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Averaging method of granular materials
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This paper presents an averaging method to link discrete to continuum variables of granular materials.
Compared to the other methods proposed in the literature, it has advantages of being applicable to all flow
regimes, and to granular flows with or without the effect of physical boundaries. Its application is demonstrated
in the determination of the macroscopic properties such as mass density, velocity, stress, and couple stress
distributions of a hopper flow, where the discrete results are generated by means of discrete particle simulation.
While highlighting the need for considering properly the effect of physical boundaries, the results indicate that
the proposed method is an effective way to determine the flow properties of granular materials.
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[. INTRODUCTION state behavior, uniform constituency, and/or constitutive re-
lations. A major type of discrete approach is based on the
Granular materials, which can be either wet or dry andso-called distinct element methd®EM) originally devel-
range in size from nanometers to centimeters, are widelpped by Cundal[10] for rock mechanics or its extended
encountered in industries and in nature. As with solids, theyersion applied to granular materidlkl]. The method con-
can withstand deformation and form heaps; as with liquidssiders a finite number of discrete particles interacting by
they can flow; as with gases, they exhibit compressibility.means of contact and noncontact forces, and every particle in
These features give rise to another state of matter that is considered system is described by Newton’s equations of
poorly understood1,2]. This can be highlighted from the motion related to translational and rotational motions. DEM-
study of granular flow—the area concerned in this work.based simulation has been recognized as an effective method
Corresponding to the fluidlike and solidlike modes, differentto study the fundamentals of granular materiédee Ref.
regimes have been identified in the past: quasistatic regim¢12], for example. However, it is difficult to adapt this ap-
rapid flow regime, and a transitional regime that lies in be-proach to process modeling because of the limited particle
tween. However, development of a general theory to describeumbers which can be handled with the present computing
granular flow has still been a challenging problésee Ref.  capacity.
[3], for example. Extensive research has been carried out to develop an
Essentially, the existing approaches to granular flow camveraging theory to link the microscopic variables in the dis-
be classified into two categories: the continuum approach ajrete approach to the macroscopic variables in the continuum
a macroscopic level and the discrete approach at a micrapproach. Drescher and de Josselin de Jdi3j first sug-
scopic level. In the continuum approach, the macroscopigested a volume averaging method to define the stress tensor
behavior of granular flow is described by the balance equawhere the average stress of an assembly of particles with
tions facilitated with constitutive relations and boundary con-arbitrary shape is expressed in terms of the external forces
ditions. The most difficult problem in implementing this ap- acting at the boundary points of the assembly. Rothenburg
proach lies in the determination of suitable constitutiveand Selvadurdil4], Christoffersen, Mehrabadi, and Nemat-
relations. In the past, different theories have been devised fadasser[15], and Kanatan[16], respectively, proposed dif-
different materials and for different flow regimes. For ex-ferent average equations based on different theoretical con-
ample, models have been proposed to derive the constitutivdderations. Under the conditions of equilibrium, the
equations for the rate-independent deformation of granulagquations proposed by these authors are actually equivalent
materials based on either the plasticity theory or the doubléo each other. The key feature of the treatments involved is
shearing theory4—6J; rapid flow of granular materials has that the stress tensor is expressed in terms of individual con-
been described by extending the kinetic theory of denseact forces within an assembly of particles, and the inertial
gaseq7,8]; the transitional regime that involves both colli- terms are neglected. This volume averaging technique, often
