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Calculation of the incremental stress-strain relation of a polygonal packing

F. Alonso-Marroquin and H. J. Herrmann
ICA1, University of Stuttgart, Pfaffenwaldring 27, 70569 Stuttgart, Germany

~Received 25 March 2002; published 20 August 2002!

The constitutive relation of the quasistatic deformation on two-dimensional packed samples of polygons is
calculated using molecular dynamics simulations. The stress values at which the system remains stable are
bounded by a failure surface, which shows a power law dependence on the pressure. Below the failure surface,
nonlinear elasticity and plastic deformation are obtained, which are evaluated in the framework of the incre-
mental linear theory. The results show that the stiffness tensor can be directly related to the microcontact
rearrangements. The plasticity obeys a nonassociated flow rule with a plastic limit surface that does not agree
with the failure surface.
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I. INTRODUCTION

The nonlinear and irreversible behavior of soils has b
described by different constitutive theories@1,2#. Here the
stress-strain relation is postulated using a certain numbe
material parameters which are measured in experime
tests. These continuous theories have been used for m
geotechnical applications. Excavations, foundations,
landslides are some few examples of these applications.

Recently, the investigation of soils at the grain scale
become possible using numerical simulations@3#. They evi-
dence that the stress is transmitted through a heterogen
network of interparticle contacts@4#. The geometric change
of this network during deformation reveals a structural a
isotropy induced by shearing@5#. Although these results pro
vide valuable insights into the behavior of soils, few issu
are given to derive the continuous relations from the disc
models.

In this paper the stress-strain relation of a tw
dimensional discrete model is calculated explicitly using n
merical simulations. An internal variable is included in th
continuous relation, which is related to the anisotropy of
contact network. The results show that it is possible to ch
acterize the mechanical behavior of soils at the macrosc
scale using particle models. In effect, we demonstrate
simple mechanical laws at the grain level are able to rep
duce the complex behavior of the deformation of soils.

Usually, disks or spheres are used in the modeling
granular materials. The simplicity of their geometry allow
one to reduce the computer time of calculations, but they
not take into account the diversity of the shapes of the gra
in the realistic materials. A more detailed description is p
sented here by using randomly generated convex polyg
As presented by Tillemans and Herrmann@6#, the interaction
between the polygons could be handled by letting the po
gons interpenetrate each other and calculating the force
function of their overlap. This approach has been succ
fully applied to model different processes, such as fragm
tation @7,8#, damage@9#, strain localization, and earthquake
@6#.

This paper is organized as follows. A suitable cont
force law is introduced in Sec. II A, which attempts to com
bine the Hertz contact law with the Coulomb friction crit
1063-651X/2002/66~2!/021301~11!/$20.00 66 0213
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rion. The boundary condition is introduced in Sec. II B by
flexible membrane that surrounds the sample. The mode
with such a membrane is very advantageous since it all
one to implement a stress-controlled loading without any
striction in the deformation of the boundary. The strain
sponse is calculated in Sec. III for different stress increme
applied on identically generated samples. The results are
cussed in Sec. IV in the framework of the theory of elas
plasticity.

II. MODEL

The polygons of this model are generated using a sim
version of the Voronoi tessellation: First, we set a rand
point in each cell of a regular square lattice, then each po
gon is constructed assigning to each point that part of
plane that is nearer to it than to any other point. Each po
gon is subjected to interparticle contact forces and bound
forces. They are inserted in Newton’s equation of motion
we explain below.

A. Contact force

Usually, the interaction between two solid bodies in co
tact is described by a force applied on the flattened con
surface between them. Given two polygons in contact, s
surface is obtained from the geometrical construction sho
in Fig. 1. The pointsC1 andC2 result from the intersection
between the edges of the polygons. The contact surfac
taken as the segment that lies between those points.
vectorSW 5C1C2

W defines an intrinsic coordinate system at t
contact (t̂ ,n̂), where t̂5SW /uSW u and n̂ is perpendicular to it.
The deformation length is given byd5a/uSW u, wherea is the
overlap area between the polygons.,W is the branch vector,
which connects the center of mass of the polygon to the p
of application of the contact force, which is supposed to
the center of mass of the overlap area.

