss

B. Continuum system and its balance equations

By use of a proper weighting technique, the discrete s
tem considered above can be transferred into a continu
system. In this work, the weighting function involved is d
noted ash(r ,t), where r5(x,y,z) represents the position
coordinates.h(r ,t) is positive in the limited domainV
5$(r ,t)urPVp,R3,tPT5@T0 ,T1#,R%; otherwise, zero.
The function should satisfy the condition of normalizatio
i.e., *R4h(r ,t)dr dt51. Then, the local average of the phys
cal propertyX i can be defined by use ofh(r ,t). There are
two types of cells for averaging: interior cells which are l
cated far from boundaries and exterior cells which are cl
to a boundary, as demonstrated in Fig. 1. The local aver
of physical propertyX i at a pointr and a timet correspond-
ing to interior cells can be generally written as

X̄~r ,t !5E
Tt
(

i
hiX i~s!ds, ~6!
2-2
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TABLE I. Quantities in the balance equations of discrete system and continuum system.

Discrete system Continuum systema

mi Mass of particlei r Mass density
vi Velocity of particlei u Velocity
vi Angular velocity of particlei v Angular velocity
mivi Linear momentum of particlei l•v Internal spin density
l i•vi Angular momentum of particlei T Stress tensor
f i j , f i

b Interaction forces acting on particlei
exerted by particlej and boundary

M Couple stress tensor

g Body force per unit mass acting on
particle

M 8 Rate of supply of internal spin to
particles

mi j , mi
b Torques acting on particlei exerted by

particle j and boundary
E Energy density

Ei Energy of particlei qE Total flux of kinetic energy and
intrinsic energy

Wi j , Wi
b , Wi

g Rates of mechanical work done by
particle j, the boundary, and the body force
on particlei

h Heat source density

Qi j , Qi
b Rates of heat transfer from particlej and

boundary to particlei
Hi Heat source of particlei

aIn this work, the effect of physical boundary is included in the above macroscopic quantities.
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whereTt5@T01t,T11t#, hi5h(r i2r ,s2t); and for exte-
rior cells, it is defined as

X̄~r ,t !5E
Tt
(

i
giX i~s!ds, ~7!

where gi5g(r i2r ,s2t), g(r 82r ,s2t)5h(r 82r ,s2t)
1h(r 92r ,s2t) for r 8PR3, r i9 is the symmetric point ofr i8
with respect to the contacting boundaries. It can be sho
that g(r 82r ,s2t) satisfies the condition of normalizatio
*R4g(r 82r ,s2t)dr 8dt51. In connection with Eq.~6!, Eq.
~7! can be rewritten as

X̄~r ,t !5E
Tt
(

i
hiX i~s!ds

,E
Tt
(

i
h~r i82r ,s2t !X i~s!ds

1E
Tt
(

i
h~r i92r ,s2t !X i~s!ds. ~8!

FIG. 1. A two-dimensional schematic illustration of the conce
of probe point, and interior and exterior cells.
02130
n

X̄(r ,t) can give the local averages of mass, linear mom
tum, angular momentum, and energy, which are commo
used in the continuum description of granular flow~please
refer to Table I!. Let X̄(r ,t)5(r,ru,r l•v,rE), and define
respectivelyr and l as

r5E
Tt
(

i
himids ~9!

and

l5
1

r ETt
(

i
hi l ids. ~10!

According to Eq.~6!, we have

u5
1

r ETt
(

i
himivids, ~11!

v5
1

r l ETt
(

i
hi l i•vids, ~12!

E5
1

r ETt
(

i
hiEids. ~13!

The instantaneous velocityvi of particle i can be decom-
posed into an average partu and a fluctuating partvi8 , so that
vi5u1vi8 . Similarly, for the instantaneous angular veloci
vi , we havevi5v1vi8 , and consequently the energy de
sity E5K1K81U, whereK is the kinetic energy density
K8 is the fluctuating kinetic energy density, andU is the
intrinsic energy density.K, K8, andU can be expressed as

s

2-3
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K5 1
2 ~u•u1v• l•v!, ~14!

K85
1

2r ETt
(

i
hi~mivi8•vi81vi8• l i•vi8!ds, ~15!

U5
1

r ETt
(

i
hi« ids. ~16!

