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Self-similar Gaussian processes for modeling anomalous diffusion

S. C. Lim* and S. V. Muniandy
School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, M

~Received 8 April 2002; published 29 August 2002!

We study some Gaussian models for anomalous diffusion, which include the time-rescaled Brownian mo-
tion, two types of fractional Brownian motion, and models associated with fractional Brownian motion based
on the generalized Langevin equation. Gaussian processes associated with these models satisfy the anomalous
diffusion relation which requires the mean-square displacement to vary withta, 0,a,2. However, these
processes have different properties, thus indicating that the anomalous diffusion relation with a single param-
eter is insufficient to characterize the underlying mechanism. Although the two versions of fractional Brownian
motion and time-rescaled Brownian motion all have the same probability distribution function, the Slepian
theorem can be used to compare their first passage time distributions, which are different. Finally, in order to
model anomalous diffusion with a variable exponenta(t) it is necessary to consider the multifractional
extensions of these Gaussian processes.
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I. INTRODUCTION

Anomalous diffusion occurs in many physical and b
logical systems@1–3#. It is characterized by the following
mean-square displacement~for the one-dimensional case!:

^x2~ t !&;ta, 0,a,2. ~1!

For 0,a,1, x(t) represents subdiffusion~or suppressed
diffusion!, and for 1,a,2 it is called superdiffusion~or
enhanced diffusion!, while a51 corresponds to the norma
diffusion or Brownian motion.

There have been many attempts to model anomalous
fusion by means of generalized diffusion equations, wh
mostly provide a mathematical description of the process
particular, the second moments of the solutions of th
equations are shown to exhibit the desired time depende
~1!. Despite the various models proposed for anomalous
fusion ~see, for example,@2,4#!, there still exists a need to
obtain a deeper understanding of its underlying mechani

In this paper, we study some Gaussian models of ano
lous diffusion. Even though all these Gaussian processes
isfy the anomalous diffusion relation~1!, they have quite
different properties. We then consider the Langevin equa
approach with a solution that can be linked to fraction
Brownian motion either asymptotically or in the high fr
quency limit. An explanation and solution are given for t
anomaly that exists in the generalized Langevin equation
proach, which gives asymptotic mean-square displacem
for a51 ast ln t instead oft as required for Brownian mo
tion. Two types of fractional Langevin equations and th
suitability for modeling anomalous diffusion are considere
We next show that the Slepian theorem can be used to c
pare the first passage time distributions of the three Gaus
processes, namely, the two versions of fractional Brown
motion and the time-rescaled Brownian motion. Finally,
generalize the fractional Brownian motion, fraction
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Ornstein-Uhlenbeck process, and the time-rescaled Bro
ian motion to their corresponding ‘‘multifractional’’ pro
cesses. Their local properties are studied to see whether
can be used to model anomalous diffusion with variable s
ing exponents.

II. TIME-RESCALED BROWNIAN MOTION

The simplest Gaussian model that satisfies the anoma
diffusion relation~1! can be derived by time rescaling th
Brownian motionX(t) using the following nonlinear time
transformation:

t→t* 5ta, 0,a,2, ~2!

to obtain the time-rescaled Brownian motion@or scaled
Brownian motion~SBM!# X* (t)[X(t* ), which is again a
Gaussian process with mean zero and correlation functio

^X~ t* !X~s* !&5t* `s* 5ta`sa5^X* ~ t !X* ~s!&, ~3!

where` denotes the minimum. Note thatX* (t) can also be
defined in terms of white noiseh(t):

X* ~ t !5E
0

t

ua21/2h~u!du, ~4!

where h(t) satisfies^h(t)h(s)&5d(t2s). The differential
version of Eq.~4! is

dX* ~ t !

dt
5t (a21)/2h~ t !. ~5!

It can be easily verified that the variance ofX* (t) satisfies
~1!.

