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Orientational dynamics of ferrofluids with finite magnetic anisotropy of the particles:
Relaxation of magneto-birefringence in crossed fields
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Dynamic birefringence in a ferrofluid subjected to crossed @asstant and probing(pulse or agfields is
considered, assuming that the nanoparticles have finite magnetic anisotropy. This is done on the basis of the
general Fokker-Planck equation that takes into account both internal magnetic and external mechanical degrees
of freedom of the particle. We describe the orientation dynamics in terms of the integral relaxation time of the
macroscopic orientation order parameter. To account for an arbitrary relation between ttextsiasal and
anisotropy(interna) fields, an interpolation expression for the integral relaxation time is proposed and justified.

A developed description is used to interpret the measurements of birefringence relaxation in magnetic fluids
with nanoparticles of higlicobalt ferrite and low(maghemite¢ anisotropy. The proposed theory appears to be
in full qualitative agreement with all the experimental data available.
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[. INTRODUCTION crystallographic, shape, and surface anisotropies. For a dilute
MF in equilibrium, an exhaustive description of the macro-
Dynamic field-induced birefringence is a well-known ex- scopic properties, including the orientational-optical ones, is
perimental tool to study magnetic fluidsiFs), see Ref[1],  achieved by substituting the energy in the Gibbs distribu-
for example. The majority of the known facts agree with thetion function.
hypothesis that the ferrite nanoparticles constituting the solid In a dynamic situation the induced orientational order
phase of a MF have a slightly anisometric shape. This inferéand, consequently, birefringencef a MF evolves with the
a simple generic mechanism of the field-induced birefrin-response time) of the particles. The appropriate theoretical
gence. The external field orients the particle magnetic moapproach was developed in RE2]. On equal basis it takes
ments, and, via them, the particles themselves, thus estalto account the effects of both intern@hagneti¢ and ex-
lishing in a MF an orientational order. Therefore, a systemternal (mechanical orientational relaxations of the particles
which (due to the Brownian rotary motion of the partigles on the birefringence in a MF. Besides uniting several former
was isotropic in the field-free state, acquires a macroscopiapproximate models of Refg3—5], the new theory covers a
uniaxial optical anisotropy. Since the magnetic moments of/ariety of intermediate cases formerly unaccessible. The par-
the particles are much greater than atomic or molecular oneticular problem considered in RdR2] was the birefringence
the resulting birefringence by several orders exceeds thaduced in a MF by a linearly polarized weak ac field. In the
usual Cotton-Mouton effect in liquids and is observed andpresent study we extend the theory to the case of a MF sub-
registered easily. jected to a combination of mutually perpendicular constant
The description of the orientational mechanism of MF(biag and pulse or a¢probing magnetic fields. This con-
birefringence is based on the orientation-dependent magnetftguration has been recently realized experimentally and
energy of a single-domain particle subjected to a magnetitested for both highly anisotropic and low-anisotropic ferrites

field H=Hh, that is, in a wide range of bias-field strengtf&). On the basis of the
developed theory we analyze the obtained field strength and
U=—IV H(e-h)—E,(e-n)? (1)  frequency dependencies of the dynamic birefringence.

The paper is organized as follows. Section | presents
wherel is the magnetization of the particle substance@isd  some reasoning on the problem and introduces the general
the unit vector of the magnetic moment, i.qu=1V €,  Fokker-Plank equation that accounts for the joint orienta-
where V,, is the volume of the ferromagnetic core of the tional motion of the mechanical and magnetic degrees of
particle. In highly dispersed systems, like MFs, due to thefreedom of a particle with finite magnetic rigidity. In Sec. Il
surface effect¥, is smaller than the total physical volure  an account on birefringence in a MF of magnetically hard
of the grain. In Eq(1) E,>0 is the energy of uniaxial mag- (infinitely rigid) nanoparticles is given and the concept of the
netic anisotropy, and the unit vector of the easy axis. There integral relaxation time is introduced. Section Il is the main
exist at least three well-proven sourcestf: volumetric  theoretical one. There the dynamic birefringence in a MF

with particles of finite magnetic anisotropy is described in
terms of a singldintegra) relaxation time and a method for

*Corresponding author. Email address: raikher@icmm.ru its approximate evaluation is proposed and justified. Section
TAlso at UniversiteDenis Diderot(Paris 7, UFR de Physique, 2 |V discusses the obtained results and their comparison to the
place Jussieu, 75251 Paris Cedex 05, France. experimental data available. The paper ends by overall con-
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clusions and contains an appendix, where the main matrix 18=39VIKT, 75=37,Vn/KT, 2
equation, too long to be included in the text, is given.

where 7 is the viscosity of the carrier liquid, aridT is the
Il. GENERAL CONSIDERATIONS temperature in energy units. If one conventionally describes

In MFs the phenomenon of dynamic birefringence, a the motion of the particle magnetic moment by the Landau-

: . ) ifshitz equation, the “magnetic viscosity” in Eq2) writes

compared to conventional molecular optics, is somewhat ~ . . .

. . . . S =1/6ay, wherey is the gyromagnetic ratio for electrons
unique. Indeed, a single-domain particle of nanoscopic siz&™ . : d . .
is superparamagnetic. That means that its magnetic momeﬁ?da the d|men3|onle§s ratg of spin-lattice relaxation.
is not rigidly bonded to the anisotroffand thus, geometric Le_t us define the orientation order parameter of a suspen-
axis but is subjected to internal rotary diffusion. Hence, theoonmna tensor form as
response of a MRas an assembly of such partidlde an
external field is a combination of two relaxational processes. 5ik:§
One is the orientation of the assembly of magnetic moments 2
M, i.e., the magnetization of the suspension. The other is the
orientation of the particle axes, which strive to minimize assuming that the easy axis of the particle coincides with its
the magnetic anisotropy energy by their mechanical rotatiomptical axis. In a dilute suspension, the tenSgris propor-
towards the new position gfi. This latter motion is in fact tional to the refraction index tensor and, thus, determines the
the direct cause of birefringence. optical anisotropy of the particle assembly. Accordingly, the

Being of different origins, those relaxational processesangular brackets in Eq3) denote statistical averaging with
have different time scales. For the magnetic degrees of freghe orientational distribution functiolV(e,n,t) of the par-
dom in the absence of an external field, it is the time ofticle. The evolution of this function is given by the extended
internal superparamagnetic diffusieg . For the mechanical Fokker-Planck equation, whose configurational speea is
ones it is the time of mechanical rotary diffusiog of a  a direct product of two two-dimensional vector spaces. This
particle in a carrier liquid. Remarkably, both parameters carequation was derived in Reff8—-10] for arbitrary 75 and
be presented in a similar forfiT], 7p . In the absence of a bulk flow of a MF it reads

1
(nin = 3 ik |, 3

d N 1 . . oA 1. .
W I QW= =— (3ot I )W( I+ 3,) + =—3 W3t (UIKT+InW). (4)
at 2’TB ZTD