The normal elastic force is taken proportional to the d
formation length asf n

e5knd; the tangential force is calcu
lated from the simplified Coulomb friction law with a singl
friction coefficientms5md5m. Herems is the static andmd
the dynamic friction coefficient. This tangential force
©2002 The American Physical Society01-1
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implemented by an elastic springf t
e52ktj, wherej grows

linearly with the tangential displacement of the conta
wheneveru f t

eu,m f n
e . We used the straightforward calcula

tion of j proposed by Brendel@10#,

j~ t !5E
0

t

v t~ t8!Q„u f t
e~ t8!u2m f n

e~ t8!…dt8, ~1!

whereQ is the Heaviside function andvW is the relative ve-
locity at the contact, which depends on the linear velocityvW i

and angular velocityvW i of the particles in contact accordin
to

vW 5vW i2vW j2vW i3,W i .1vW j3,W j . ~2!

B. Boundary forces

Let us now discuss how to apply the stress on the sam
One way to do that would be to apply a perpendicular fo
on each edge of the polygons belonging to the external c
tour of the sample. Actually, this does not work because
force will act on all the fjords of the boundary. It produces
uncontrollable growth of cracks that with time ends up d
stroying the sample. Thus, it is necessary to introduce a fl
ible membrane in order to restrict the boundary points t
are subjected to the external stress.

The algorithm to identify the boundary is rather simp
The lowest vertexp from all the polygons of the sample i
chosen as the first point of the boundary listb1. In Fig. 2P is
the polygon that containsp, andqPPùQ is the first inter-
section point between the polygonsP andQ in counterclock-
wise orientation with respect top. Starting fromp, the verti-
ces ofP in counterclockwise orientation are included in t
boundary list untilq is reached. Next,q is included in the
boundary list. Then, the vertices ofQ betweenq and the next
intersection pointr PQùR in the counterclockwise orienta
tion are included into the list. The same procedure is app
until one reaches the lowest vertexp again. This is a very
fast algorithm, because it only makes use of the con
points between the polygons, which are previously cal

FIG. 1. Contact surface as defined from the geometry of ov
lap.
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lated to obtain the contact force.
The set of points that are in contact with the membra

are selected using a recursive algorithm. It is initialized w
the vertices of the smallest convex polygon that encloses
boundary~see Fig. 3!. The lowest point of the boundary i
selected as the first vertex of the polygonm15b1. The sec-
ond onem2 is the boundary pointbi that minimizes the angle
/(b1bi
W ) with respect to the horizontal. The third onem3 is

the boundary pointbi such that the angle/(m2bi
W ,m1m2
W ) is

minimal. The algorithm is recursively applied until the low
est vertexm1 is reached again.

The points of the boundary are iteratively included in t
list mi using the bending criterion proposed by Åstro”m et al.
@11#: For each pair of consecutive vertices of the membra
mi5bi and mi 115bj we choose that point from the subs
$bk% i<k< j that maximizes the bending angleub

5/(bkbi
W ,bkbj

W ). This point is included into the list, when
everub>u th . Hereu th is a threshold angle for bending. Th
algorithm is repeatedly applied until there are no more po
satisfying the bending condition.

The final result gives a set of segments$mimW i 11% lying on
the boundary of the sample. In order to apply the bound
forces, those segments are divided into two groups:A-type
segments are those that coincide with an edge of a boun
polygon;B-type segments connect the vertices of two diffe
ent boundary polygons.

On each segment of the membranemimW i 11 a force f i
5s iNi is applied, wheres i is the local stress andNi is the
90° counterclockwise rotation ofmimW i 11. This force is trans-
mitted to the polygons in contact with it: if the segment is
A type, this force is applied in its midpoint; if the segment
of B type, half of the force is applied at each one of t
vertices connected by this segment.

C. Molecular dynamics simulation

Before we implement the numerical solution of Newton
equations it is convenient to make a dimensional analysi

r-

FIG. 2. Algorithm used to find the boundary.
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FIG. 3. Membrane obtained with threshold bending angleu th5p, 3p/4, p/2, andp/4. The first one corresponds to the minimum conv
polygon that encloses the sample.
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the parameters. In such way we can keep the scale invari
of the model and reduce the parameters to a minimum
dimensionless constants. All the polygons are suppose
have the same density. The massmi of each polygon is mea
sured in units of the mean massm0 of the Voronoi tessella-
tion. The time is measured in fractions of the total loadi
time t0. The evolution of the positionxW i and the orientation
w i of the i th polygon is governed by the equations of motio

l2mi xẄ i1(
c

f i
cW1(

cb

s i
b

kn
fW i

b50W ,

l2I i ẅ i1(
c

,W i
c3 f i

cW1(
cb

s i
b

kn
,W i

b3 fW i
b50W . ~3!