Now to develop balance equations for the continuum sys
on this basis, we follow the treatment of Savage@38#. Sup-
pose thatL is an element of the system, associated w
volume dt05dx dy dz containing point r . Then, A(r ,t)
5X̄(r ,t)dt0 designates the mass, linear momentum, ang
momentum, and energy of this element. We can derive
expression of the material derivative ofA(r ,t), which is
used to generate the balance equations, i.e.,

DA5D~X̄dt0!5D~X̄!dt01X̄D~dt0!5~DX̄1X̄“•u!dt0 ,
~17!

where u5dr /dt and D(dt0)5dt0“•u•X̄ is generally de-
pendent on physical properties. For example, the linear
mentumru is changed by the body and surface forces@38#.
Therefore, without losing generality, we assume

DA5Bdt0 , ~18!
s
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h
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whereB is a undermined vector. Then, ifB is given, from
Eqs.~17! and~18! we obtain a balance equation for proper
X̄, given by

DX̄1X̄“•u5B. ~19!

B can be determined from the balance equations of the
crete system according to Eq.~A18! in the Appendix. So, we
finally obtain the balance equations for the continuum s
tem corresponding to the discrete system considered,

D~X̄!1X̄“•u5“•H1P1G. ~20!

As a special case of Eq.~20!, the balance equations of mas
linear momentum, angular momentum, and energy are,
spectively,

D~r!1r“•u50, ~21!

D~ru!1ru“•u5“•T1rg, ~22!

D~r l•v!1r l•v•u5“•M1M 8, ~23!

D~rE!1rE“•u5“•~T•u1M•v!1“•qE1rg•u1rh,
~24!

where
T52E
Tt
(

i
himivi8^ vi8ds1E

Tt
(

i
(
j . i

gi j di j ^ f i j ds1E
Tt
(

i
gi

bdi
b

^ f i
bds, ~25!

M52E
Tt
(

i
hivi8^ ~ l i•vi !ds1

1

2 ETt
(

i
(
j . i

gi j di j ^ ~mi j 2mj i !ds1E
Tt
(

i
gi

bdi
b

^ mi
bds, ~26!

M 85
1

2 ETt
(

i
(
j . i

~mi j 1mj i !~hi1hj !ds, ~27!

qE52
1

2 ETt
(

i
himivi8^ vi8•vi8ds2

1

2 ETt
(

i
hivi8^ ~ l i•vi !•~vi82v!ds2E

Tt
(

i
hi« ivi8ds1E

Tt
(

i
(
j . i

gi j @Wi j 1Qi j 2f i j •u

2 1
2 ~mi j 2mj i !•v#di j ds1E

Tt
(

i
gi

b~Wi
b1Qi

b2f i
b
•u2mi

b
•v!di

bds, ~28!

h5
1

r ETt
(

i
Hihidt. ~29!
an-
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It is evident from Eqs.~21!–~24! that the balance equation
of mass and linear momentum are the same as those in
classical continuum mechanics, and an extra equation is
to describe the rotation of the independent particles. T
derivation of variableB in the Appendix suggests that the
balances are automatically maintained in the whole dom
including regions adjacent to physical boundaries. This
important to overcome the problems associated with the
the
ed
e

in
is
e-

vious averaging methods. For example, Barbic’s method c
not apply to regions close to physical boundaries@32#. Lud-
ing et al. @34# observed imbalance near a boundary due
unknown missing contributions in their averaging. In fact,
can be shown that the equations developed by Barbic@32#
are the special case of the above equations when the pres
of physical boundaries is ignored. Table I lists the physi
meaning of the key macroscopic quantities involved. Th
2-4
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can be determined from the microscopic quantities in
balance equations of particles by Eqs.~9!–~13! and ~25!–
~29!. In other words, the macroscopic variables in the c
tinuum approach can be directly linked to the microsco
variables in the discrete approach.