HereJ.=(ex d/de) andJ,=(nXx a/dn) are the operators of Where c=E,/KkT is the height of the potential barrier of
infinitesimal rotations in the corresponding vector spacesiagnetic anisotropy scaled with temperature. For the distri-
and the precessiofLarmon frequency of the magnetic mo- bution function of the external rotations one gets
ment is defined in a vector form as IW

n

215 — =J2W,, (7)

Q =—(y/IV)(dU/de).
which is a standard rotary diffusion equation. Both E@S.
In the absence of an external magnetic field, the solution ofnd(7) are well known in the theory of the rotary Brownian
Eq. (4) factorizes as motion. The eigenfunctions of Ed7) are the “external”
spherical harmonics, i.e., the functions of the angles that vec-
tor n makes with some axis of the laboratory coordinate
W(en,t)=We(e n,t)Wy(n,1), (3 framework that is defined by a unit vectar
where W, is the orientational distribution of vecta with Wo(8,¢,t)=>, XM(n,2exd —I(I+1)t/7g].  (8)
respect to the anisotropy axisand W, is the orientational
distribution of vectom with respect to the laboratory coor-
dinate framework. For representati¢f) the equations that
govern the distribution functions separate and become sel
contained. The equation for the internal degrees of freedom 1

2 21+
's Wel0,9,0=2 2 bim(t) =

For the solution of Eq(6) the basis of “internal” spherical
parmonics

(I=[m)!

T+ [mp! X™ (en) 9

27 &&—V:/e=jeweje[—(r(e-n)2+lnwe], (6)
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was proposed in Refi11]. In Egs. (8) and (9) symbols ll. HARD-DIPOLE PARTICLES
X{"(a,b) denote the so-called non-normalized spherical har-

. . First, we consider a crossed-field birefringence in the
monics defined as

framework of a simple model, where internal magnetic de-
. o img grees of fr_eedom are “_frozen," i.e., for the_case of hard-
Xi'(a,b)=P(cosx)e'™”, (10 dipole particles. This limit means that we &&¢in Eq. (1) to
infinity, or, equivalently, see=n in the energy(1) reducing
where P[" are the associated Legendre polynomials. Thet to
anglesa and g are the coordinates of the unit vectin the

spherical framework with the polar axis set along the unit U=—puH(eh), (15

vector b. Functions(10) are connected to the conventional,

normalized, spherical harmonics by the relationship where the value of the particle magnetic momgnt IV, is
assumed to be constant. The stationary distribution function

2141 (I—|m[)! of an assembly of noninteracting magnetic moments in a
Y'=\/——— 7 X". (11)  constant fieldH,=Hgh is determined by the Gibbs expres-
4 (1+|m])! :
sion
As soon as a magnetic field is applied, it couples the &
internal and external degrees of freedom of the particle, and Wy(e)= mexqgo(e h)1, (16

the variables in the kinetic equatigd) become inseparable.

Due to that, the solution should be constructed in the func- ) . . . .
tional space formed by direct products of the “internal” and where the Langevin argument associated with the bias field

“external” harmonics. A suitable representation for this case o is
is

o o K

2D = |m])! For the hard-dipol the Fokker-Planck i

_ mm’ pole case the Fokker-Planck equatin

w(e,n.t) Zl |§1 mzl,Q"" (1) 471+ |m|)! reduces to
@'+10' =m'hr i . .U
XX™(en) PRy X[7*(n,h), 275 — W=IWJ ﬁ+|nw>, (18)

(12 where the distribution functiolV(e,t) does not depend on

where the time dependence is now determined by the fouf!'€ anisotropy parameters and the rotation operatod is
index coefficients =J.. Denoting the spherical coordinates of the unit veceors

andh as (@, ¢) and (0,0), respectively, one expands the
solution of the kinetic equatiofil8) in spherical harmonics

Q™ () =(XP(emX]) (n,h)). 13 s
Note that vectoth, being imposed in the laboratory frame- co ! 2l+1
work, in a natural way takes the place of the formerly arbi- W(,0,t)=>, > b|,m(t)ﬁ
trary unit vectorz in the subset of the “external” harmonics. 1=0 m=-1
Substitution of expansiofil2) in Eq. (4) and subsequent (1—|m|)!

integration with respect teandn, results in an infinite set of X™ (eh), (19

differential recurrence relations from which the coefficients

m,m’ .
Q- may be found by a numerical procedure. The generalyhere the variables are separated and the time dependence is
form of the emerging set of equations is given in the Appenetermined by the functions

dix. The quantity of our main interest there is the equation of
motion for the element bllm(t):<le(Cosﬁ)eimzp>’ (20)

(I+]ml)!

Q81%2<3 cosid sind cose), (14 with the angular brackets denoting statistical averaging with
the distribution functionW found from Eq.(18). Note that

which is the spherical representation of the only componenfor hard dipoles, due to the reduction of the configurational
of the orientation order paramet®) excited by the probing space, we use a two-index notatibp,, instead of the gen-
field in the crossed-field configuration. As mentioned, it iseral four-index one defined by E¢L3).
proportional to the observed birefringence. Accordingly, its As the probing fieldH is perpendicular to the bias field
square is proportional to the registered intensity of the transH,, the only nonzero perturbations are the functidms,
mitted light. which may be found from the chain-linked set
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d & ) ) timode processes is to use the so-call@egral relaxation
27'Bab|,1+|(|Jrl)bu— m[(”l) b_11—1°biy11]  time (IRT). For a decay process it is defined as the time
integral of the response function under study taken from the
[(1+1) momentt=0 to infinity and divided by the value of the
:m[(l+1)|—|—1(§0)+|L|+1(§0)]§: (21) relaxing quantity at=0,

obtained by substitution of expansi@i®) into Eq.(18); here 0 [
&= pH/KT should be regarded as the dimensionless probing Tint= [0 2(0) ] fo b1 dt. (25)
field. Of the whole sefb, ;} the issues of main interest are its

first two components. Indeed, ; is the spherical represen- " it of is that it i buti
tation of the normalized magnetizatigperpendicular té,) A significant merit of IRT is that it incorporates contr'l utions
of all the modes of the system spectrum. As mentioned, the

while b, ; is the spherical component of the orientation order=" ; .
21 P b ubjects of our interest are the modes withl (vecto) and

parameter which is responsible for the optical birefringenc : -
excited by the probing field. ‘f:z (second-rank tensprApplying definition (25) to the