The sums go over all those particles and boundary s
ments that are in contact with thei th polygon. The interpar-

ticle contact forcesf i
cW and boundary forcesf i

bW are given by
02130
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f i
cW5~d i

c1lgmvn
c!n̂i

c1z~j i
c2lgmv t

c! t̂ i
c ,

f i
bW5Ni

bW2lgmiv i
W . ~4!

Here d i
c and j i

c denote the deformation length and th
tangential displacement of the contact, which were define
Sec. II A; s i

b is the stress applied on the boundary segm
Ti

b , defined in Sec. II B. Artificial viscous terms must b
included in Eq.~4! to keep the stability of the numerica
solution and reduce the acoustic waves generated during
loading process.vW c denotes the relative velocity at the co
tact @Eq. ~2!# andm5(1/mi11/mj )

21 the effective mass of
the two polygons in contact.

There are four microscopic parameters in the model:
viscosityg, the ratiol5ts /to between the characteristic pe
riod of oscillation ts5Akn /m0 and the loading timet0, the
friction coefficient m, and the ratioz5kt /kn between the
tangentialkt and normalkn stiffness of the interparticle con
1-3
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tacts. The viscosity factorg is related to the normal restitu
tion coefficient@12#. It was taken large enough to have a hi
dissipation, but not too large to keep the numerical stabi
of the method. The ratiol was chosen small enough in ord
to avoid rate dependence in the strain response, corresp
ing to the quasistatic approximation. Technically, it is do
by looking for the value ofl such that a reduction of it by
half makes a change of the strain response less than 5%

The two parametersz and m determine the constitutive
response of the system. For example, the micromechan
analysis of the strain response shows that the Young’s mo
lus and Poisson’s ratio depend onz @13#. On the other hand
m can be directly related to the friction angle of the mater
@14#. Although the study of the dependence of the const
tive response on those parameters is an important point,
quantities have been kept fixed in this work.

The boundary conditions yield more dimensional para
eters. The initial heightH0 and widthW0 of the sample, and
the characteristic length,0 of the polygons define two geo
metrical parameters, which are the shape ratioW0 /H0 and
the granularity,0 /H0 of the sample~see Table I!.

In order to keep overlaps much smaller than the cha
teristic area of the polygons, the ratios i /kn between the
stress applied on the membrane and the stiffness of the
tacts is restricted to small values. This was implemented
fixing the contact stiffness to a value close to the experim
tal granular stiffnesskn5160 MPa. Then the stress is ch
sen in such a way that it does not exceed 1% of this val

III. STRESS-STRAIN CALCULATION

A. Theoretical background

The macroscopic state of the system is characterized
the stress tensor and the void ratioe. The area fraction of
voids in the sample defines the void ratio. Initiallye050 due
to the Voronoi tessellation used. The stress controlled
was restricted to stress states without off-diagonal com
nents. The diagonal components, the axiald1 and laterald3
stress, define the stress vector,

s̃5Fp

qG5
1

2 Fd11d3

d12d3
G , ~5!

where p and q are the pressure and the shear stress.
domain of admissible stresses is bounded by the failure
face. When the system reaches this surface it becomes
stable and fails.

TABLE I. Dimensionless variables.

Variable Ratio Default value

Viscosity g 0.1
Friction coefficient m 0.25
Time ratio l5ts /to 8.031024

Stiffness ratio z5kt /kn 0.33
Granularity ,0 /H0 0.1
Shape ratio W0 /H0 1.0
Bending angle u th 0.25p
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Before failure, the constitutive behavior can be obtain
performing small changes in the stress and evaluating
resultant deformation. An infinitesimal change of the stre
vector ds̃ produces an infinitesimal deformation of th
sample, which is given by a change of heightdH and width
dW. This defines the axial strainde15dH/H and lateral
strain de35dW/W increments. The volumetric straindev
and the shear straindeg increments define the increment
strain vector,

dẽ5Fdev

deg
G5Fde11de3

de12de3
G . ~6!

Each state of the sample is related to a single point in
stress space, and the quasistatic evolution of the syste
represented by the movement of this point in the stress sp
The constitutive relation is formulated taking the incremen
strain as a function of the incremental stress and the st
state

dẽ5F~ds̃,s̃ !. ~7!