sional and frictional mechanisms is studied by use of thevith some modifications, has been used by various investi-
kinetic theory combined with the Mohr-Coulomb quasistaticgators to study the strain tensor and stress-strain relationship
theory[9]. However, to date, there is no accepted continuununder various flow conditiongl7—24. The micromechani-
theory applicable to all flow conditions. cal definition of couple stress has also been considered in
The discrete approach is based on the analysis of the ma@ome recent studiesee Refs[4,22-24, for examplg. In
tion of individual particles and has the advantage that there iparticular, the models of itael, Luding, and Herrmann
no need for global assumptions on the solids such as steady22,23 and Luding[24] included more macroscopic charac-
teristics such as volume fraction and fabric tensor. Walton
and Braun 25,26 proposed an alternative method based on
*Corresponding author, Fax:61 2 9385 5956. Email address: time-volume averaging in their study of a rapid granular
a.yu@unsw.edu.au flow, which was later improved by Zhang and Campb2T]
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and Campbel[28,29 to include a couple stress term. The equations for translational and rotational motion and en-
The above methods have been applied to the dynamicargy for this particle can be generally written as
analysis of granular flowée.g., Langston, Tziin, and Heyes
[30] and Potapov and CampbéB1]). However, some re-
strictive assumptions have to be employed in these models,
which limit their general application. For example, to a large
degree, the volume averaging approach is valid for quasi-
static systems because the inertial effect is ignored and a a(h“*’i):z mij+mib, 3
static equilibrium condition is used. Although the time- !
volume averaging has been demonstrated to be applicable to
simple shear rapid flows, its applicability to other granular EE:E (W~+Q--)+W-b+Q-b+VV9+H-. (4)
flows has been questionabl®2]. In recent years, various dt ' g v oo
attempts have been made to develop a more general averag-
ing method[33—37. Of particular interest is the weighted Equations(2) and (3) have extensively been used in DEM
time-space averaging method presented by Bgddlf; which ~ [11,12 whilst Eq.(4) is an extension version of Babig2] to
has been verified to be fully compatible with the kinetic take into account the effect of physical boundaries. The
theory of rapid granular flowi33] and extended to study the quantities in these equations are explained in Table I. Sum-
constitutive behavior of granular materiaJ85,36. The mation overj can extend over all particles in the system,
weighted time-space averaging method has two main advaithough often limited to particles adjacent to particldhe
tages. First, the macroscopic quantities obtained conforrforces between particleand other particles and boundaries
with those in the common balance equations in the coninclude the short-range contact forces and the long-range
tinuum approach so that they have clear physical meaningioncontact forces such as van der Waals and electrostatic
Second, it is in principle applicable to both solidlike and forces. The torques acting on the particle include those aris-
fluidlike modes of granular materials. However, difficulties ing from the tangential forces and the rolling resistance. The
may arise in the application of Babic’'s method. For examplegnergy of particla generally consists of intrinsic energy
the method thus far developed is only valid within the do-and kinetic energyK;, so that Ej=¢;+K;, where K;
main far from the boundaries of a granular system, not ap= $(MV;-Vi+ ;- ). The rates of mechanical work done
plicable to practical systems, e.g., granular flow in a hoppeby the body force on the particle W?=m;g-v; .
or any process vessel in industry, where physical boundaries For convenience, leX;=(m;,m;v; l;- @;,E;) denote the
are present and may affect granular flow significantly. In advector of the physical quantities in the left side of
dition, the weighting function used for averaging should beabove equations, and P;;=(0f;;,m;;,W;;+Q;;), B;
more constrained so that the resultant macroscopic quantities (0f°, m?, WP+ QP) andG;=(0,m;g,0,Wd+H;,). Then, the
satisfy fully the conditions in the continuum mechanics suchgphove equations can be generally written as
as the continuity in a considered domain.
In this paper, we present modified average equations to d
overcome these problems in connection with our earlier at- aXF; Pj+Bi+Gi. ®)
tempt where the rational motion of particles is ignof&d].