C. Weighting function

Strictly speaking, the macroscopic quantities are
uniquely determined from the microscopic quantities fo
given flow system because of the uncertainty with
weighting function h(r ,t). Therefore, the selection of
proper weighting function is important in applying the equ
tions formulated above. In general, besides the condition
normalization, the weighting functionh(r ,t) should satisfy
the following three conditions:

~ i! h~r ,t !PCr~R4! ~r>1!,

~ ii ! h~r ,t !H .0, ~r ,t !PV̂5V\]V

50, ~r ,t !PR4\V̂,

and~iii ! h(r ,t) decreases monotonically inV with increasing
ur u andutu. The first condition is necessary in the derivation
the balance equations and it also ensures that the ave
properties smoothly vary in a considered domain. The s
ond and third conditions guarantee that the contribution
different particles to a probe point or the contribution
different time to a probe time is different. They represen
physical consideration that the contribution of the partic
near a probe point or time close to a probe time should
larger, and particles or time far away from a probe point o
probe time do not have any contribution.

The need to find out a suitable weighting function h
been noticed in the literature@35,37#. We here recommend
the use of a weighting function which arises from the s
called Johnson’sSB distribution function@39#. This function
has been widely used in engineering practice, e.g., in
mathematical representation of particle size distribution
granular materials where distribution transformation is of
required~see Ref.@40#, for example!. For the present appli
cation, the weighting function is given by

h~r ,t !5 f ~ t !g~r !, ~30!

wherer 5ur u, and f (t) is the simplifiedSB distribution func-
tion explicitly written as

f ~ t !5H s t

A2p

2Lt

~Lt
22t2!

expS 2
s t

2

2
ln2

Lt1t

Lt2t D , utu,Lt

0, utu>Lt ,
~31!

whereLt , s t are the distribution parameters. On the oth
hand,g(r ) is an extension of the univariate distribution~31!
to three variants, so that,
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g~r !5H c

4pLp~Lp
22r 2!

expS 2
sp

2

2
ln2

Lp1r

Lp2r D , r ,Lp

0, r>Lp ,

~32!

whereLp , sp are the distribution parameters,c5c(sp) is
the normalized constant of the distribution functiong(r ),
which is expressed as

c~sp!5F E
0

1 r 2

12r 2 expS 2
sp

2

2
ln2

11r

12r DdrG21

. ~33!

The above integral can be calculated numerically. It can
shown thatc(sp) is a monotonic function ofsp . The above
distribution functions are smooth in the entire space, a
decrease monotonically with increasingur u or utu, as typically
illustrated in Fig. 2.

This weighting function is thus far the only one that sa
isfies fully the requirements mentioned above. An open qu
tion with the weighting function is the selection of the p
rameters, which is important in our setup becauseLt or Lp
determines the amount of the contributing particles to
probe point, whereass t or sp controls the magnitude o
weighting average to every particle. On the other hand,
of the main advantages of using this weighting function
that the size of the cell is not necessarily increased for
continuity of resulting average quantities@37#. This is very
useful since at this stage of development, almost all DE

FIG. 2. Concept of weighting, when coupled with Johnson’sSB

distribution function, for space averaging~the same idea applied to
time averaging!.
2-5
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TABLE II. Parameters used in the present DEM simulation.

Quantity Value Units

Hopper diameter 30.0 d
Orifice diameter 8.0 d
Number of particles 24 000
Friction coefficient~particle-particle! 0.6
Friction coefficient~particle-wall! 0.3
Rolling friction coefficient~particle-particle or particle-wall! 0.001 d
Young’s modulus of particle or wall 50 000 mg/d2

Poisson ratio of particle or wall 0.3
Normal damping ratio~particle-particle or particle-wall! 0.1
Tangential damping ratio~particle-particle or particle-wall! 0.3
Time step 0.001 Ad/g
Time to start discharging 80.0 Ad/g
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simulations have to be carried out with a relatively sm
number of particles because of the limited computing ca
bility.

III. APPLICATION TO A HOPPER FLOW

A. DEM simulation

Understanding and modeling the granular flow in a ho
per flow is of great importance and has been a research f
worldwide for years. The dynamic behavior of hopper flow
very complicated because all the flow regimes mentio
above may coexist. The continuum models proposed thus
including those from either the plasticity model or the kine
theory, cannot satisfactorily apply to this flow@31#. Current
experimental technique cannot generate much informa
about the internal properties, e.g., stress distributions.
shown in this section, the combination of the discrete
proach and the averaging technique proposed here prov
an effective way to study the macroscopic behavior.