If there is no rate dependence in the constitutive equat
F(ds̃) is an homogeneous function of degree 1. In this ca
the application of the Euler identity@15# shows that Eq.~7!
can be reduced to

dẽ5M ~ û,s̃ !ds̃. ~8!

Whereû is the unitary vector defining a specific direction
the stress space,

û5
ds̃

uds̃u
[Fcosu

sinu G , uds̃u5Adp21dq2. ~9!

The constitutive relation results from the calculation
dẽ(u), where each value ofu is related to a particular mod
of loading. Some special modes are listed in Table II.

The relation~8! has been proposed by Darve@15# and it
contains all the possible constitutive equations. In order
interpret our particular results, it is convenient to make so
approximations: First, if the load increments are taken sm
enough, the tensorM (u) can be supposed to be linear

TABLE II. Principal modes of loading according to the orient

tion of û.

0° Isotropic compression dp.0 dq50
45° Axial loading ds1.0 ds350
90° Pure shear dp50 dq.0
135° Lateral loading ds150 ds3.0
180° Isotropic expansion dp,0 dq50
225° Axial stretching ds1,0 ds350
270° Pure shear dp50 dq,0
315° Lateral stretching ds150 ds3,0
1-4



n

f

ta
s

to

f

os

e

ai

d

of

the
hed.
the
com-
her-
the
cal-
ller
ore,
hen
ose
the
ept
and

nd-
with
ap

.
tic

ace
be

hich
me-

ior.

mi-
int

tes-

CALCULATION OF THE INCREMENTAL STRESS- . . . PHYSICAL REVIEW E 66, 021301 ~2002!
each stress direction. Then, we assume that the strain ca
separated in an elastic~recoverable! and a plastic~unrecov-
erable! component,

dẽ5dẽe1dẽp, ~10!

dẽe5D~ s̃ !ds̃, ~11!

dẽp5J~u,s̃ !ds̃. ~12!

Here,D21 defines the stiffness tensor, andJ5M2D the
flow rule of plasticity, which results from the calculation o
dẽe(u) anddẽp(u).

B. The method

The numerical method presented here was proposed
Bardet@16#. It allows one to find the elasticdẽe and plastic
dẽp components of the strain as functions of the stress s
s̃ and the stress directionu. Figure 4 shows the three step
of the procedure.

~1! The sample is driven to the stress states̃. First, it is
isotropically compressed until it reaches the stress valued1
5d35p2q. Next, it is subjected to axial loading, in order
increase the axial stressd1 to p1q ~see Fig. 5!. When the
stress states̃5@pq#T is reached, (AT being the transpose o
A) the sample is allowed to relax.

~2! Loading the sample froms̃ to s̃1ds̃ the strain incre-
mentdẽ is obtained. This procedure is implemented cho
ing different stress directions according to Eq.~9!. Here the
stress modulus is fixed touds̃u51024p.

~3! The sample is unloaded until the original stress stats̃

is reached. Then one finds a remaining straindẽp that corre-
sponds to the plastic component of the incremental str
Since the stress increments are taken small enough, the
loaded stress-strain path is practically elastic. Thus, the

FIG. 4. Procedure to obtain the constitutive behavior:~1! The

sample is driven to the stress states̃, with pressurep and shear

stressq. ~2! It is loaded froms̃ to s̃1ds̃. ~3! It is unloaded to the

original stress states̃.
02130
be

by

te

-

n.
un-
if-

ferencedẽe5dẽ2dẽp represents the elastic component
the strain.

One could be concerned about the dependence of
strain response on the way how the stress state is reac
We found that there is not remarkable dependence of
strain response on the stress path, whenever the stress
ponents are quasistatic and monotonically increased. Ot
wise, a strong reduction in the plastic component of
strain is observed. In fact, when the plastic response is
culated after the sample is unloaded, the plasticity is sma
than that one calculated after a monotonic load. Furtherm
there is no plastic component in the strain response w
elastic waves are previously generated in the sample. Th
memory effects suggest that the plastic component of
strain depends on the history of the deformation, and is k
unchanged only if the sample is subjected to quasistatic
monotonic loading.

Figure 6 shows the load-unload paths and the correspo
ing strain response. They were taken from a stress state
q50.5p. The end of the load paths in the stress space m
into a strain envelope responsedẽ(u) in the strain space
Likewise, the end of the unload paths map into a plas
envelope responsedẽp(u). The yield directionf can be
found from this response, as the direction in the stress sp
where the plastic response is maximal. The flow rule can
obtained taking the directionc of the maximal plastic re-
sponse in the strain space. These angles do not agree, w
reveals the necessity to analyze this behavior in the fra
work of the nonassociated theory of plasticity~see Sec.
IV C!.