We first develop average equations which are valid for therpis equation gives a full description of granular flow at a

entire domain including the interior and physical boundariesa ticle scale and is hence used in the following discussion.
of granular material and applicable to all flow regimes, an

propose a weighting function. Then, we carry out DEM
simulation of granular flow in a cylindrical hopper with flat
bottom and obtain, by means of the proposed averaging By use of a proper weighting technique, the discrete sys-
method, its macroscopic quantities such as mass density, véem considered above can be transferred into a continuum
locity, stress, and couple stress distributions based on thgystem. In this work, the weighting function involved is de-

d
a(miVi):; fij+fib+migv (2

B. Continuum system and its balance equations

discrete results. noted ash(r,t), wherer=(x,y,z) represents the position
coordinates.h(r,t) is positive in the limited domain)
Il AVERAGING METHOD ={(r,t)|[re Q,CR3teT=[T,,T;]JCR}; otherwise, zero.
The function should satisfy the condition of normalization,
A. Discrete system and its balance equations i.e., [rah(r,t)dr dt=1. Then, the local average of the physi-

In general, a granular system is composed of discrete paf@l PropertyX; can be defined by use of(r,t). There are

ticles, and every particle in the system can be described b{vO types of cells for averaging: interior cells which are lo-
Newton’s equations of motion. If possible mass transfer becated far from boundaries and exterior cells which are close

tween particles, say, due to chemical reactions, is not consid® & boundary, as demonstrated in Fig. 1. The local average

ered, the mass of every particle is constant, so that for pa@f Physical propertyx; at a pointr and a timet correspond-
ticle i, ing to interior cells can be generally written as

_—m. = Y ,t = hiXi d y 6
Fmi=0. (1) (r,t) TtEi (s)ds (6)
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TABLE |. Quantities in the balance equations of discrete system and continuum system.

Discrete system Continuum systém
m; Mass of particle p Mass density
Vi Velocity of particlei u Velocity
o, Angular velocity of particld ) Angular velocity
m;Vv; Linear momentum of particle l-w Internal spin density
li- oy Angular momentum of particle T Stress tensor
fij fib Interaction forces acting on particie M Couple stress tensor
exerted by particl¢ and boundary
g Body force per unit mass acting on M’ Rate of supply of internal spin to
particle particles
mj;, mib Torques acting on particleexerted by E Energy density
particlej and boundary
E; Energy of particle gt Total flux of kinetic energy and
intrinsic energy
Wij WP, we Rates of mechanical work done by h Heat source density
particlej, the boundary, and the body force
on particlei
Qjj » Qib Rates of heat transfer from partiglend
boundary to particlé
H; Heat source of particle

4n this work, the effect of physical boundary is included in the above macroscopic quantities.

where T,=[Ty+t,T;+t], hy=h(r;—r,s—t); and for exte-

\ L ) Y(r,t) can give the local averages of mass, linear momen-
rior cells, it is defined as

tum, angular momentum, and energy, which are commonly

. used in the continuum description of granular flg@lease
X(r,)=| X giXi(s)ds, (7)  refer to Table ). Let X(r,t)=(p,pu,pl- w,pE), and define

Ted respectivelyp and| as

where gij=g(ri—r,s—t), g(r'—r,s—t)=h(r'—r,s—1)

+h(r"—r,s—t) for r’ eR3, r' is the symmetric point of/ p=| > hmds (9)

with respect to the contacting boundaries. It can be shown Tl

that g(r’ —r,s—t) satisfies the condition of normalization

Jreg(r’ —r,s—t)dr’'dt=1. In connection with Eq(6), Eq. and

(7) can be rewritten as

|:3f > hlds. (10)
T

X(r=| 3 hx(s)ds P
T According to Eq.(6), we have
21 > h(r! —r,s—t)X;(s)ds 1
J’Tt i ! ! u:; TIEi himividS, (11)
+ TE_ h(r{—r,s—t)X;(s)ds. (8) 1
el w:H Tzi hili-wids, (12)
t
1
E==| D hEds. (13)
pJ1 5

Boundary

The instantaneous velocity; of particlei can be decom-

posed into an average parand a fluctuating past , so that

vi=u+vV; . Similarly, for the instantaneous angular velocity

;, we havew, = o+ @/ , and consequently the energy den-

sity E=K+K’+U, whereK is the kinetic energy density,
FIG. 1. Atwo-dimensional schematic illustration of the conceptsK’ is the fluctuating kinetic energy density, atlis the

of probe point, and interior and exterior cells. intrinsic energy density, K’, andU can be expressed as

Probe point
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K=iuutwl o), (14) whereB is a undermined vector. Then, i is given, from
Eqgs.(17) and(18) we obtain a balance equation for property
1 <, .
=5 | Shmyivieeends  ay 0