transient processes described by Egd), we find

A. Weak bias field 5
Throughout this study we use the linear-response theory, M=rg, D=—rg. (26)

assuming that the probing field is weak in the sense that the 6
ratio = uH/KT is always much less than unity. As the start- ) ) ] ) )
ing point we set the bias to be weak as well, &g+ £<1. Itis worthwhile to remark once again the difference with
Expanding the matrix s¢21) to the next-to-the-lowest order the case of a field-freefg=0) system, where all the relax-
in the field strengthgwhich means that we neglett ;, ation elg_enmodes decouple. Th_ere t_he integral times coincide
¢b, 4, £2b, 4, etc) we arrive at a closed set of two equétions,W'th the inverses of the respective eigenvalues and instead of
’ ' Egs. (26) one hasr{})=rz and 7{%)=r5/3. Formally this
d 9¢, means that in a field-free system birefringence decays 2.5
TBabl’1+ b; 1=0, TBabz'ﬁ 3by1— Ebl,lz 0, times faster than in a system with an applied bias field, how-
(22)  ever weak the latter is. This is a well-known paradox in
orientational optics of dipolar systems found and elucidated
which ties up the increments of magnetization and orientaby Ullman, see Ref[12]. Not repeating the exhaustive ex-
tion. The initial conditions for this set are taken in the form planation given in the original paper, we just remind its key
point: with £,—0 the initial condition(23) for the orienta-
_2 _2 tion order parameteb, ; also tends to zero. In other words
b11(0)=3¢& b21(0)= z&&o, (23 para 2.1 N >
’ 3 ’ 5 at £,=0 there is no linear contribution in birefringence, this
. : . ) rapidly decaying mode does not exist with@dt In the zero
which means that the system dwells in equilibrium in they;sq fie|q fre case the birefringence expansion begins with

presence of Fhe crossed fieldlsand H, until the _momemt_ the term quadratic in the probing fief] and this perturba-
=0 whenH is turned off. For the corresponding transient ;- indeed decays with the timay/3.

process the solution of Eq&2) is

by (1) 2§ i B. Arbitrary bias field

==¢§e YT ,
bt 3 If the bias field is not weak, the evolution of ary
becomes a multimode process. However, for the vector

_ = —t/7, —3t/r (magnetization mode a good single-time approximation is
b24(1)= 7p¢éo(3e T ). (24) provided by the expression
Thus, one sees that the vector mduig coincides with the (1) 2L4(&)
eigenmode of the séR2), while the tensor mode, ; turns Teff :fo— L(&) 7B (27

out to be a superposition of two eigenmodes. Moreover, it

e e g eried n REf[13] hereL, i th Langevin fncin.
P P ' Let us obtain a similar characteristic for the tenmien-

o e e re{on order parametemod using he concept of e e
Agnetz o g . ral relaxation time introduced by E(5). To do that, it is
quite a time ago in the molecular electro-optics, see the rez

. T convenient to perform time integration of E@1). Setting
sults of Ref.[12], where an obvious substitution of magne- _ . ! .
tization instead of electric polarization should be done. there¢=0 (the probing field switched off one gets
As follows from Egs.(24), even in a weak bias field,

relaxation of birefringence is a multimode process. The more _ B &0 2 2
so this applies to the cases where the bias field is finite. A278b1 (0 =10+ 1)F (21+1) [0+ D)1= 1Rl
simple and convenient way to characterize and compare mul- (28
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1 T/ T peraturesthe limit of the integral relaxation time of birefrin-
gence isr{2)=575/6, as given by Eq(26). This results from
transforming via Eq(25) the superpositiori24) of the two
eigenmodes of the s€R2). At £,—0 the decay timesin-
verse eigenvalugof these modes are, respectivety, and
7g/3; their relative weightgcomponents in the eigenvector
space in the tensor modd, ; are 3/4 and 1/4(As men-
tioned, in this approximation the first eigenmode coincides
with the vector modeb, ;.) Under the bias field, both the
eigenvalues and eigenvectors change, causing the changes of
the integral times. In Fig. 1 the curve rendering thede-

FIG. 1. Comparison of the characteristic relaxation times.pendence of the_ intelgral rel_axation time for the first e?gen-
Dashed curve, the effective relaxation timg) of magnetization ~Mode and the linery) practically overlap. The relaxation
according to Eq.(27); thin solid curve, integral relaxation time time of the second eigenmode is shown in Fig. 1 by a
#Y=F,/b; (0) of magnetizationmodehb, ,); thick solid curve, dashed-dotted line. Monotonically witfy, the contribution
integral relaxation timer{? of the orientation order parameter Of the first eigenmode to the tensor mdug, grows so that
(mode b, 1); dashed-dotted curve, relaxation time of the secondat highé&, (high magnetic fields and/or low temperatyreee
eigenmode of Eq(21). integral time of orientation approache§, and 7} so that

all three curves unite at the same asymptotg /&,. There-
where we denote fore, one concludes that in a suspension of hard dipoles un-
. der the crossed-field configuration with the decrease of fluc-
F|EJ' b, dt (290  tuations the relaxation rate of the orientatidnrefringence
o ' coincides with that of the magnetization.

The left-hand side of EJ28) is built of the initial condition,
i.e., is determined by an equilibrium average over the initial V. DIPOLAR PARTICLES WITH FINITE MAGNETIC
state of the system, where boith, andH exist. For small ANISOTROPY

probing fields, expansion with respectggields Now we proceed to the principal issue of the study: the
by 1(0)=1(1 + L)L (£0) (&l &), (30) dynamic birefringence in an assembly of nanoparticles with

finite magnetic anisotropy that is subjected to a combination
wherelL, is the Langevin function of order defined as of a constant(biag and a pulse or a¢probing magnetic
fields. This case is described by the general Fokker-Planck
i (t ) equation(4) whose solution is presented by expansitg).
L=2, J_1P|(x)exp(§0x)dx, Z =sinh&y/&. As mentioned at the end of Sec. II, we focus on the equation
for the orientation order paramet Oé. Extracting the per-
With the same accuracy i&, the coefficients, defined by  tinent line from the pomplete set of matrix equations, see Eq.
Eq. (29 may be presented in the forfy=¢f,, where now (A1) of the Appendix, we get
functions f(£&y) do not depend org. Then the set28) re-

writes as d &
L . 275 1 Q02+ 6Q0%— £ (9QYT+9Q1 T 4Q75+6Q19 =0.
1(80) S0 2 33
27gl(1+1) % [(1+1)f, (2|+1)[(|+1) fi1 (33
—12f,, 41, (31) As in the above, we assume that the actual relaxation

process is a switch off of the probing field so that the system
and is solved numerically by the continuous fraction methodevolves from the equilibrium state, where bdtly and H
as described in Refl14]. For =2, the integral relaxation existed, to another equilibrium, where oty remains. The
time (25) in view of Eq. (30) takes the form corresponding initial condition in a suspension of particles
with a finite magnetic anisotropy is

T?ﬁt)=6f e . (32
2(&o) Q3K0)=6S,(0) Lol £0) (/o). (34)

Since the orientation relaxation timé?) was derived in the

linear-response approximation, E82) is equally appropri- cf. Eq. (30). Here S, is the “intraparticle” order parameter

ate for the situations where the probing field is turned on. that describes the orientation of the amisvith respect to the
The numerical results for the integral relaxation times agnagnetic momengé. One may also say th&, is the order

the functions of the bias-field strength are presented in Figparameter in a suspension where the particle magnetic mo-

1, together with the effective dipoleecton relaxation time  ments are perfectly aligned by an infinitely strong magnetic

(27). One sees that at smal} (weak fields and/or high tem- field. A simple representation f@&, is
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3/d 1 1 From Egs.(37) and(40) one sees that with respect to the
Szzi(am R— §), R(o)= fo exploy?)dy, (35 fields the orientational order parame®f3 scales asé.

