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Molecular dynamicMD) simulations in three dimensions have been performed for a fluid with particles
interacting with a continuous version of the Stell-Hemmer core-softened potential that in two dimensions has
been known to reproduce most of the static and dynamic anomalies of liquid water. The pair distribution
function obtained from the MD simulation is extrapolated with the help of integral equation theory with a
suitable closure relation and the bridge function is extracted. A strong dependence of the bridge function on the
system size, i.e., the total number of partic® used in the simulation box is observed, which leads to
spurious values of the structure factor at long wavelengths. A simple self-consistent correction scheme for the
finite size effect has been adopted to correct the bridge function and this scheme produces the correct bridge
function even for a small system size. The effects of temperature, number density, and potential parameters on
the pair distribution functions and extracted bridge functions are extensively studied.
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[. INTRODUCTION dimensional(2D) SH core-softened potential are able to re-
produce various liquid state anomalies. A detailed 2D simu-
Water, the most important liquid on earth, is known tolation study has also been report¢diO] on the same
possess in its properties not only various static anomalies biaroblem. A core-softened potential can be regarded as a first-
dynamic anomalies as wefll—3]. As for example, liquid order approximation to the interaction between water mol-
water exhibits static anomalies such as anomalous densi§cules as suggestédi6,17 by ab initio calculation and in-
maximum[2] at T=4 °C and increase in isothermal com- Version —of the experimental —oxygen-oxygen radial
pressibility upon cooling, and dynamical anomalies such agistribution function. Recent experimental resuft$ reveal
increase in diffusion coefficient or decrease in viscosity withthat Phosphorus, a single-component system, shows a coex-
increase in pressure in certain ranges of temperdtsfe Istence t_)et\_/veen the high-density liquid phase and the IOW'
Such anomalies are manifested not only in water, but in som ensity liquid phase. Very recently a c;ore—softened .potentlal
other liquids[4—-6] as well. Apart from these anomalies, as successfully been usgt®] to explain the mechanism of

liquid-liquid phase separation of a monodispersed pure liqui his liquid-liquid phase separation for a three-dimensional

. ingle-component model fluid. A slightly modified form of
that has recently been experimentally obserigdn phos- the SH potential has also been shown to reproduce both the

phorus is also an interesting phenomenon. Understandingengity anomaly9] and the liquid-liquid phase separation
these phenomena from a microscopic viewpoint is & longhenomen411]. Furthermore, a perturbation theory analysis
standing interest in the liquid state physics and various efgpows a complex phase behavia] of a fluid-solid transi-
forts to mimic these phenomena with some spherically symtion for a modified SH potential.
metric model potentials have already been mi@del2]. The Most of the studies on fluids with particles interacting
core-softened potentigl 3] has so far been shown to be the with the SH potential so far have concentrated on obtaining
most successful model potential in this regard. In a pioneeran equation of state from the computer simulation. However,
ing work, Stell and Hemme(SH) have proposefil3] that a a much easier and computationally economic way of study-
second critical point apart from the normal gas-liquid criticaling the liquid state is the well-known integral equation
point is possible for a core-softened potential that has a retheory[19,20. In this theory, one has to solve the Ornstein-
gion of negative curvature in the repulsive core. Using therZernike (0Z) equation[21] with the help of a suitable clo-
modynamic arguments, Debenedetti, Raghavan, and Borickure relation. The accuracy of this approach depends on the
[14] have noted that a “softened core” in potential may beaccuracy of the closure relation, which in turn depends on
responsible for the density anomaly, one of the anomaliehow successfully one can construct the so-called bridge func-
found in liquid water. An analytical solution of the equation tion that is essentially the sum of diagrams that are free of
of state for a double well SH-type potential in one dimensionnodal circles. In principle, if the bridge function is given
has been obtained by Cho, Singh, and Robifd&hand has beforehand, the radial distribution function and the direct
been shown to yield density anomaly and the correct preszorrelation function of a model fluid can easily be deter-
sure effects on the temperature dependent density. The comrined from the integral equation theory. There have been
puter simulation study of Sadr-Lahijary al.[8] has shown  attempts to arrive at a universig?2] bridge function for an
that the discrete as well as continuous versions of a twoarbitrary pair potential through that of an effective hard
sphere like reference system. Although this concept has been
successful[23,24 in many situations, its applicability has
*Electronic address: skghosh@magnum.barc.ernet.in been rather limited25-27 and several studig8,29 on
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the bridge function have, in fact, included other contribu- 05
tions, thus making the bridge function dependent on the pair
potential in general. One of the important routes to the bridge 0.0F