T i S

' DX+ XV -u=B. (19)
1

U=-— E hje;ds. (16) B can be determined from the balance equations of the dis-
pJT i crete system according to E@18) in the Appendix. So, we

finally obtain the balance equations for the continuum sys-

Now to develop balance equations for the continuum systerfl, corresponding to the discrete system considered

on this basis, we follow the treatment of Savd§8&]. Sup-
pose thatL is an element of the system, associated with
volume dry=dx dy dz containing pointr. Then, A(r,t)

=X(r,t)dry designates the mass, linear momentum, angulaAs a special case of Eq0), the balance equations of mass,
momentum, and energy of this element. We can derive atinear momentum, angular momentum, and energy are, re-
expression of the material derivative éf(r,t), which is  spectively,

used to generate the balance equations, i.e.,

D(X)+XV-u=V-H+P+G. (20)

_ _ _ _ D(p)+pV-u=0, (21
DA=D(Xd7y)=D(X)drg+XD(d7y)=(DX+ XV -u)drg,

(17) D(pu)+puV-u=V-T+pg, (22

whereu=dr/dt and D(d7y)=d7,V-u-X is generally de- D(pl-®)+pl-w-u=V-M+M', (23

pendent on physical properties. For example, the linear mo-
mentumpu is changed by the body and surface forfeg]. D(pE)+pEV-u=V-(T-u+M- @)+ V- g+ pg-u+ph,

Therefore, without losing generality, we assume s
DA=Bdr, (18  where
|
T:_f 2 himiVi’®Vi’dS+f 2 2 gijdij@)fide"r‘f 2 g|bd|b®f|bd8, (25)
o Tet =i 7.
1
M- [ S heeonist3 [ B 3 adem-mdst [ 3 gt 29
T[ 1 Tt T S Tt I
L1
T 1 J>i
1 1
a"=-3 E himyv{ ®Vv/-v/ds— 5 2 hiv/® (- @) (@ —w)ds— 2 hiSiVi'dS‘Ff 2 Z gij[Wi; +Qj—fj;-u
2 )15 2 )15 4 P
—3(mjj—m;)- w]d;;ds+ LEI 9P(WP+ QP — . u—mP- w)d’ds, o8
t
1
h=—f > H;hdt. 29
pJT i

It is evident from Eqs(21)—(24) that the balance equations vious averaging methods. For example, Barbic’'s method can-
of mass and linear momentum are the same as those in ti®t apply to regions close to physical boundafi@g]. Lud-
classical continuum mechanics, and an extra equation is uséayg et al. [34] observed imbalance near a boundary due to
to describe the rotation of the independent particles. Tha&inknown missing contributions in their averaging. In fact, it
derivation of variableB in the Appendix suggests that these can be shown that the equations developed by B¢
balances are automatically maintained in the whole domaimare the special case of the above equations when the presence
including regions adjacent to physical boundaries. This if physical boundaries is ignored. Table | lists the physical
important to overcome the problems associated with the praneaning of the key macroscopic quantities involved. They
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can be determined from the microscopic quantities in the
balance equations of particles by E¢9)—(13) and (25—
(29). In other words, the macroscopic variables in the con-
tinuum approach can be directly linked to the microscopic
variables in the discrete approach.

Probe point

C. Weighting function

Strictly speaking, the macroscopic quantities are not
uniquely determined from the microscopic quantities for a
given flow system because of the uncertainty with the
weighting function h(r,t). Therefore, the selection of a
proper weighting function is important in applying the equa-
tions formulated above. In general, besides the condition of
normalization, the weighting functioh(r,t) should satisfy
the following three conditions:

(i) h(r,t)eC(RYH (r=1), T

) >0, (r,H)eQ=0\0 J
(i) h(ro) _ L — .
=0, (r,t)eRAQ, |‘ L ,l

and(iii ) h(r,t) decreases monotonically {& with increasing FIG. 2. Concept of weighting, when coupled with Johns@ys
[r| and|t|. The first condition is necessary in the derivation of distribution function, for space averagifiie same idea applied to
the balance equations and it also ensures that the averatime averaginy

properties smoothly vary in a considered domain. The sec-

ond and third conditions guarantee that the contribution of 2

different particles to a probe point or the contribution of ;exp< _EmZﬂ r<L
different time to a probe time is different. They represent a g(r)=1{ 4mLy(L;—r?) 2 Lp—r )’ P
physical consideration that the contribution of the particles 0. r=L

near a probe point or time close to a probe time should be ’ b

larger, and particles or time far away from a probe point or a (32)

probe time do not have any contribution.