We consider the granular flow in a cylindrical 3D hopp
with flat bottom. Discrete simulation is performed by mea
of a modified DEM. The simulation technique has been w
demonstrated in our previous work@41,42#, which is essen-
tially the same as that originally proposed by Cundall@10#
but modified by incorporating a rolling friction model. Tab
II lists the physical parameters used in this work. Note t
the long-range forces such as van der Waals and electros
forces are ignored in the present work which deals with
flow of relatively large particles. The procedure used in
simulation is as follows. First, 24 000 monosized spheri
particles ~particle diameterd53 mm; particle densityrp
52500 kg/m3! are randomly generated in the hopper witho
overlap. These particles are then allowed to settle onto
hopper to form a packing, and finally discharged under gr
ity when the hopper outlet is removed, as shown in Fig.

B. Quantification of continuum variables

We calculate, based on the data generated from the a
DEM simulation, the mass density field, the velocity fie
the stress, and couple stress fields by using the avera
02130
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method proposed above. Because of the relatively per
axial symmetry, this three-dimensional flow problem is he
examined on a sectional plane. Thus, the velocity has o
two components, the stress tensor and the couple stress
sor each have four components. The values of all compu
quantities at every probe point, which are expressed by
cylindrical coordinates, are the average values of the
symmetrical points in the plane. Therefore, only the values
half the plane are shown. The mass density, the velocity,
stress tensor, and the couple stress tensor are

dimensionalized as r̄( r̄ , t̄ )5@6/(prp)#r(r ,t), ū( r̄ , t̄ )

5(gd)21/2u(r ,t), T̄( r̄ , t̄ )5@6/(prpdg)#T(r ,t) and M̄ ( r̄ , t̄ )
5@6/(prpd2g)#M (r ,t), respectively. As discussed els
where @37#, the macroscopic quantities calculated will d
pend on the parameters in the weighting function, i.e.,
cell size and the weighting within the cell, although the r
sulting trends are consistent. Their proper selection is
open for research. This problem also exists for other ave
ing methods, as, for example, shown by La¨tzel, Luding, and
Herrmann@22#. In this work, parameterss t , sp , Lt , andLp
are, respectively, given ass t5sp51.0 andLt5Lp54.0. In
all figures,r̄ denotes the distance from a probe point to t
central axis of the hopper, whilez̄ denotes the height of a
probe point above the bottom of the hopper.

FIG. 3. Snapshots showing the discharging process of hop

flow when: ~a! t̄ 580 ~time to start discharging!; and ~b! t̄
5240Ad/g.
2-6
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Figure 4 shows the distribution of the mass density at t
different heights at a given time. It can be seen that the m
density increases gradually to a maximum and then
creases with increasing radius; the variation is small in
central region and significant in the region adjacent to
wall. It also varies with heightz̄ because of the effect of th
bottom wall; the change is more significant whenz̄ is low. To
be more quantitative, we calculate packing densityc at sev-
eral typical points, and obtainc50.532 atr̄ 50.0, c50.543
at r̄ 515.0, andc50.604 at the peak whenz̄54.0; andc
50.563 atr̄ 50.0, c50.534 atr̄ 515.0, andc50.59 at the
peak whenz̄58.0. The observed maximum packing dens
c50.604 is close to that obtained under conditions of loo
random packing@42#. The decreased density in the regio
close to the wall is mainly due to the effect of wall or phys
cal boundaries@43#. On the other hand, the decrease in m
density in the central region is due to the dilatancy of gra
lar materials. Often a low mass density corresponds to a h
velocity @44,45#. This is indeed the case when examining t
velocity distributions at the two heights as shown in Fig.
Two velocity components, i.e., vertical and horizontal velo
ties, are considered. It can be seen that the magnitude o
vertical velocity decreases with increasing radius in the c
tral region and is relatively insignificant in the region clo
to the wall. The variation of horizontal velocity is als
largely limited to the central region, with its magnitude i
creasing from zero to a maximum and then decreasing w

FIG. 4. Radial distribution of mass density~of units prp/6!

when t̄ 5240.0Ad/g: h, z̄54.0; n, z̄58.0d.