IV. CONSTITUTIVE RELATION

Figure 7 summarizes the global elastoplastic behav
The elastic response, calculated from Eq.~10!, has a centered
ellipse as envelope response. This can be related to the
crocontact structure using a local linear relation in each po
of the stress space~see Sec. IV B!. The solid line represents

FIG. 5. Axial stresss15p1q and lateral stresss35p2q in a
stress controlled test. They are applied on the boundary of the
sellated sample of polygons.
1-5



e
tio
rt
e
en
o

o
r

of
on
w
n

t
r-
re
he
he
ple

of
ial

the

es
.
so

F. ALONSO-MARROQUIN AND H. J. HERRMANN PHYSICAL REVIEW E66, 021301 ~2002!
the failure surface that separates the stable states from
unstable ones~see Sec. IV A!. The plastic envelope respons
is almost on a straight line. The modulus and the orienta
of this envelope depend on the stress state through a ce
number of material parameters, which are given in S
IV C. All the quantities obtained in this section have be
calculated from the average over five different samples
10310 particles each one.

A. Failure surface

The failure line was calculated looking for the values
stress for which the system becomes unstable: for each p
surep, there is a critical shear stressqc(p), below which the
sample reaches a stable state with an exponential decay
kinetic energy. For shear stress values above the critical
the sample develops an instability and fails. Figure 8 sho
the interface between these two stress states, which ca
accurately fitted by the power law

FIG. 6. Stress-strain relation resulting from the load-unload t
Dotted lines represent the paths in the stress and strain spaces
dash-dotted line gives the strain envelope response and the
line is the plastic envelope response.
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p0
5m* S p

p0
D b

. ~13!

Herep051.0 MPa is the reference pressure, andm* 50.78
60.03 is the Mohr-Coulomb friction coefficient@1#. The
power law dependence on the pressure, with exponenb
50.9260.02, implies a significant deviation from the Moh
Coulomb theory. Moreover, the empirical criteria of failu
for most rocks@17# shows a power law dependence of t
form of Eq.~13!. It seems that additional features beyond t
Mohr-Coulomb analysis are taking place when the sam
fails, which will be discussed in Sec. IV C.

B. Stiffness

Hooke’s law of elasticity states that the stiffness tensor
isotropic materials can be written in terms of two mater

FIG. 7. Elastic responsedẽe and plastic responsedẽp resulting

from the application of different loading modes withuds̃u51024p.
The solid line represents the failure surface.

FIG. 8. Failure surface. The continuous line represents
power law fit.
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parameters, i.e., Young’s modulusE and Poisson’s ration.
However, the isotropy is not fulfilled when the stress state
far from the hydrostatic axis. Indeed, numerical simulatio
@5,18# and photoelastic experiments@19# on granular materi-
als show that the loading induces a significant deviation fr
isotropy in the contact network.

The anisotropy of the granular sample can be charac
ized by the distribution of the microcontact normal vecto
n̂i

c ~see Fig. 1!. Our numerical simulations show that th
structural changes of microcontacts are principally due to
opening of contacts whose normal vectors are nearly alig
around the direction perpendicular to the load. Let us c
N(w)Dw the number of contacts per particle oriented b
tween the anglesw andw1Dw, measured with respect to th
direction along which the sample is loaded. The lowest or
of anisotropy can be described by the expression

N~w!5
1

2p
@N1~N02N!cos~2w!#. ~14!

Here N is the average coordination number of the po
gons, whose initial valueN056.0 reduces as the load is in
creased. Figure 9 shows this reduction. A critical line
found aroundq50.12p, below which there are no structura
changes in the contact network. Above this limit an induc
anisotropy arises due to opened contacts whose amoun
lows a power law dependence.

In order to describe the effect of the anisotropy in t
elastic response we proceed as follows: first, an additio
parametera is included in Hooke’s law

FIG. 9. Reduction of the mean coordination number of conta
~dotted line!. The data have been fitted to a truncated power
~dashed line!. See Eq.~29!.
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1

E F12a 2n

2n 11aGFds1

ds3
G . ~15!

Then, these three parameters are supposed to be depe
on the internal damage parameterd,

d5
N02N

N0
. ~16!