The need to find out a suitable weighting function haswhereL,, o, are the distribution parameters=c(op) is
been noticed in the literature5,37. We here recommend the normalized constant of the distribution functiggr),
the use of a weighting function which arises from the so-which is expressed as
called Johnson'Sg distribution function[39]. This function
has been widely used in engineering practice, e.g., in the
mathematical representation of particle size distribution of
granular materials where distribution transformation is often Clop)=
required(see Ref[40], for example. For the present appli-
cation, the weighting function is given by

1or? o 1+r
" ed — T2t
fol—r ex"( > "1

The above integral can be calculated numerically. It can be
h(r,t)="f(t)g(r), (30) shown thatc(o) is @ monotonic function ofr,. The above
distribution functions are smooth in the entire space, and
decrease monotonically with increasigor |t|, as typically
illustrated in Fig. 2.

This weighting function is thus far the only one that sat-
isfies fully the requirements mentioned above. An open ques-
oy 2L, otz ,Litt tion with the weighting function is the selection of the pa-

f(t)= Emex 2 In Li—t) [tf<L rameters, which is important in our setup becang@r Lo

determines the amount of the contributing particles to a
0, [t[=Ly, probe point, whereas; or o, controls the magnitude of
(31 weighting average to every particle. On the other hand, one
of the main advantages of using this weighting function is
wherel,, o, are the distribution parameters. On the otherthat the size of the cell is not necessarily increased for the
hand,g(r) is an extension of the univariate distributi(3il) continuity of resulting average quantitie37]. This is very
to three variants, so that, useful since at this stage of development, almost all DEM

-1
dr} . (33

wherer =|r|, andf(t) is the simplifiedSg distribution func-
tion explicitly written as
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TABLE Il. Parameters used in the present DEM simulation.

Quantity Value Units
Hopper diameter 30.0 d
Orifice diameter 8.0 d
Number of particles 24000
Friction coefficient(particle-particlg 0.6
Friction coefficient(particle-wal) 0.3
Rolling friction coefficient(particle-particle or particle-wall 0.001 d
Young's modulus of particle or wall 50 000 md/d
Poisson ratio of particle or wall 0.3
Normal damping ratidparticle-particle or particle-wall 0.1
Tangential damping rati¢particle-particle or particle-wall 0.3
Time step 0.001 Jdig
Time to start discharging 80.0 Jdig

simulations have to be carried out with a relatively smallmethod proposed above. Because of the relatively perfect
number of particles because of the limited computing capaaxial symmetry, this three-dimensional flow problem is here
bility. examined on a sectional plane. Thus, the velocity has only
two components, the stress tensor and the couple stress ten-
sor each have four components. The values of all computed
quantities at every probe point, which are expressed by the
A. DEM simulation cylindrical coordinates, are the average values of the two
Understanding and modeling the granular flow in a hop_symmetrical points in the plane. Therefore: only the valges in
per flow is of great importance and has been a research focti&!f the plane are shown. The mass density, the velocity, the
worldwide for years. The dynamic behavior of hopper flow isSreéss tensor, and the couple stress tensor are non-
very complicated because all the flow regimes mentionediimensionalized as p(r,t)=[6/(mp,)]p(r,t), u(r,t)
above_ may coexist. Th_e continuum m_odels proposed thus _faL; (gd) " Y2u(r,t), T(T,t) =[6/(mp,dg)]T(r,t) and M(T,t)
including those from either the plasticity model or the k'”et'c=[6/(7rppd2g)]M(r,t), respectively. As discussed else-
theory, cannot satisfactorily apply to this fiq@1]. Current \here[37], the macroscopic quantities calculated will de-
experimental technique cannot generate much mformatlogend on the parameters in the weighting function, i.e., the

aﬁout thet;]r)ternalt_progiﬁrtles, eb._g.,t_stres? tﬂstgputlo?s. A ell size and the weighting within the cell, although the re-
shown in this section, the combination of the discrete ap'sulting trends are consistent. Their proper selection is still

proach and the averaging technique proposed here provid%ﬁen for research. This problem also exists for other averag-