FIG. 5. Radial velocity distribution~units for velocity areAgd!

when t̄ 5240.0Ad/g: h, z̄54.0; n, z̄58.0d.
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increasing radius. The lower the position, the more sign
cant the variation for both velocity components. Howev
because the magnitude of the vertical component is m
larger than that of horizontal component, the vertical mo
ment of particles is dominant. These results are qualitativ
in agreement with the experimental observations@45#.

Figure 6 shows the internal stress distributions of the h
per flow whenz̄54.0 and 8.0. It can be observed from Fig
6~a! and 6~b! that the magnitudes of the two normal stress
T̄zz andT̄rr increase withr̄ except for a small increase clos
to the wall. On the other hand, Figs. 6~c! and 6~d! show that
the two shear stressesT̄rz andT̄zr are almost identical in the
central region, which is in agreement with the previous co
tinuum description of hopper flow@45#. However, the two
shear stresses are different in the region adjacent to the w

Figure 7 shows the couple stress distributions of the h
per flow at the same heights. The results indicate that un
the present simulation conditions, the change in the f
components is very small and can be reasonably igno
although the small variation observed may result in so
fluctuation in flow behavior. However, this consideration
not applicable toM̄ rr and M̄ rz in the region adjacent to the
wall. Both stress components vary significantly in that
gion. Therefore, all the results in Figs. 4–7 point to o
important fact: the presence of physical boundaries will
fect both microscopic and macroscopic quantities related
granular flow and must be properly considered.

CONCLUSIONS

An averaging method has been developed to obtain
macroscopic quantities in the continuum description
granular flow from the microscopic quantities generated
DEM-based discrete simulation. Compared to the ot

FIG. 6. Radial stress distribution~units for stress areprpdg/6!

when t̄ 5240.0Ad/g: h, z̄54.0; n, z̄58.0d.
2-7
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methods proposed in the literature, it has advantages of b
applicable to all flow regimes, and to granular flows with
without the effect of physical boundaries. Moreover, smo
variation in the resultant macroscopic quantities can be
sured even though a simulation may be carried out wit
limited number of particles. The method will provide an e
fective way to study the fundamentals governing granu
flow, which is otherwise difficult to obtain with the curren
experimental techniques.

The application of the method is demonstrated in the c
culation of velocity and stress fields of a hopper flow. P
liminary analysis of the results indicates that the mass d
sity, velocity, stress, and couple stress distributions
qualitatively comparable with those in the conventional co
tinuum description in the region far from the physical boun
ary; the presence of physical boundaries will significan
affect these properties. Further studies are being condu
in order to develop a better understanding of this import
flow system.
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APPENDIX: DERIVATION OF EQUATION TO
CALCULATE B IN EQ. „19…

For simplicity, let X i5X i(s), vi5vi(s) in the following
derivation. According to the definition of material derivativ
we have

D~X̄!1X̄“•u5] t~X̄!1“•~u^ X̄!. ~A1!

FIG. 7. Radial distribution of couple stress~of units prpd2g/6!

when t̄ 5240.0Ad/g: h, z̄54.0; n, z̄58.0d.
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Consideringu5vi2vi8 and from Eq.~6!,

] t~X̄!5E
Tt
(

i
] thiX ids, ~A2!

“•~u^ X̄!5E
Tt
(

i
~] rhi•vi !X ids2“•E

Tt
(

i
hivi8^ X ids.

~A3!

Substituting Eqs.~A2! and ~A3! into Eq. ~A1! and noting
] rhi52] r i

hi , ] thi52]shi , we can obtain

D~X̄!1X̄¹•u5E
Tt
(

i
hi

dX i

ds
ds2“•E

Tt
(

i
hivi8^ X ids.

~A4!

Substituting Eq.~5! into the above equation gives

D~X̄!1X̄“•u5E
Tt
(

i
(

j
hiPi j ds1E

Tt
(

i
hiBids

1E
Tt
(

i
hiGids2“•E

Tt
(

i
hivi8^ X ids.

~A5!

Comparing Eq.~A5! and Eq.~19! yields

B5E
Tt
(

i
(

j
hiPi j ds1E

Tt
(

i
hiBids

1E
Tt
(

i
hiGids2“•E

Tt
(

i
hivi8^ X ids. ~A6!