The sum Q¥1+Q1Y), which scales as, enters the equation
which follows from the general definition for Q93 multiplied by & and plays there the role of a driving
force. Therefore, both magnetization components, longitudi-
nal and transverse with respect to the anisotropy axis, affect
Qgé. This fact is easy to understand if one recalls that in our
study the laboratory framework is built on the directions of
the bias and probing fields and not on the internal axes of the
particles. Entering the equation in a symmetrical way, the

Let us start with the case of a weak bias field. Estimationsnagnetization modes have different relaxation properties as
by the order of magnitude show that in this limit in E§3) follows from expression$38) and (39).
the termsQ, 5 should be omitted, so that the mo@g; re- Let us first consider the motion @;7%. From Eqgs.(35)
mains coupled t®?7 and Q1. The equations for the latter and (39) it follows that ,; never exceedsp, . In turn, the
follow from the general matrix equatioff\1) and were de- latter is rather short in comparison witly . Thence, accord-
rived in Refs.[9,10]. Uniting all the equations, we get a ing to the second of EqY38), the relaxation timer, is
closed set that describes dynamic birefringence in thalways of the order of or less(for o>1).

1
Sp1= Rflfo Pa(y)exploy®)dy. (36)

A. Weak bias field

crossed-field configuration, The effect of motion of the compone@17 is quite dif-
q d ferent due to the time that enters the expression fay.

. 0,1 . . _

7 an’i+ Q¥i=0, TLaQ%,gJF Q=0 Recalling thatQ;'; characterizes the perturbation of the par

ticle magnetization that is parallel to the anisotropy axis, one

d o recognizes inryy at o>1 the activation-type time of the
27—t 60%1= 220 (901 QLY. 3 Neel superparamagnehsm. Due .to the exponential depen-
"8 iRz 6Q02= 5 (Qix Qi S dence,r;o changes dramatically with temperature and, as the

o . _latter goes down, passes from a fast isotropic diffusion of the
Here the relaxation times are the effective parameters incOector e, where 4~ 75, to the regime of completely

porating contributions from the diffusion with respect to both frgzen-in magnetic momentr{,—). In the intermediate
external(mechanicaland internakmagnetig rotary degrees  temperature range;, may become comparable withs,

of freedom of the particles. They are defined as thus changing considerably the effective time However,
due to the exponential factor in the functieg, the range of
comparability is very narrow. In other words, almost always
For them simple but fairly good approximations have beerPMly one of the two regimes is possible: eitheris small

developed. In particular, we take yielding 7o~ 7p that leads tor~ rp <75 or o is large, and
one hasrj~7g.

-1_ -1, -1 -1_ -1, -1
T T=Tg tTio, T =Tg TTi- (39

e’ —1/( Jmo -1 Solving Eqs(37) with initial conditions(40) for a switch-
=D —5— m+2"1) , (39  off process, one finds

1 3x|m 6x,. 7
T11= 2T —1_82 Qg:%(t)=§ §§0(3TE7”' i+ 37, — v
11 D 2+SZ, | B 1 B
3x|T 6x, T B
as proposed in Ref§l5] and[8], respectively. +(25,— 37_”l 7”_8 ~3, l_j_B e 3 TB}. (42
1

The initial conditions for the s€B7) determined with the

appropriate accuracy write The limiting cases of Eq(42) can be considered using the

. 2 o 4 o 2 relations
QUI0)=3x¢ QuA0)=3x.& QA0 =S,

=7, =71 for o<1,
(40) I 1 D

where the components of the particle magnetization are pre- =78, T.=7p for o>1. (43

sented with the aid of the corresponding static magnetic su

ceptibilities: ﬁn particular, one finds that at— < formula(42) transforms

into expressior(24) obtained for a MF of magnetically hard
1 1 particles if one setb, ;= QJ3.
X”=§(1+282), XL:§(1_SZ)' (41 The integral relaxation time for the process described by
Eq. (42) is found via definition(25) and writes

The indices here refer to the direction of the probing fidld Py
with respect to the anisotropy axis of the particle. Note also T(%):E JANTEXRT Ts XM (44)
that thus define¢y do not depend on the bias field. mo3 25, 3 25
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14 T, We remark that the approximation we deal in allows in

] full for the fact that the profile of the magnetic potential
energy of the particle consists of two wells of equal depth,
and the magnetic moment may occupy either of them. In
other words, both the interwell and intrawell transitions of
the magnetic moment are accounted for. On the other hand,
the effect of the external field on the particle potential energy
is neglected here.

0.2
o B. Strong bias field

Another limiting case is the one where the bias fidlglis
strong and, in particular, stronger than the anisotropy field

FIG. 2. Integral relaxation time under weak bias field as a func-H,=2E,/1V,,. Under this condition, the profile of the mag-
tion of o by Eq. (44), horizontal asymptote is{-/75=5/6; for an  netic potential energy of the particle has only one minimum.
explanation of the behavior in the smallrange see the text. This justifies the possibility to take the solution of E4) in

the form of a trial function

where the last simplification is justified due to the smallness
of x, 7, in comparison to the respective longitudinal combi-  W(en,t)=Wo[1+a;(t)X1(e,h)+ay(t)X5(n,h)],
nation. In Fig. 2 we plot{? calculated numerically. To com- (46)
pare the exact curve with the asymptotic estimations, let u
apply to Eq.(44) relations(43) and then tend to the low
frequency or “kinetic cutoff” limit, i.e., setrp=0. This