T e cpper 10 Mo, 3. o eampl. sown by, g, an
with flat bottom. Discrete simulation is performed by meanSHerrmanr[ZZ]. In this work, parameters,, o, L, andL,

o ) . . are, respectively, given ag=o0,=1.0 andL;=L,=4.0. In
of a modified DEM. The s_|mulat|0n technlqut_e ha_s been WeIIaII figures,r denotes the distance from a probe point to the
demonstrated in our previous wof#1,42, which is essen-

tially the same as that originally proposed by Cundai] central axis of the hopper, while denotes the height of a

but modified by incorporating a rolling friction model. Table probe point above the bottom of the hopper.
I lists the physical parameters used in this work. Note that

IIl. APPLICATION TO A HOPPER FLOW

the long-range forces such as van der Waals and electrostatic coponp By
forces are ignored in the present work which deals with the ki SYEHRE
flow of relatively large particles. The procedure used in the ‘ e
simulation is as follows. First, 24000 monosized spherical i
particles (particle diameterd=3 mm; particle densityp, :
=2500 kg/ni) are randomly generated in the hopper without 4
overlap. These particles are then allowed to settle onto the i 4
hopper to form a packing, and finally discharged under grav- g é
ity when the hopper outlet is removed, as shown in Fig. 3. amien .
(@

B. Quantification of continuum variables

We calculate, based on the data generated from the above FIG. 3. Snapshots showing the discharging process of hopper
DEM simulation, the mass density field, the velocity field, flow when: (a) t=80 (time to start discharging and (b) t
the stress, and couple stress fields by using the averaging240yd/g.
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Figure 4 shows the distribution of the mass density attwo - s 10
different heights at a given time. It can be seen that the mas:
density increases gradually to a maximum and then de- © @
creases with increasing radius; the variation is small in the : atribg i o
central region and siggificant in the region adjacent to tth heFrI]C%ZGZ' 4§ag/%mftrés;ilztg?lglo(z_mrgsogor stress arerp,dg/6)
wall. It also varies with height because of the effect of the NAg: o -

bottom wall; the change is more significant wieis low. To  jncreasing radius. The lower the position, the more signifi-
be more quantitative, we calculate packing densigt sev-  cant the variation for both velocity components. However,

eral typical points, and obtain=0.532 atr=0.0,c=0.543  pecause the magnitude of the vertical component is much
atr=15.0, andc=0.604 at the peak when=4.0; andc  |arger than that of horizontal component, the vertical move-
=0.563 atr=0.0,c=0.534 atr=15.0, andc=0.59 at the  ment of particles is dominant. These results are qualitatively
peak wherz=8.0. The observed maximum packing densityin agreement with the experimental observatiptf).

c=0.604 is close to that obtained under conditions of loose Figure 6 shows the internal stress distributions of the hop-
random packind42]. The decreased density in the region per flow wherz=4.0 and 8.0. It can be observed from Figs.