function for a given pair potential is through computer simu-
lation. As the radial distribution functiofRDF) g(r) ob-

tained from the computer simulation is accurate and devoid
of any approximation to the many-body problem, it can be

u(rye

10 oo
inverted to construct the bridge function in the intermediate ® ®
range accurately. However, the range of RDF obtained from 45 . . .
the molecular dynamicéVD) simulation is limited to only 10 R0 28

@

half of the box length of the simulation cell, where the box
calculating the bridge function due to the truncation error jnepresents that of systef
rro\?
0

- 6)\2 EX[{ - a(;— ;)
have been used to overcome this difficulty. Long ago, Verlet
scheme due to Verlet is modified and appli@d] to extract is the distance at which(r) is zero and is related to the size
However, the problem due to finite size in the computerframeters have been used in the present work. In one case, the
factor, compressibility, and intermediate scattering function2nd Poth the potentials are shown in Fig. 1 as a function of

N1=1.03,\,=0.714285,a=20.0, and = 1.50 for system

the intermediate range. B. Simulation
tained from the MD simulation through extrapolation. The Performed in the NVE ensemble for two different tempera-

length is related to the number of particles taken in the simu- FIG. 1. Plot of core-softened potentialr) as a function of
lation cell, i.e., the system size. This imposes difficulty inr/(r. The solid line representgr) for systemA and the dashed line
the Fourier transform ofi(r)[ =g(r)—1], the total correla- o\12 [ 5\6
tion function of the system. Various extrapolation schemes u(r)=4e\; (7) —(?)
[30] used an extrapolation scheme to obtain the bridge func-
tion of the Lennard-Jones fluid. Recently, the extrapolatiorfor r<r . and vanishes for>r. In the above expression,
the bridge function of the Lennard-Jones as well as emptyof the particle and is related to the depth of the potential. In
core pseudopotential for aluminum in the intermediate rangedll our studies we use.=4.00. Two sets of potential pa-
simulation results for various quantities still remains and aS€cond or the outer well is deeper which we call as sygtiem
correction scheme for obtaining the correct static structurdvhile in the other case the inner well is deejfgystemB)
has been formulated and appliggl] to a model pair poten- the interparticle distance The parameters we use ape;
tial for dense fluid krypton. This scheme has further beerj 0-2882:A2=1.0, «=20.0 andr,=1.50 for systemA and
extended 26] in the coordinate space and applied to the cor-_1
rection of the finite size effect on RDF and bridge function in ="

In the present work, we intend to extract the bridge func- ) ) _
tion of a core-softened SH potential from the RDF data ob- N the present work, molecular dynamics simulations are
MD simulation in microcanonical NVE ensemble is per- tures and number densities. Simulations are started by plac-

formed to obtain the radial distribution function data for the N9 &ll the particles in a cubic box with fcc lattice configu-

continuous version of the SH potential in three dimensions.ration' Periodic boundary conditions are employed in all the

The bridge function in the intermediate range is then calcu:[hree directions. The particle numbefi) in the box are

lated through a self-consistent extrapolation proce(iagé taken to be 864 and 2048. The potential cutoff in all the cases

e . : : as has already been mentioned is set tarf5e4.00. The
The finite size e_ffect_ on the bridge function obtained from elocity Verlet algorithm along with the velocity scaling to
such extrapolation is corrected through the scheme o

B K d Hi P61 In what foll in Sec. || aintain the temperature close to the desired value is em-
aumketner and Hiwataf26]. In what follows, in Sec. llwe o 15veq The systems are equilibrated for over BP time

discuss the model potential and the simulation procedure. 'Eteps whereas the time averages for various quantities are
Sec. lll, we outline the extrapolation scheme along with theézken over % 10° time steps with the time stegf =0.01,
correction scheme for the finite size effect. The results for thgyhere t* = t[ ¢/(ma2) Y2 with m being the mass of a par-
RDF and the bridge function are gathered in Sec. IV. Finallyticie. All the quantities are expressed in dimensionless form,
a few concluding remarks are offered in Sec. V. viz. the temperatur@ is expressed a&* =kgT/e, wherekg

is the Boltzmann constant, the pressies P* =Pd/¢,

and the distance asr* =r/q, etc.