3s is done in the effective-field meth¢d]; herea; are the
adjustable parameters. In E@6) the equilibrium distribu-
tion function W, is defined with the energyl) in the full

gives configurational space of the system,
113 for o<1, Wo=Z"texd &(e-h) +o(e-n)?], (47)
Tint =17B (45)
5/6 for o>1. sinh¢
From Fig. 2 one sees that at the high anisotropy end ( Z=16m°R(0) o
>1) the curve behaves as expected: it tends to the hard- €o

dipole regime with7{3)=575/6, see Eq/(26). From closer |, yiew of Eq. (46), the first two moments of the nonequi-

inspection it follows that at certaia the relaxation timerlY)  |ibrium distribution function, which are the principal items of
passes through a weak maximum and then approaches the study, write

limiting value from above. Ar tending to zero the numeri-

cally evaluated curve first tends to 1/3, as predicted by Eq. Q:=(Xi(gh)), Q,=(X3(n,h)). (48
(45), but then inflects and begins to ascend. The occurrin ) ]

minimum does not have any physical meaning though. It ig1€re in the notations fo@ we have reduced the number of
just an indication that our definition of IRT does not apply to Indices to the necessary minimum and will use this conven-
the case because when exciting an assembly of perfection from now on. _ _

magnetically isotropic particles by a pulse field, both initial ~ Substituting expansior46) in Egs. (48), one gets a 2
and final orientational order parameters are zeros. However< 2 matrix relationship,

the estimations done at<1 prove that as long as the par- Q=Nya (49)
ticle magnetic anisotropy satisfies the conditiog p /75 ke

<1, the limit given by the first line of Eq(45 remains which expresses the observable statistical moments via the
valid. effective fields. The coefficients in E¢49) are

N11=(X1(e,h) X7 (e,h))o=(2/&0) L1 (&),

N1o=Nay=(X1(&h)X; *(n,h))o=(6/é0) Lo £0) Sa( ), (50

Nz=(X3(n,h) X5 *(n,h))o=(6/35)[ 7+5L( £0) Sy(0) — 12L 4(£0) Sa(0) ],

where the angular brackets denote averaging over the equilibrium distrigdffn

The equations for the longitudin@lvith respect to the bias fielccomponent of the magnetic momer®4) and for the
component of the orientational order parameter in the same dired@gh follow from Eq. (4) on substituting there the
effective-field expansioi46), multiplying it from the left by firstX} and thenX% and performing integrations. By that, one
arrives at the relationship
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d
gt~ ke, (51)

with the following matrix of the kinetic coefficients:

1 1 R . 1 1\2+L,(&)
F11:(2_7_B+E><[Jexi(e,h)][\]ex1 l(eyh)]>o:(T_B+—)%,

™D

1 . - 3 3L +2L
Piz=Tor= (13X (&M% (nW])o=— Su(@) o) 2Lalfo) (52

T

9 14+5L5(£0)Sp(0) +16L4(£0)Sa(0)
B 35 '

T 5= ([ 3. X3(n,0)1[3.X5 *(n,h) 1)o=

Eliminating the effective fields; from Eq.(51) with the aid  values ofe fall between 5<10 ® and 5< 10 2, always re-
of Eq. (49), one arrives at the closed matrix relaxation equainaining far less than unity. Under this condition;; ap-

tion pears, see Eq$52), to be the sole leading term. Tending it to
infinity reduces Eq(55) to
d
— O=-T.N:1 N
dt QI l_‘Ille Qk! (53) Tl(r12t)(§0,o.)zr_22
22
for which the initial conditions describing a switch off of the 2 T+5L,5(&0)Sy(0)—12L4(&0)Sa( o)
probing field are = S7g .
3 "14+5L5(£0)Sp(0) +16L 4(£0) Sal0)
Q1(0)=N71&,  Q2(0)=Nyé. (54 (57)

Solution of Eq.(53) yields two eigenmodes, whose relax- This formula yields the relaxation time of the orientational
ation times are “mixtures” ofrg and 7. Using once again order parameter in the case of a MF, in which particles have
the definition of IRT, we derive the expression for the inte-Z€ro magnetic viscosity. The latter means that any transient

gral relaxation time of the orientation order parameter in thgotation of the magnetic moment does not to a slightest ex-
tent entrain the body of the particle and vise versa. That is

form
why we term this kinetic decoupling of the vect@andn a
T NooN ot ToaNa iN o T ool N sN oot N2 “cutoff.” Actually, the “kinetic cutoff” limit is applicable to
2(&y,0)= 1N2oN12H ToaN 1N 12~ Taa(N1aN2 12)’ the processes whose reference times are much longer than
(F11F22—F§2)N12 7p . Then one may consider that with respect to the internal

(55) degrees of freedom the equilibrium is attained in zero time.
o _ Note that Eq.(57) can be obtained straightforwardly if one
where the coefficienthl; andI’;, are determined by formu- takes the trial function in a simplified form: settiag=0 in

las (50) and (52), respectively. Eq. (47), thus assuming instantaneous magnetic relaxation.
A useful simplification of the obtained formula is to tend This approximation was used by Cebers in Ré8]. One

to zero the ratio has to understand clearly, however, that the kinetic freedom

of a magnetic moment does not at all mean a complete

e=T1pl18= N/ n=116ayn (56) breakdown of its orientational interaction with the anisotropy

_ _ - . (geometry axis. The equilibrium part of this interaction that
of the magnetic to usual viscosities, see E@s.Actually, in s described by the cross tera{e- n)? in the particle energy
experiments with magnetic suspensions one is close enough), can be arbitrarily strong even at=0.

to this situation. Indeed, substituting in E&6) the typical At the first sight, the relaxation time>) given by formula
values| =500 G andy=1.7x10" Oe 's !, we arrive at  (55) or (57) seems to depend on both the bias figjdand the
the estimate anisotropy parameter as if on independent variables. How-
ever, it is not entirely so. Being derived in the framework of
e=5x10"%anp, the effective-field method, these formulas remain correct

. . only in the range&,> 20, i.e., when the absence of magnetic
which depends on the material constaatand » of a par-  metastability in the particle is ensured. That is why, for ex-
ticular sample. The values af in dispersed particles are ample, by tendingr— whilst keepingé, finite, one never
usually about 0.01-0.1, sometimes rising to several tens gjets the relaxation time for a hard-dipole particles given by
percent. The fluid viscosity; ranges from 102 to 10 Ps, Eq. (27). However, for magnetically soft particles the “ki-
thus covering a variety of fluids from water to glycerine. netic cutoff” approximation(57) has all the grounds to be
Combining these numbers, we see that the correspondinguite useful.
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In this connection we remark that a model similar to Eq. ARTE
(51) has been proposed in Rdfl9] and applied there to
account for the bias-field dependencies of the orientational
relaxation time. Being justified in the rangg>20, when
used unmodified beyond this limit it did not render reason-
able results.

C. Arbitrary bias field: Heuristic model

To get a description for the birefringence of a MF with %02
arbitrary relation between the material parameters, one has to '
be able to solve the full set of equatioi#sl) for whateveré, e
and o. This work, although it does not seem fundamentally Solo

impossible, would require a really huge amount of time and FIG. 3. Integral relaxation time of magnetization as a function

CompUter,resourceS' Th'S, compgls_us to ”}’ to s]mpllfy theof the dimensionless temperaturerldnd bias-field strengtli, /o,
task, making use of certain qualitative considerations. after Ref.[16].