The tensorD defined in Eq.~11! is calculated from Eq.
~15! using the definition of the stress and strain vectors giv
in Eqs.~5! and ~6!. One obtains

D5
2

E F12n 2a

2a 11n
G . ~17!

The diagonal components of this tensor are the inverse of
bulk modulus and of the shear modulus, respectively. T
nondiagonal component results from the anisotropy of
sample, and it couples the compression mode with the sh
ing deformation. These three variables are calculated fr
the elastic responsedẽe(u) by the introduction of the follow-
ing function:

R~u!5
ds̃Tdẽe

uds̃u2
. ~18!

Substituting Eqs.~11! and~9! into Eq. ~18!, one sees tha
R is the quadratic form ofD,

R~u!5 ûTD û5
2

E
@12n cos~2u!2a sin~2u!#. ~19!

ts
FIG. 10. Young’s modulus. The solid line is the linear appro

mation ofE(d). See Eq.~24!.
1-7
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F. ALONSO-MARROQUIN AND H. J. HERRMANN PHYSICAL REVIEW E66, 021301 ~2002!
Using this equation, the components ofD can be evaluated
as the Fourier coefficients ofR,

1

E
5

1

4pE0

2p

R~u!du, ~20!

n52
E

2pE0

2p

R~u!cos~2u!du, ~21!

a52
E

2pE0

2p

R~u!sin~2u!du. ~22!

Figures 10, 11, and 12 show the results of the calcula
of Young’s modulusE, Poisson’s ration, and the anisotropy
factor a, respectively. Below the limit of isotropy, Hooke’
law can be applied:E'E0 , n'n0 anda'0. On the other
hand, above the limit of isotropy a reduction of Young
modulus is found, along with an increase of Poisson’s ra
and the anisotropy factor. The functional dependence
those parameters on the internal damage parameterd is
evaluated developing their Taylor’s series aroundd50,

E~d!5E~0!1E8~0!d1O~d2!,

a~d!5a~0!1a8~0!d1O~d2!, ~23!

n~d!5n~0!1n8~0!d1n9~0!d21O~d3!.

The coefficients of this expansion are calculated from
best fitting of those expansions. Figures 10 and 12 show
the linear approximation is good enough to reprodu
Young’s modulus and the anisotropy factor. The fit of Po
son’s ratio, however, requires the inclusion of a quadra

FIG. 11. Poisson’s ratio. The dashed line is the quadratic
proximation ofn(d). See Eq.~24!.
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approximation, implying that it has a nonlinear dependen
on the damage parameter~Fig. 11!.

C. Plastic flow

The formulation of the nonassociated theory of plastic
requires the evaluation of three material functions, i.e.,
yield directionf, the flow directionc, and the plastic modu-
lus h. These quantities can be calculated from the pla
responsedẽp(u), as follows.

The yield direction is given by the incremental stress
rectionf with maximal plastic response

udẽp~f!u5max
u

udẽp~u!u. ~24!

The flow direction is defined from the orientation of the pla
tic response at its maximum value

c5arctanS deg
p

dev
pD U

u5f

. ~25!

The plastic modulus is obtained from the modulus of t
maximal plastic response

1

h
5

udẽp~f!u

uds̃u
. ~26!

Reciprocally, the plastic response can be expresse
terms of these quantities. Let us define the unitary vectorĉ

andĉ'. The first one is oriented in the direction ofc and the
second one is the 90° rotation ofĉ. The plastic strain is
written in this basis as

-
FIG. 12. Anisotropy parameter. The dashed line is the lin

approximation ofa(d). See Eq.~24!.
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dẽp~u!5@~dẽp!Tĉ#ĉ1@~dẽp!Tĉ'#ĉ'

[
1

h
@ f ~u!ĉ1g~u!ĉ'#. ~27!

The plastic profilesf (u) andg(u) are shown in Fig. 13.
The first one is approximately the same for all the str
states, and can be well fitted to a cosine function, centere
the yield directionf and truncated to zero for the negativ
values. The last profile depends on the stress value, an
difficult to evaluate, because it is of the same order as
statistical fluctuations. However, the contribution ofg to the
total strain response is negligible. In order to simplify t
description of the plastic response, the following approxim
tion is made:

g~u!! f ~u!'@@cos~u2f!##5@@f̂Tû ##, ~28!

where@@•## defines the function

@@x##5H 0, x<0,

x, x.0.
~29!