ggjlsbeoton:jhaer .\évag]s gr?im)é gl:ﬁetrohtgr?deTﬁgtd(gcvrv:a?szr'Eh%‘:é s?-—(a) and @b) that the magnitudes of the two normal stresses
u [ . i = e ;

o C ’ X ,-andT,, increase withr except for a small increase close
density in the central region is due tq the dilatancy of granuz;ihe wall. On the other hand, Figscband Gd) show that
lar materials. Often a low mass density corresponds to a h|g,h1 ; h ‘ T dT. | tidentical in th
velocity [44,45. This is indeed the case when examining the € W? shear s rﬁ_ssh ¥z and i, are a m(.)f] Ih entical In the
velocity distributions at the two heights as shown in Fig. 5_qentra r;glor!, whic f";'n agreftlamer;t W|_'|t the pre\k/:ous con-
Two velocity components, i.e., vertical and horizontal veloci-inuum description of hopper O ]'. owever, the two
ties, are considered. It can be seen that the magnitude of tl’?@e"?‘r stresses are different in the region _adjgcent to the wall.
vertical velocity decreases with increasing radius in the cen- F]|c|gure Ztihows thehcc_)uhptle ?I_tlfless dlslirlb_ugpni oIhthte h(:jp-
tral region and is relatively insignificant in the region close PEr flow at th€ same heignts. The results indicate that under

to the wall. The variation of horizontal velocity is also the present §imu|ation conditions, the change in the four
largely limited to the central region, with its magnitude in- components is very small and can be reasonably ignored,

creasing from zero to a maximum and then decreasing Witlﬁlthoug.h the small varla_tlon observed may res_ult In some
uctuation in flow behavior. However, this consideration is

03 002 not applicable tavi,, andM,, in the region adjacent to the

4 o g RS wall. Both stress components vary significantly in that re-
gion. Therefore, all the results in Figs. 4—7 point to one
important fact: the presence of physical boundaries will af-
fect both microscopic and macroscopic quantities related to
granular flow and must be properly considered.
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=l

@ ®) An averaging method has been developed to obtain the

macroscopic quantities in the continuum description of

FIG. 5. Radial velocity distributiounits for velocity areygd)  granular flow from the microscopic quantities generated by
whent=240.0/d/g: O, Z=4.0; A, z=8.0d. DEM-based discrete simulation. Compared to the other
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£ 001 N 01

= ook = Consideringu=v;—V; and from Eq.(6),
§ 0.006f E\ o:oe-
g ol g oot g >T):f > 5hiXds (A2)
§ Uittt it es §0.02— o t( 74 tHiAudS,
S ol 2 ol V-(ueX)= | > (gh;-vi)Xids—V- J > hyv/@Xds.
S on 5 16 15 8 . % 70 15 T o T |
T ¥ (A3)
@ ® Substituting Eqs(A2) and (A3) into Eq. (A1) and noting
oo \ 0003 drhi=—d.h;, dhj=—dsh;, we can obtain
= 1=
‘q:'; 0.002f ‘q:'; 0.002f o
2 oot g o D(X)+XV-u= 2 h, i ds V. 2 hv/ @ X;ds.
) 8 ba Bt i !
(A%)
‘ﬁ_ -0.001 [ :5 -0.001F
2 oonf 2 oomf Substituting Eq(5) into the above equation gives
3 -0.003 1 T 15 8 -0.003 5 10 15 L
¥ G D(X)+XV-u= | > > hPjds+ | > hBds
© @ Te i ] Te i
ial distributi ; 2
FI(i 7. Radial dlstrlb_utlon of co_uple stregsf units mp,d-g/6) + 2 h,G.ds—V- 2 hiv! @ X;ds.
whent=240.0/d/g: OJ, z=4.0; A, z=8.0d. i i
: . . . (A5)
methods proposed in the literature, it has advantages of being
applicable to all flow regimes, and to granular flows with or Comparing Eq(A5) and Eq.(19) yields
without the effect of physical boundaries. Moreover, smooth
variation in the resultant macroscopic quantities can be en- B= h-P--ds+f hBds
sured even though a simulation may be carried out with a TIZ 2 Y 2
limited number of particles. The method will provide an ef-
fective way to study the fundamentals governing granular +f hG-ds—V-f hv'@X.ds. (A6
flow, which is otherwise difficult to obtain with the current 2. o 2. Vi @Xids. - (A6)

experimental techniques.