We base the model on the following heuristic grounds. As

already mentioned, of the magnetization modes affecting bi- _
refringence one is rather fast and due to that does not con- 2 _hted
tribute to the relaxation of the orientation order parameter. Tint Yat B 8>
With allowance for this fact, the s€53) was reduced to just 3 4
two equations. In the latter all the contribution of the internal . . . .
magnetic mode is “embodied” in the relaxation timg that ~Where expressions for the dimensionless functions
enters the elemerit,; of the relaxation matrix';, , see Egs. ¥1-4(£o,0) follow from Egs.(50) and(52). Since ally; are
(52). Leaving all the formal scheme of Eq46)—(56) intact, ~ constructed of nonsingular functionis, (&) and Sc(o),
we account for the consequences of the possible magneti¢gherek=2,4, the relaxation time given by expressi@9) is
metastability making if";; just one replacement. Namely, ~Of the order ofrg or, at strong bias fieldsig/£o. The limit-

ing forms follow from expanding Eq59) with respect tce,

0.1
0.2
0.4 0.3

(59

5 = Tp(é,0)=147, (58
whereri(nlt) is the integral relaxation time for the longitudinal ﬁ[l g(ﬁ_ﬂ”_}ﬁ for <1
magnetization of a uniaxial superparamagnetic particle inthe (2 3 U1 Ys 3 ’
case, where the direction bf, coincides with that of. This —= (60)
quantity determined numerically in Ref16] is plotted in 7B ﬁ{ E(ﬁ_ ﬁ”_)ﬁ for a>1.
Fig. 3 as a function of the dimensionless parameter<I/ Ya| " e\Y2 Ya a

and the temperature-independent argumégptoxHg. In

weak external fields the dependeneg(L/T) closely re-  The first line of this formula corresponds to the case of weak
sembles the usual eexponential ascend. As the bias field . .. coupling, and, as it should be, its limitat 0 coin-

€0 grows, the steepness of the increase gradually goes dowpiyes \yith expressiof67) obtained in a plain effective-field
We remark that one of the prototypes of the functi§R was o ~
approximation. Note that at low the renormed: does not

proposed in Ref[17]. ! . X
Making replacemen(58) in Eq. (56), one arrives at the dlffer_r_nuch from_reals_th_at is small. Besides, at low the

fecti ~ 7 like th di conditionéy> 20 is satisfied for low enoug¥,. With regard
effective parameter(&o, o) =7p/75. Unlike the seeding i, hoth those circumstances we conclude that the “kinetic
valuee that, as ment|oned,~|n all physically meaningful situ- cutoff” limit given by Eq. (57) works for practically any,.
ations is small, the modifiesl can be of arbitrary magnitude. Changing it for the first line of Eq60) makes the expression
Apparently, smalle mean magnetic softness of the particlesjust a bit more accurate.
while larges correspond to hard magnetic dipoles. Introduc-  The second line of Eq(60), if to write it explicitly in
ing this effective parameter in the elemdny, and, accord- t€rms ofL (&) andS(o) functions through Eqs(50) and
ingly, by means of Eq(55), in the integral relaxation time, (52), is rather cumbersome. The limiting behaviogat is

one can present the latter in the form rendered by the formulas
|
5 [31 Syo) Si, y
P e for &,<1,
2) 6 [420+ 255 40507 O%0) fo
int _ (61)
sl |2 6S, 1 .
€ —+ 5~ — +O(Lg) for &o>1.
§o 6S,—0(2+S,-3%) &
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They prove that for botlg, small and large the functiof®1) Tf{i)(go,g) go(0)

is very close to that describing the bias-field dependence of — |, ~9uo)+ £ (62

the birefringence relaxation time in a MF of hard dipoles. B €=0 0

Moreover, the undertaken numeric calculations show that .

these functions stay close at anyas well. where the coefficientg are expressed as
Since formula59) proves to have a correct behavior in all

the relevant limiting cases, we consider it to be a reasonable

2 74+5S,(0)—125,(0)

interpolation expression for arbitragy and o including the 91(0) 3 14+5S,(0) +1654(0) 63
range of magnetic metastability, whetg<2o. At e~1 a

specific crossover in the dependem,—ﬁfa;)(go) should occur: 70 —3S,(0) +28S,(0)Ss( o) +80S,( )

the hard-dipole behavior at>1 changes for the “kinetic 92(0) 3 [14+5S,(0)+16S5,(0)]?

cutoff” one ate<1. Examples of the dependencies obtained

with the aid of Eq(59) are given in Fig. 4 as two families of and have the following limiting behavior:

curves differing by the value of the seeding kinetic coupling

parameters. The graphs confirm the reliability of the con- 1 1 5 ,

structed interpolation in more detail. At~1 and lower(al- 37637 a1 T for o<1,

most isotropic particloshe curves just slightly deviate from gy(0) = (64)
the asymptotic result{?)(&,,0)= 75/3, that would have made 1 1 1 for o1

a horizontal line in the plots. At high anisotropy$ 1), the o' o2 o3 e 7=
curves closely approach the dotted contour that reflects the

hard-dipole limit. Positioning of the startingat &,=0) 1 160

points of all the curves inside the interval marked by the — g+ ——g?+... for o<1,
starting points of the limitingmarke) contours proves that 21 1323

however smallry (or corresponding) may be, its presence g2(0)= 1 23

is crucial to obtain a correct relaxation time at largeln- 2— ;_1202_ — T for o>1.

deed, for a finiterp the time 7 at low bias fields due to the e

exponential dependence incorporated-il , see Fig. 3, at
o~In(1/e) by the order of magnitude reaches. Compare,
for example, respective curves 2 in Figsaydand 4b). For
the particles withe =102 the anisotropy parameter=>5 is

Accordingly, the behavior of the integral relaxation time de-
scribed in the leading order is

yet too small, and the starting point of curve 2 in Figa)4 1 1o o<t
virtually coincides with the value 1/3 yield by the “kinetic 72 3 21 & ’
cutoff” limit. At the same value ofs, curve 2 in Fig. 4b), L 11 2 (65
i.e., fore=10"2, branches off the vertical axis at a value that B le=o0 —+ & for o>1.
g 0

exceeds the asymptotic result by about 20%. For respective
curves 3 corresponding i@= 10 the effect is yet more pro- o _
nounced. Here the curve far=10"° starts already at the Thus we conclude that the birefringence relaxation processes

value that is considerably higher than 1/3, but on the othefre quite different for the particles with low and high mag-
hand, it still remains well below the curve that describes thenetic anisotropy. For the former{? is aboutrg/3 and prac-
cases =10 2. At yet highero, see the respective curves 4,

the starting point of the function(?(0,0)/75 approaches  !7 =2x, IR

and then becomes indistinguishable from the hard-dipole re, )
sult that equals 5/6, see E@6). On the contrary, the starting
point for the integral relaxation time in the “kinetic cutoff” ;|
limit (when one sets=0) never exceeds 1/3 however high

o may be, see diamond markers&t=0 in Figs. 4a) and 04 1
4(b).