. MODELS AND MOLECULAR DYNAMICS

SIMULATION Ill. EXTRACTION OF THE BRIDGE FUNCTION

A. Model potential A. Extrapolation scheme without correction for the finite size

The continuous version of the core-softened SH potential In order to obtain the bridge function from the RDF gen-
u(r) that we study here is obtained by augmenting an inerated by MD simulation, one has to solve the OZ equation,
verted Gaussian well with the well-known Lennard-Joneswhich for an isotropic and homogeneous fluid can be written
(LJ) potential and is given by as
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the core-softened continuous version of the SH potential in
h(f12)=C(r12)+PJ drac(riz)h(raa), (2)  three dimensions and the results &(r) obtained from this
approach show finite size dependence, i.e., dependence on
wherec(r) is the direct correlation function angdis the bulk  the number of particlel used in the simulation. The finite
density of the fluid, along with a closure relation involving size dependence &(r) obtained from computer simulated
the g(r) obtained from the computer simulation. It is this g(r) and of other quantities such as the static structure fac-
closure that defines the bridge functi@{(r) through the tor, intermediate scattering function, etc. has already been
exact relation betweeh(r), u(r), and the indirect correla- reported and a correction scheme for this firitdhas been
tion function y(r)[ =h(r)—c(r)] as given[19] by devised[31,26. In the following section, we briefly outline
this correction schem81] that we have implemented here.
h(rip+1=exgd - Bu(ri) +y(ri)) +B(r)], 3

where 8(=1/kgT) is the inverse temperature.

The scheme that we have employed in the present work to N _ _ o
extract the bridge function is originally due to VerJ80] and The RDF gyp(r) calculated in a MD simulation in a
modified recently by Kambayashi and Chihdi26]. The closed ensemble like NVE, with fixed number of partids
original extrapolation scheme of Verlet employs an extrapodiffers from the same calculated in an open system where
lation technique for the values of RDF for-L/2, L being is allowed to fluctuate, i.e., in grand canonical ensemble.
the length of the simulation box, in which the Percus-Yevick,Only in the thermodynamic limiN— <, these two functions
(PY) approximation forg(r) for r>L/2 is combined with ~coincide and any difference between these two functions is

B. Extrapolation scheme with correction for the finite size

the simulatedy(r) for r<L/2, viz., known as finite size effect in computer simulation. It is to be
noted that the closure relation used in the present \hicek
a(n=gwp(r), r<Rr, (4 Eq. (7)] utilizes gpyp(r) obtained from the MD simulation
with finite N and thus introduces error in the calculation of
g(r)=exd —pu(n]i1+yr)], r=R, (5 B(r). This finite system RDF can, however, be corrected

following the work of Salacuset al.[31], who have derived
ap expression relating the finite system RB(r) to its
open system counterpagi(r) as follows: The two-particle
density p®)(r,,r,) in the grand canonical ensemble is ex-
pressed afl9]

whereg,'\“,lD(r) is the RDF obtained from MD simulation and

Ris the extrapolating distance that is set as less than or equ

to L/2. The superscrighl on gyp(r) implies that the RDF is

obtained for a closed system with fixéd It is easy to recast

Egs.(4) and(5) in the form of Eq.(3) and use the resulting

equation as closure for the OZ equation that when numeri- %

c_aIIy solved yields simulta_neousg/(r_) andc(r) for the en- p@(ry,ry)= E P(N)p@(ry,r ;N), (8)

tire range and(r) for the intermediate range. Verlet in his N=0

work [30] performed MD simulation and applied this method

to LJ fluid near its triple point. Different schemes for this

closure relation are report¢82,27] in which the right hand Where P(N) is the probability that the system contaihs

side of Eq.(5) is replaced by some better approximation, Particles, anch®(ry,r,;N) is the two-particle density for a

such as hypernetted chaiHNC) or mean spherical approxi- System ofN particles. Expanding®)(ry,r,;N) about the

mations. average number of particlé§ == _,P(N)N] in powers of
In the present work, we have used HNC approximation1/N, one has

for the closure relation in Eq5) in place of PY approxima-

tion used by Verlet:

9(N=guo(r), <R pP(ry,r)= 2 P(N)| p2(ry,r,;N)
N=0
=exg —pu(n)+y(r)], r=R, (6)

. i . . . 0 —
with R=L/2, _the Iarge_st extrapo_latlng distance possible. In +(N=N)—p@(r,,rp:N)
order to obtain the bridge functioByp(r), one has to re- IN
write the above equation with the help of E§) as

1 — & _
Bup(r)=Bu(r)—¥(r)+In[gyp(r)], r<R +E(N—N)thp(z)(rl,rz;N)vL—-- . (9
oN
=0, r=R. (7)

Solving Eq.(2) numerically with the closure relation given o N o

by Eq.(7), one obtaing(r), c(r), andB(r) simultaneously. Using the normalization condition f(ﬁ‘(N),_COﬂSldenng the
The closure relation given by E¢7) has been employed by resultsp®(ry,r,)—p?g(r) andp®(ry,r,;N)—p2gN(r) in
Kambayashi and Chiharf25] for calculating the bridge the uniform limit and relating the coefficients to the com-
function for LJ as well as a model potential for dense kryp-pressibility via fluctuation theory, one arrives at the final ex-
ton. In the present work, we have employed this approach fopression relating(r) with gN(r) as
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S(O) (92 25
—gN s 24N 2 I 3
S(0) J i cisp
—gN 7 N AN 2 N [=)
97 (N+ 5N |29 (r)+4pap9 (r)+p 9p29 (], 10}
(10 05
i : 0.0 L— . .
whereS(0) is the value of the static structure fac®(k) at 0 1 2 .8 4 5
k=0 and is related to the compressibility. Equatid®) is a 25
standard relation for transformation between ensembles with ool 5
correction term of order N. As the correction term above '
contains density derivatives, a precise solution of Q) by c15F
MD simulation is possible only through performing the ok
simulations at several densities, which is not only an imprac- '
tical choice but in some cases, even infeasible. Thus, by 05
neglecting the density dependencegd{r), Eq.(10) further 0.0
simplifies to 0

N S(0) N FIG. 2. Plot of the radial distribution functiog(r) vsr/o for
g(r)=g~(r)+ N 9 (r). (1) systemA atT* =1.5 (upper panéland T* = 1.0 (lower panel. The
solid line represents results fpi* =0.6 and the dashed line repre-

The expressioll1) for the correction ofyN(r) for finite size sents those fop* =0.8.

can be utilized to correct the simulation RDF provids®) o upper panel of Fig. 2. In both the cases, the first two

is known. Equatior(11) cannot be employed as such SInCemajor peaks correspond to the two wells in the potential. In

(0) is not knownz_a priori. However, the fact tha§(0) is . _the case of lower densify* = 0.6, the first peak is reduced as
related to the Fourier transform of RDF through the relat'oncompared to that fop* =0.8 but the height of the second
peak due to outer well is increased. It indicates that at lower
3(0)24ij [g(r)—1]r?dr (12) density (pressurg the second well is relatively more popu-
lated in comparison to that in case of higher dengjses-
sure. This “split first peak” behavior is characteristic of a

makes it possible to construct a self-consistent Iterat'v%ore-softened potential that generally has two characteristic

scheme forNcaIcuIating the bridge funchEion from the Simu'Iength scales. Similar behavior is also obser{88] in the
lated RDFgyp(r). The simulation RDRJMD(,S) is first COr- :ase of an overlapping core potential modeling star polymer
rected through Eq(11) and the correctediyp(r) is then  j, good solvent. In order to study the effect of temperature,
substituted into the closure relatior) and the OZ equation jn the lower panel of Fig. 2, we have shown the results for
is solved numerically with this corrected closure. The result—g(r) at a lower temperaturé* =1.0. From a comparison of
ing g(r) is then transformed according to EG2) to calcu-  the two cases, it is clear that with decrease in temperature,
late the new estimate f&(0) and the whole cycle is iterated the outer well population increases at lower density while it
until a desired convergence between B@)’s from two s the inner well population that shows more increase at
successive iterations is achieved. Finally, we obt{n), higher density.