Then, we modify the treatment of Babic@32# to simplify this
expression. First, we decompose the first term of the rig
hand side of Eq.~A6! to two terms,

E
Tt
(

i
(

j
hiPi j ds5

1

2 ETt
(

i
(
j . i

~hi2hj !~Pi j 2Pj i !ds

1
1

2 ETt
(

i
(
j . i

~hi1hj !~Pi j 1Pj i !ds

5P01P1 , ~A7!

where

P05
1

2 ETt
(

i
(
j . i

~hi2hj !~Pi j 2Pj i !ds, ~A8!

P5
1

2 ETt
(

i
(
j . i

~hi1hi !~Pi j 1Pj i !ds. ~A9!

Depending to the positions of particlesi and j, there are four
cases: ~1! r i2rPVp , r j2rPVp ; ~2! r i2rPVp , r j
2r¹Vp ; ~3! r i2r¹Vp , r j2rPVp ; ~4! r i2r¹Vp , r j
2r¹Vp . For the first case,h(r i2r , s2t).0, h(r j2r , s
2t).0. For the second case,h(r i2r , s2t).0, h(r j2r , s
2t)50, thus, becauseh(r j82r , s2t)5h(r j2r , s2t)50,
2-8
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we can replaceh(r j2r , s2t) in the right-hand side of Eq
~A8! with h(r j82r , s2t), wherer j8 is the point of intersec-
tion of the line connecting the centers of mass of particlei
and j and the boundary]Vp of domainVp . Similar to ~2!,
for the third case,h(r j2r , s2t)50, h(r j2r , s2t).0, so
h(r i2r , s2t) can be replaced withh(r i82r , s2t). Finally,
for the fourth case, particlesi and j have no contribution to
P0 ; consequently, this case is neglected in the follow
analysis. Letr̄ j5r j ( r̄ i5r i) if r j2rPVp (r i2rPVp); oth-
erwise,r̄ j5r j8 ( r̄ i5r i8). Then, Eq.~A8! can be rewritten as

P05
1

2 ETt
(

i
(
j . i

@h~ r̄ i2r , s2t !2h~ r̄ j2r , s2t !#

3~Pi j 2Pj i !ds. ~A10!

Since

h~ r̄ i2r , s2t !2h~ r̄ j2r , s2t !

52E
0

1 d

dr
h~ r̄ i1rdi j 2r , s2t !dr

5E
0

1 ]

]r
h~ r̄ i1rdi j 2r , s2t !•di j dr, ~A11!

where di j 5 r̄ j2 r̄ i , substituting Eq.~A11! into Eq. ~A10!
gives

P05“•H 1

2 ETt
(

i
(
j . i

F E
0

1

h~ r̄ i1rdi j 2r , s2t !drGdi j

^ ~Pi j 2Pj i !dsJ . ~A12!

In the present study, it is assumed that, compared to
physical boundary, the sizes of particles are so small that
contact between particlei and a boundary is equivalent to th
contact between the particle and a spherical particle w
enough large mass and diameter. Therefore, the interac
between a particle and boundary belongs to the secon
od

, J

02130
g

e
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fourth case. Similarly to the above treatment about the in
action between particles, we can transfer the second term
the right-hand side of Eq.~A6! to

E
Tt
(

i
hiBids5“•H E

Tt
(

i
F E

0

1

h~r i1rdi
b2r , s2t !drGdi

b

^ BidsJ . ~A13!

If particle i contacts a physical boundary,di
b is the ray from

the center of mass of particlei to a point on boundary]Vp of
domainVp , via a point on the physical boundary, and pe
pendicular to the tangential plane of the point; otherwi
di

b50. For convenience, let

H52E
Tt
(

i
hivi8^ X ids

1
1

2 ETt
(

i
(
j . i

gi j di j ^ ~Pi j 2Pj i !ds

1E
Tt
(

i
gi

bdi
b

^ Bids, ~A14!

G5E
Tt
(

i
hiGids, ~A15!

where

gi j 5E
0

1

h~ r̄ i1rdi j 2r , s2t !dr, ~A16!

gi
b5E

0

1

h~r i1rdi
b2r , s2t !dr. ~A17!

Then, from Eqs.~A6!, ~A7!, and ~A12!–~A15!, we can ob-
tain the expression ofB, given by

B5“•H1P1G. ~A18!
l
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