Now, the flow rule results from the substitution of Eq
~27! and ~28! into Eq. ~12!,

J~u!ds̃5
@@f̂Tds̃##

h
ĉ. ~30!

The yield direction and the flow direction have been c
culated for different stress states. The results are show
Fig. 14. Both angles are quite different, which is a cle
deviation from Drucker’s normality postulate@20#. Indeed,

FIG. 13. Plastic profilesf (u) ~solid line! andg(u) ~dashed line!.
The results for different stress values have been superposed.
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many experimental results on soil deformation@21# have
confirmed that these angles are completely different. T
Drucker’s postulate is not fulfilled in the deformation o
granular materials, and the main reason for that is the r
rangement of contacts on small deformations, which are
taken into account in this theory. On the other hand, all
sliding, opening, and other micromechanical rearrangem
can be well handled in the discrete element formulati
which is more adequate to describe the soil deformation

The material constants are evaluated from the depend
of the plastic quantities on the stress: the yield direction a
the flow direction can be roughly approximated by straig
lines,

f5f01f08
q

p
,

c5c01c08
q

p
. ~31!

The four material parametersf0546°60.75°, f08
588.3°60.6°, c0578.9°60.2°, andc08559.1°60.4° are
obtained from the linear fit of the data. On the other ha
Fig. 15 shows that the plastic modulus depends on the st
through a power law relation,

h5h0F12
q

q0
S p0

p D qGh

. ~32!

There are four additional material parameters: The pla
modulus h0514.560.05 at q50, the constantq050.85
60.05, and the exponentsh52.760.04 and q50.99
60.02.

The plastic limit surface is given by the stress sta
where the plastic deformation becomes infinite. According
the flow rule @Eq. ~30!#, it is found, looking for the stress
values, where Eq.~32! vanishes,

FIG. 14. The flow direction and the yield direction of the plas
response. Solid lines represent a linear fit.
1-9
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qp

q0
5S p

p0
D q

. ~33!

It is important to point out that the failure surface—give
in Eq. ~13!—does not correspond to the plastic limit surfac
Actually, this matter has already been discussed in the fra
work of Hill’s condition of instability @22# the bifurcation
analysis@23#, which predicts that the instability should b
reached strictly inside the plastic limit surface.

V. CONCLUDING REMARKS

The elastoplastic response of a Voronoi tessellated sam
of polygons has been calculated in the case of monotonic
quasistatic loading. It can be written in a simple form as

dẽ5D~d!ds̃1
@@f̂Tds̃##

h
ĉ. ~34!

The plastic response reflects the nonassociated featur
realistic soils. Here the yield direction and flow direction a
linearly related to the ratioq/p, and the plastic modulus
obeys a power law relation with a weak pressure dep
dence. The classical parameters of elasticity—Youn
modulus and Poisson’s ratio—are not material constants,
cause they depend on the internal damage parameter. T
fore, Eq.~34! is not complete, and it is necessary to inclu
the relation between the internal damage and the exte
load. By focusing on the details of the dynamics of the m
crocontacts, a significant progress may be made in the in
tigation of the continuous models.

FIG. 15. Plastic modulus. The solid line is a power law fit wi
respect to the variablex512(p/p0)qq/q0.
,
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The elastoplastic response leads to the identification
three different regimes which are shown in Fig. 16. Zon
corresponds to the isotropic regime, characterized by sm
plastic deformations and a linear elastic regime. In zone
open contacts are detected, which must be taken into acc
in the calculation of the nonlinear elasticity. Zone III corr
sponds to unstable states so that the stress-strain relation
not be calculated here. The extrapolation of the strain
sponse in this region shows that the plastic strain must h
a finite value just before the instability is reached.

The above observation leads to the open question of
nature of the failure@22#. Numerical simulations on strain
controlled tests show that strain localization is the most ty
cal mode of failure. The fact that it appears before the sam
reaches the plastic limit surface suggests that the appear
of the instability is not completely determined by the mac
scopic state.

The role of the microstructure on the strain localizati
has been intensely studied in the last years@23,24#. Future
work is the creation of samples with different granul
textures—for example, changing the void ratio distributio
and the polydispersity of the grains. Then we can deal w
the question that how does a change in the microstruc
affect the elastoplastic response and the strain localizatio
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FIG. 16. Elastoplastic regimes: isotropic~I!, anisotropic~II !, and
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