An important issue is the behavior ft) at high bias
fields £g>1. As follows from the above-presented consider- , | , , , ,
ations, in the hard-dipole model one hg§)«1/¢,. For the o 2 4 & 8 1 0 2 4 6 & 10
case of particles with finite magnetic anisotropy we assume
that .gt SL.JmC'emly high bias fieldsg>20) magnetic msta- function of the dimensionless bias fiefg. Solid curves are calcu-
stability is suppressed. Due to that the renormed titge |ated fore =102 (a) ande =102 (b) at the anisotropy parameter
does not differ from the real ong, and the behavior of the o=2 (1), 5 (2), 10 (3), and 20(4). Lines of markers show the
system is close to that in the “kinetic cutoff” limit. This limiting contoursa=c: full circles correspond to the hard dipole
grants validity to the effective-field resu7). Expanding it  case described by E632) while diamonds mark{? in the “kinetic
to the first order in 4,, one gets cutoff” limit, i.e., e=0.

0.8 4

0.6 4

0.4

0.2 1 0.2 1

FIG. 4. Moadified integral relaxation time of orientation as a
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tically independent of the bias field. For highthe relax- V. DISCUSSION OF THE RESULTS
ation time in general obeys the hyperbolic lanégRivell
known for magnetically hard =«) particles. However,
due to the presence of a term independergethe limit of
the relaxation time af,— is always finite and not zero as

In Ref. [6] the dynamics of birefringence is discussed in
terms of some characteristic time derived from the experi-
mental data in the following way. The intensity, of the
light transmitted by the sample under the joint action of

it is in the case of hard dipoles. i ; ;
We remark that the found existence of a finite Iimitﬂﬁ) crossed dc and ac fields is plotted as a function of frequency
nd the frequencyw, is found, at which I, (w,)

at £,— has an important consequence with respect to thé& 1 Ux i

experiment interpretation. Normally, when anticipating = z'2.(0). Thequantity inverse tav, is taken as a refer-
power laws, the measurement data are plotted in doubl@NCe response time and is denotedrgg.

logarithmic coordinates. In the case of a hard dipole this To apply the developed model to the experimiggit we
gives a straight line, irrespective of whether magnetic or ori-construct a direct theoretical analoggf,. For that we take
entational susceptibility is studied. If, however, the dipolethe solution of Eg.(66), impose on it the condition
has a finite rigidity so that the relaxation time at high biasQ%(w*)z%Qg(O), andobtain w, as the function o, and
fields is described by the second line of E6f), the double o by resolving the pertinent transcendental equation.
logarithmic representation has to be used with caution. InThe inverse of the found, is the sought for reference time
deed, as Eq(65) shows, a plot Inf?) may be close to a that we denote asy;,. A set of curves presenting the ob-
straight line only for§,<2o. But this range might be empty tained function is given in Fig. 5 together with dash-dotted
if o is not large enough since E@5) is theasymptotidorm  straight lines rendering the power langginherent to a hard
valid for §0>1 In the range of its Unquestionable Va.||d|ty, d|p0|e and asymptoteejashed |inebat |arge go obtained
i.e., where bothé,, o>1, the function7{(&,) plotted in  numerically from expansion of solutions of E(66) at &
double logarithmic coordinates gives a line with a slope that. 1 As is intuitively expectabler,, is close to the integral

gradually changes from unity to zero as the terVé di-  (gjaxation timer(2) defined in Sec. IV C. A direct compari-
minishes in comparison to the constant one. These conside

f I I if h the rol and q don presented in Fig. 6 supports this conclusion; the occur-
ations equally apply It one changes the ro ege ndo, an ring similarity transforms into coincidence in the high-field
plots the relaxation time as a function efat a givené,.

In the linear response theory the relaxation time does no?nd' . ,
In Ref.[6] in the crossed-field geometry two sets of mag-

depend on the magnitude of the probing field. If the system

is single mode, then the relaxation time derived for a tran1etic fluid samples were investigated. Namely, there were

sient process can be equally used to write the stationary Séi_ve samples containing qobalt ferrite nanoparticles and tWQ
lution under the action of an ac probing field. For a systenp@mples whose magnetic phase consisted of maghemite
with multimode response the independence from the probinaano_partlcles. In the cc_;balt_ fgrrlte grains the magnetic anisot-
field amplitude, of course, holds but the refereficgegra)  foPY is of the volumetric origin and rather strong. Therefore,
times m|ght differ depending on the Way of probing, pulse ortheir behavior under field should resemble that of hard di-
ac. To study a MF in a crossed-field situation where thePoles. On the contrary, for maghemite grains, where the an-
probing field is alternating and not pulse, one has to solve thisotropy is known to be of the surface origin, and much
equation weaker, the response is expected to resemble that of soft
dipoles. The particle size distributions were determined in
Ref. [6] from measurements of the equilibrium magnetiza-
tion and were found to be close to log-normal ones described
E Qi+Ty N lQ=T,&(t) (66) by the size parametal; and dimensionless widts. The
de <t 71 Ik ' ' magnetization of the cobalt ferrite is taken to be
=350 kA/m and that for maghemite particled
=320 kA/m. The volume energy density of uniaxial mag-

cf. Eq.(53). To obtain a stationary solution, it suffices to take netic anisotropy for the cobalt ferrite #,=500 kJ/nf, the

£=EOexp(—iwt), substitute it in Eq(66), and resolve the respective surface energy density for maghemit€ ds-2.8

resulting matrix set. This yields a one-column matrix with x10°° ‘J/mz_' Using these numerical values, one can esti-
complex element®); andQ,. Setting the amplitud&® of mate the anisotropy parametersWe do that assuming that
the probing field equal to unitgwhich is here equivalent to the particle magnetic volume = (7/6)d* and the par-
differentiation we get the respective dynamic susceptibili- ticle surface area that matters for estimation of the anisotropy
ties. In particular,Q, is the complex susceptibility of the of the surface origin i$S,,= 7wd?, where the overline means
orientation order parameter to an external magnetic fieldaveraging over the corresponding log-normal histogram. The
With regard to the geometry of the magneto-optical experiinitial histogram data and the results of our estimations are
ment in crossed field$], one finds that the theoretical quan- given in Table 1[20]. As in Ref.[6], we mark the cobalt
tity proportional to the measured transmitted light intensity isferrite samples by C” and the maghemite ones byM.”

the square of the orientational order parameter. Accordingly, In the qualitative aspect we remark a full agreement be-
under stationary oscillations, the effective dynamic susceptitween the shapes of dispersion curves derived from the
bility that is measured is the square of the susceptib@ty  finite-anisotropy model by solving E¢66) and the experi-
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FIG. 5. Bias-field dependencies of the theoretical analggof
the reference relaxation time,,,. The anisotropy parameter is
=7.5(a), 10 (b), 20 (c), and 35(d); for all the curvese=10"2.
Dashed-dotted lines indicate a simple power ladyltashed lines
show the asymptotedarge &y) obtained numerically from the so-
lutions of Eq.(66).
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TABLE I. Size distribution and anisotropy parameters of the
samples.