$(0), g(r), andc(r) for the entire range for a given pair By inverting these computer simulatggr) data, we have
potential. This method when appli€26] to the pair potential  extracted the bridge functions using the schemes mentioned
modeling liquid sodium has been shown to correct the bridggn Sec. 11l and the results are plotted in Fig. 3. The uncor-

function for finite size effect. In the present study, we employrectedB(r) that we denote aB(r) as obtained through the
this correction scheme to obtain the corrected bridge funcscheme depicted in Sec. 11 A from(r) of MD simulation

tion for a fluid interacting with the continuous version of the corresponding toN=864 particles forT*=1.5 and p*
core-softened SH potential by inverting the RDF data ob-—q g is shown in Fig. 3 along with the same fdr=2048

tained from MD simulations. particles. It is clear from the figure that there is a consider-
able difference between these two results, which can be at-
IV. RESULTS AND DISCUSSION tributed to theN dependence of the bridge function. These

B(r) values have been correctpahich we denote aB(r) ]
according to the scheme described in Sec. 1l B and are plot-
The simulation results fog(r) obtained from the MD ted in the same figuréFig. 3) for N=2048 as well aN
simulation ofN= 2048 particles for various temperatures and= 864 particles. These two correct&d(r)’s are very close
densities are shown in Fig. 2 for the potential parameterso each other and also to the uncorrect®t(r) for N
corresponding to syster (see Sec. Il A for the values of =2048 particles. Thus, the correction of the bridge function
potential parameteysThe RDF afT* = 1.5 for two different  is most essential when we extract it from th@) obtained
number densitiep* (=po>)=0.8 andp* =0.6 is plotted in ~ from a simulation with smaller number of particles. As

A. Results for systemA
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0.00

t/'c

FIG. 3. Plot of corrected and uncorrected bridge functions for

systemA at T*=1.5 andp*=0.6 extracted from the(r) data
obtained from MD simulation with various values Nf the number
of particles used in simulation. The dashed line repres@¥{ts) for
the N= 864 particle system, the dotted line represéfts) for the
N=2864 particle system, the dash-dot-dot line represBt(s) for
the N=2048 particle system, and the solid line repres&i(s) for

0.1

B(r)

the N=2048 particle system. In the inset, the same plots are shown

for a larger range.

FIG. 5. Plot of the bridge functioB(r) vsr/o for systemA at

PHYSICAL REVIEW E 66, 021206 (2002

r'c

T*=1.5 (upper paneland atT*=1.0 (lower panel. The dotted
shown in the inset of Fig. 3, the uncorrected bridge functiondine represents results fa* =0.8 while the solid line corresponds
have a plateau extending from intermediate the extrapo- to the same fop* =0.6.
lation distanceR where it drops down to zer¢see inset
This trend is observed even for the case of 2048-particl
system where the plateau extends to larger valuestdbw-
ever, the corrected bridge function for thie= 2048 particle
system does not have this plateau region and smoothly e
trapolates to zero. It is to be noted that although the correcte
BC(r) for N=864 is very close to that foN=2048, it still
has a plateau region extending over a small region up to
=4g.

Now we discuss the effect of finite size in simulation on
the various structural quantities, namegyr) and S(k) ob-

tained from the extrapolation of the simulatgdr) data. e : .
P edr) = 2048 almost coincide with each other everywhere includ-

Although we have not shown here tigér) obtained from | th . ¢ I tok | h h
simulation, the same obtained from uncorrected extrapola'—ngI e region of small wave vectokg) values, whereas the

tion method for eveN =864 particles and the corrected one _uncorrectecS(k) data forN =864 shows spurious maximum

in this long-wavelength region. For clarity, we have not
shown in the main figurébut have shown in the ingethe

are, in fact, almost indistinguishable. This is understandable
also from the correction terfr5(0)/N]g(r) that has a value
of the order of 10* at larger, whereg(r) assumes the
)g_symptotic value of unity and is thus too small to be visible
heng(r)’s are plotted. In order to investigate the effect of
inite size on the static structure factsfk) or the sensitivity
of S(k) on the details of the bridge function, in Fig. 4, we
have shown the calculated static structure factor obtained
from the extrapolation of MD RDF data at* =1.5 andp™*
=0.6 with and without the correction due to the finite size
effect. The corrected data fdl=864 as well as forN