The application of the method is demonstrated in the calThen, we modify the treatment of Bal{ig2] to simplify this
culation of velocity and stress fields of a hopper flow. Pre-expression. First, we decompose the first term of the right-
liminary analysis of the results indicates that the mass derand side of Eq(A6) to two terms,
sity, velocity, stress, and couple stress distributions are
qualitatively gompal_rable with those in the conver)tional con- 2 2 h.P; ds= EJ' 2 2 (hi—h)(P;;—P;;)ds
tinuum description in the region far from the physical bound- J1,T" 4 ! 2 )5 = R
ary; the presence of physical boundaries will significantly

affect these properties. Further studies are being conducted hi+h)(P,+P)ds
in order to develop a better understanding of this important "2 1Ei JE>I ( (P Py)
flow system.
= Po+ Pl y (A?)
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APPENDIX: DERIVATION OF EQUATION TO f zl Z (hith) (P +Pyds. (A9)
CALCULATE B IN EQ. (19

Depending to the positions of particleandj, there are four

cases: (1) ri—reQ,, ri—reQy; (2 ri—rel,, r;

mreQys Q) ri—reQy, rj—reQy; (4 ri—rely, r;

For simplicity, let X;=X;(s), v;=V;(s) in the following
derivation. According to the definition of material derivative

we have —ré&),. For the first caseh(ri—r, s—t)>0, h(r;—r, s
o o o —1)>0. For the second cask(r;—r, s—t)>0, h(r;—r, s
D(X)+XV-u=4¢,(X)+V-(u®X). (A1) —t)=0, thus, becausda(rj’—r, s—t)=h(rj—r, s—t)=0,
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we can replacéi(r;—r, s—t) in the right-hand side of Eq. fourth case. Similarly to the above treatment about the inter-
(A8) with h(r —r, s—t), Wherer is the point of intersec- action between particles, we can transfer the second term of
tion of the line connecting the centers of mass of particles the right-hand side of EqA6) to

andj and the boundary(, of domain(},. Similar to (2),

for the third caseh(rj—r, s—t)=0, h(r,-—r, s—1)>0, so E hiBids=V~{ E “'lh(riﬂdib—r, s dr dib
h(r;—r, s—t) can be replaced with(r{ —r, s—t). Finally, T T 0

for the fourth case, particlésandj have no contribution to

Po; consequently, this case is neglected in the following ®Bids}. (A13)
analysis. Letrj=r; (r;=r;) if rj—reQ, (ri—re,); oth-

erwise,r;=r{ (r;=r/). Then, Eq.(A8) can be rewritten as o ) .
W = (n=ri) a.(A8) i If particle i contacts a physical boundaq}ﬁ is the ray from

the center of mass of particiéo a point on boundary() , of

> Z‘ [h(ri—r, s—t)—h(T;—r, s—1)] domain(),,, via a point on the physical boundary, and per-
Tt = pendicular to the tangential plane of the point; otherwise,
X (P;j—Pji)ds. (A10)  d’=0. For convenience, let

Since
! H=-— 2 hiVil®xidS
h(ri—r, s—t)—h(r;—r, s—t) T

td d;®(P; —Pj)ds
=—f —h(ri+rdj—r, s—t)dr tzi: J§>:. 9ijcj @ (P —Py)
odr
19 + PdPo B,ds, Al4
:f _h(r_i+rdij_r, S_t)'dijdr, (All) TtEi gid ! ( )
o dr
where di;=T;—T;, substituting Eq.(A1l) into Eq. (A10) G=| > hGds, (A15)
gives T,
where
Py=V- f f h(ri+rdj—r, s—t)dr|d;
1
g.ff h(ri+rdj—r, s—t)dr, (A16)
0
®(Pij_Pji)dS}- (A12)
1
b_ b_ _
In the present study, it is assumed that, compared to the gi _fo h(ri+rdi—r, s—t)dr. (A17)

physical boundary, the sizes of particles are so small that the

contact between particleand a boundary is equivalent to the Then, from Eqs(A6), (A7), and (A12)—(A15), we can ob-
contact between the particle and a spherical particle withain the expression d8, given by

enough large mass and diameter. Therefore, the interaction

between a particle and boundary belongs to the second or B=V-H+P+G. (A18)
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