Sample do (nm) S o &o/Hg (M/KA)
C, 12.7 0.35 225 0.197
C, 9.0 0.20 55 0.050
C, 8.7 0.16 47 0.043
C, 7.0 0.20 26 0.022
M, 9.4 0.10 2.0 0.043
M, 9.2 0.15 2.0 0.043

havior (“breath”) of the Argand loops. However, the analy-
sis of this interesting effect is beyond the scope of the
present work, and will be given elsewhere.

With regard to the quantitative comparison, from Table |
we conclude that the cobalt ferrite samglg with its o
>200 may be well treated in the hard-dipole approximation,
while for sampleC; that hass~50 some corrections may be
“visible.” Using this scheme, fotC, we calculate the func-
tion 715(&p) for o=« (see Fig. 1 while for C5 calculation
is done according to the full procedure fey,. Considering
75 as an adjustable parameter, we evaluate it on the “chi-by-
the-eye” basis and plot the results in Figa) The achieved
agreement between theory and experiment is satisfactory; the
absolute values of the Brownian relaxation times that we
have got in our interpretation ares=4.1 ms forC; and
75=0.43 ms forC;. Figure Tb) shows the same adjustment
for samplesC, andC,, where we getrg=1.64 ms andrg

mental ones given in Reff6]. Presenting those dynamic sus- =0.54 ms, respectively.

ceptibilities in the form of Argand diagrams (I@é plotted

In Fig. 8 the data on the cobalt ferrite samp{@sto C,

against R®3) one becomes aware of their splitting with are presented in double logarithmic coordinates. It is instruc-

respect to bothé, and o. Qualitatively, such splitting is

tive to see, to what extent the obtained curves look like

clearly visible in the experimental Argand diagrams of Ref.straight lines(hard-dipole modeland to what extent they
[6] but was never accounted for. In our theory, splitting is adeviate at lower fieldgbelow the cutoff introduced in Ref.
natural consequence of the finiteness of the anisotropy of thé]).

particles. Depending on Wheth~a5 is greater or smaller than
s, the Argand loops might either “deflate” or “inflate”
with respect to the referencésingle-time contour. The

crossover of the relaxation regimes that takes placepat

~ 75 provokes, as its consequence, a peculiar reentrant be ]

041 T/ 19

T,/ T

0.38 1

0.36

0.34 1

In Ref.[6], on the basis of qualitative considerations, the
idea was inferred that for magnetically soft nanoparticles, as

Typz [ms]

100 150 200 250 0 50

H,[kA/m]

100 150 200 250

H,[kA/m]

FIG. 7. Comparison of the bias-field dependencies of the refer-
ence relaxation timer;;, with the experimental measurements on
the cobalt ferrite samples; for all the curves=2x10"%. (a)

FIG. 6. Comparison of the bias-field dependencies of the intesamplesC, (full circles) and C; (diamond$; the estimated values
gral relaxation timeri(,ft) (dashed linesand the reference relaxation of the rotary diffusion time arerg=4.1 ms (C;) and 7g

time 7y, (solid lineg for 0=2 (1), 5(2), 10(3), 20 (4); for all the
curvese =102,

=0.43 ms Cjy). (b) Sample<C, (full circles) andC, (squarey the
estimated values argg=1.64 ms C,) and3=0.54 ms C,).
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0.2

H, [kA/m]

0 T T T T T 1
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10 100 H,[kA/m] . . o )
FIG. 9. Comparison of the theoretical bias-field dependencies of

_ _ o _ the reference time,, with the experimentat,, for the maghemite

FIG. 8. Comparison of the theoretical bias-field dependencies ogamp|egv| , (circles andM, (squareks The lines correspond to the

the reference relaxation time;;, (solid lines marked with the anjsotropy parameter=2 (see Table)lande=2x10"5. The ref-
sample identifierswith the experimental measurements on the co-grence rotary diffusion times areg=1.2 ms M;) and 7

balt ferrite sample<C; (empty circley, C, (triangles, C; (dia- =21 ms M,).
monds, andC, (square} for all the curvess=2x10"4.

the distribution function, namely, the magnetization and
the orientation order parameter. The results for the limiting

of Ho. The maghemite ferrofiuid samplesl, and M, cases of weak and strong bias fields are given in an

are good candidates for the test: as Table | shows, they bo@.palytical form. For the intermediate case an interpolation
have o~1. Since the samples under consideration aré&xpression for the integral relaxation time of birefringence is

the ferrofiuids based on glycerine whose viscosityyis 10 propoged and proven to have a physically reasonable overall
Ps, the estimate for the ratiey/7g=¢ gives 104-10°5. ~ Pehavior. o . _

With o~ 1 this means that both MF samples are very close 1Nhe developed description is applied to the experimental
to the “kinetic cutoff” limit. Under these conditions the data on crossed-field birefringence of MF samples
theoretical relaxation timer;, is but weakly dependent With nanoparticles of two types: magnetically haabbalt

on the bias field&, that agrees well with the weak ferrite) and magnetically sofmaghemitg Observations evi-
dependence ofe,, on H, experimentally found in Ref6] dence that the differences in the particle properties are essen-
and justifies the hypothesis proposed therein. In Fig. 9 th&ally reflected in the dynamics of macroscopic birefringence
theoretical curves obtained with E(57) at o=2 are com- of the samples. The proposed theory appears to be in full
pared with the data of Ref6] on the maghemite samples. qualitative agreement with all the experimental data avail-
The numerical values of the rotary diffusion time that we getable.

from the adjustment areg=1.2 ms for sampléM, and 5

=2.2 ms for sampleM,. According to the present model

Texp Should be virtually independent &, in the low-field

range as well. ACKNOWLEDGMENTS
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(pulse or agfields is developed. Under the considered f'eld(RFBR).
configuration the induced birefringence is linear with respect
to the probing field, so that the linear response approxima-
tion is possible. The suspended nanoparticles are assumed to
possess finite magnetic anisotropy of the easy axis type,
whose direction coincides with the major geometry axis. To
allow for the finiteness of the anisotropy, the general Fokker- ) )
Planck equation that takes into account both internal mag- 'Ne general matrix equation of the problem that deter-
netic and external mechanical degrees of freedom of the pafaines the amplitude®[}’" is obtained by substitution of the
ticles is used. spherical harmonic expansidid?2) into the Fokker-Planck
The particle orientation dynamics, which is in generalequation(4). After that the equation is multiplied from the
a multimode process, is described in terms of the integraeft by X"(e,n) X[ (n,h), and, finally, integrated with re-
relaxation times for the two lowest statistical moments ofspect to bothe andn. The result is
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