2
0.4
25
20F
15 I
1.0
05}
0.0
0 L L L 0 r'c 3 5
0 5 10 15 20 30
ko -
25F
FIG. 4. Plot of static structure factor as a functionkaf ob- ~20F
tained from the extrapolategi(r) data with and without the finite =) sk
size correction foiT* =1.5 andp* =0.6 and various values d. I
The solid line represent§(k) for the N=864 particle system with- 1.0
out correction, the dotted line is for ti= 864 particle system with 05
correction, the dash-dot-dot line represe8(k) for the N=2048 0.0l
particle system without correctidshown in the inset only and the 0

dashed line represents the same for fhe 2048 particle system

with correction. In the inset, all four plots are shown for the small

ko region.

r'c

FIG. 6. Same as in Fig. 2 but for syste®n
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3 4 5
! 1 r'c
3 4 5
/e
FIG. 7. Same as in Fig. 3 but for systdnand except that the
uncorrectedB'(r) for the N=2048 particle system is not shown =
here. @
uncorrectedS(k) data for N=2048, which coincide with
other data except at lowo values where these data also L !
3 4 5

show a slight spurious maximum but with smaller deviation

from the corrected value as has been shown in the inset.
In order to study the effect of density and temperature on FIG. 8. Same as in Fig. 5 but for syste®n

the bridge function, we have shown in Fig. 5 the corrected

bridge function of theN =2048 particle system for densities =2048. The corrected values Bf(r) for the two densities

p*=0.8 and 0.6 at temperatur@$ = 1.5 (upper panel of the p*=0.8 and 0.6 for th&\=2048 particle system are shown

figure) and T* = 1.5 (lower panel of the same figureAt a  in Fig. 8 for the two temperaturés® = 1.5 and 1.0. Here too,

particular temperature, larger oscillations B{r) are ob- the oscillation ofB(r) at higher density is higher as com-

served at higher density as compared to lower density and prared to that at lower density.

may be noted that at higher densiB(r) passes through a

positive maximum at lower/ o values. The nature @&(r) is V. CONCLUDING REMARKS

similar at low temperature as well, but the oscillations are

more at lower temperature indicating a larger deviation from e have presented a MD simulation study for the radial
the standard HNC result. distribution function of a fluid with particles interacting with

the continuous version of a core-softened SH potential in
three dimensions. Extrapolation of these computer generated
RDF's of finite range with the help of integral equation
Same set of resulfexcept plot forS(k)] for the param-  theory has been carried out yieldingr), direct correlation
eters corresponding to systeBn(see Sec. Il A for the values function c(r) for the entire range and the bridge function
of potential parameteysare also shown in Figs. 6—8. The B(r) has been extracted in this process of extrapolation. The
values ofg(r) obtained directly from the MD simulation for bridge function thus generated is found to depend strongly
the N=2048 particle system fof*=1.5 and forp*=0.8  on the system size. Although the finite size effect has a little
and 0.6 are shown in the upper panel of Fig. 6, wii{e)  effect on the RDF’s, the values of the static structure factor
for the same two densities but at a lower temperaiife  S(k) at smaller wave vectors are found to be strongly af-
=1.0 are plotted in the lower panel of the same figure. In thifected by the finite size of the system. The bridge function
case, due to smaller depth of the outer well in the pair poextracted for this core-softened potential will be helpful in
tential, the peak due to this well at aroun@d= 1.5, which is  studying this system through integral equation theory, com-
distinctly seen in theg(r) of systemA, is not visible and putationally a much more economic way as compared to the
instead just a shoulder appears around this region. As exsimulation study. Further studies on this system are in
pected, the oscillations ig(r) are more at higher density progress.
due to stronger packing effect.

r/c

B. Results for systemB

As in systemA, the finite size effect on the extracted ACKNOWLEDGMENTS
bridge function is manifested here too as shown in Fig. 7 for
T*=1.5 andp* =0.6. The values of the correct&{r) for It is a pleasure to thank Dr. T. Mukherjee and Dr. J. P.

N=864 are very close to the correctdsi(r) with N Mittal for their kind interest and encouragement.
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