The SBMX* (t) preserves the basic properties of Brow
ian motion. Just like Brownian motion,X* (t) is a Gaussian
Markov process since fort.0, the scaling transformationt
→ta, a.0 preserves the time ordering, hence the Mark
property. One can also prove the Markov property for SB
by verifying the Chapman-Kolmogorov equation usingy
©2002 The American Physical Society14-1
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probability distribution function.X* (t) is a self-similar pro-
cess with scaling exponenta/2. Forb.0, we have

^X* ~bt!X* ~bs!&5^X~@bt#a!X~@bs#a!&5ba^X* ~ t !X* ~s!&,
~6!

where we have used the self-similar property of Brown
motion, X(bt)5b1/2X(t). Similarly, one can verify that the
SBM has independent increments for nonoverlapping in
vals, just like in the case of ordinary Brownian motion. T
sample paths of the rescaled Brownian motions simula
using the time-rescaling transformation of Brownian moti
are shown in Fig. 1. ForH50.75, X* (t) represents an ac
celerated Brownian motion; and forH50.25 it becomes de
celerated Brownian motion.~Refer to Appendix A for the
details of numerical algorithms.!

Brownian motionX(t) satisfies the diffusion equation

]P~x,t !

]t
5D

]2P~x,t !

]x2
, ~7!

with P(x,t) the probability distribution function~PDF! for
the Brownian motion, andD the diffusion constant. When
subjected to initial condition P(x,0)5d(x), Eq. ~7! has the
solution

P~x,t !5
1

A4Dpt
expF2

x2

4DtG . ~8!

The diffusion equation for the SBM has the same form as
~7!, that is,

]P~x,t* !

]t*
5D

]2P~x,t* !

]x2
, ~9!

and with initial conditionP(x,t* 50)5d(x), its solution is

FIG. 1. The sample paths of rescaled Brownian motion w
H50.25 andH50.75.
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P~x,t* !5
1

A4Dpt*
expF2

x2

4Dt*
G

5
1

A4Dpta
expF2

x2

4DtaG[P* ~x,t !. ~10!

By using

d

dt
5

dt*
dt

d

dt*
5ata21

d

dt*
, ~11!

Eq. ~9! can be written as

]P* ~x,t !

]t
5aDta21

]2P* ~x,t !

]x2
5D* ~ t !

]2P* ~x,t !

]x2
,

~12!

where D* (t)5aDta21 can be regarded as the time
dependent diffusion coefficient. Equation~12! is also known
as the effective Fokker-Planck equation, which has solut
~10! when subjected to initial conditionP* (x,0)5d(x).

The PDF given in Eq.~10! is self-similar under the scal
ing transformationst→bt andx→ba/2x, thus one gets

P* ~ba/2x,bt!5ba/2P* ~x,t !. ~13!

We shall show below that fractional Brownian motion al
has the same PDF.

III. FRACTIONAL BROWNIAN MOTION

Fractional Brownian motion~FBM! can be regarded as
natural generalization of Brownian motion from the persp
tive of the Langevin equation. Recall that the followin
Langevin equation:

dX~ t !

dt
5F„X~ t !,t…1h~ t ! ~14!

has Brownian motion as the solution in the absence of ex
nal force@F(X,t)50#:

X~ t !5E
0

t

h~t!dt. ~15!

Now one considers the fractional Langevin equation fo
free particle,

dbX~ t !

dtb
5h~ t !, ~16!

where the fractional derivative can be defined in terms of
fractional integralaI t

b @5#,

aI t
b f ~ t !5

1

G~b!
E

a

t

~ t2u!b21f ~u!du for b.0.

~17!
4-2
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For g52b.0, the fractional derivativeaDt
g is then defined

as a fractional integral of ordern2g ~with n21,g,n) and
an ordinary derivative of ordern:

aDt
g f ~ t !5S d

dtD
n

aDt
g2nf ~ t !. ~18!

For a50, Eqs.~17! and~18! are known, respectively, as th
fractional integral and the fractional derivative of th
Riemann-Liouville type; whena52`, they are known as
the Weyl fractional integral and derivative.

Let the fractional derivative in Eq.~16! be of the
Riemann-Liouville type. Inverting Eq.~16! results in

XRL~ t !5 0I t
bh~ t !5

1

G~b!
E

0

t

~ t2u!b21h~u!du, ~19!

which is known as the fractional Brownian motion of th
Riemann-Liouville type~RL-FBM! @6#. Here, we follow the
standard notational convention of the fractional calculus w
index b, instead of using the Hurst exponentH (5b
11/2), 0,H,1 commonly adopted to index FBM. Not
thatXRL is well defined forH.21/2. However, for the pur-
pose of comparison with the standard FBM which is defin
for 0,H,1, we shall confineXRL to the same range ofH.
The sample paths of RL-FBM are shown in Fig. 2 simula
using the algorithms described in Appendix A.XRL(t) is a
self-similar Gaussian process with zero mean and a ra
complicated correlation function:

^XRL~ t !XRL~s!&5
tb21sb

b@G~b!#2 2F1S 12b,1,11b,
s

t D
~20!

for s,t, and 2F1 is the Gauss hypergeometric functio
However, the variance ofXRL has the following simple form:

FIG. 2. The sample paths of RL-FBM forH50.25 andH
50.75.
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^XRL
2 ~ t !&5

t2b21

~2b21!@G~b!#2
5Cbt2b21, ~21!

which satisfies the anomalous diffusion relation~1! for b
5(a11)/2 with 1

2 ,b, 3
2 . For a Gaussian process, the PD

is completely determined from the knowledge of its varian
and mean~here assumed to be zero!. Therefore the PDF of
RL-FBM is similar to that for SBM:

PRL~x,t !5
1

A4Cbpt2b21
expF2

x2

4Cbt2b21G . ~22!

PRL(x,t) will be equal toP* (x,t) if the RL-FBM is taken as
DACbXRL(t). In contrast toX* (t), XRL(t) does not satisfy
the Markov property. In fact, the presence of time convo
tion in Eq. ~19! is a typical manifestation of long-rang
memory. There exists a suggestion that the effective Fok
Planck equation~12! is the diffusion equation for FBM, and
the non-Markovian feature is expressed through a tim
dependent diffusion constantD* 5aDta21 @7#. This state-
ment is invalid since the diffusion equation~12! which is
linear in time derivative also describes the Markovian SB
The non-Markovian character of FBM implies that Eq.~12!
does not fully describe FBM, notably it does not allow one
derive its covariance. This remark is further reinforced in o
discussion on first passage time distributions of these p
cesses later on.

We note that the RL-FBM is not the standard FBM that
used widely in modeling Gaussian self-similar process
The standard FBMXW is defined in terms of a modified o
reduced fractional integral of the Weyl type@8#:

XW~ t !5
1

G~b! F E
2`

t

~ t2u!b21h~u!du

2E
2`

0

~2u!b21h~u!duG ~228!

5XRL

1

G~b!
E

2`

0

@~ t2u!b212~2u!b21#h~u!du.

~229!

FBM defined by the Weyl fractional integral alone@i.e., the
first term of Eq.~228!# is divergent, hence it is necessary
introduce a compensation term to ensure the converge
One can regard the standard FBMXW as the sum of two
independent Gaussian process:XRL and a process that repre
sentsa history of infinite pastas in Eq.~249!. In other words,
XW has ahead startover XRL , which begins at timet50
with no memory of the past. As a result, the increments
XW satisfy the stationary property, whereas they fail to be
for XRL . In fact, the standard FBM is the only Gaussi
self-similar process with stationary increments. Its corre
tion function has the following simple form:

^XW~ t !XW~s!&5
VH

2
@ utu2H1usu2H2ut2su2H#, ~23!
4-3
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whereVH5@G(122H)cos(Hp)#/Hp and 0,H,1.
In order to obtain a differential version of Eq.~228! one

rewritesXW(t) as

XW~ t !5I W
b h~ t !2I W

b h~0!, ~24!

where I W
b denotes the Weyl fractional integral of orderb.

Due to the additional termI W
b h(0), onecannot directly apply

the inverse operation to obtain a stochastic differential eq
tion similar to Eq.~16! for XRL . However, from Eq.~228!
one gets

dXW~ t !

dt
5

d

dt
I W

b h~ t !5I W
g h~ t !, ~25!

with g5b21. Forg,0, Eq. ~25! can be written as

dXW~ t !

dt
5DW

2gh~ t !, ~26!

whereDW
2g is the Marchaud fractional derivative@5# defined

for sufficiently goodf (t) by

DW
a f ~ t !5

a

G~12a!
E

2`

t f ~ t !2 f ~u!

~ t2u!11a
du. ~27!

In other words,XW(t) does not satisfy a fractional sto
chastic differential equation of a simple form as in the ca
of XRL(t) @to be more exact Eq.~25! is a fractional integro-
differential equation#. In order to see the link between RL
FBM and the standard FBM, we first note that fort/t@1, the
incrementXRL(t1t)2XRL(t) is stationary. Furthermore, i
can be shown that in the large-time asymptotic limit, R
FBM approaches the standard FBM in the following sen
@9#: XRL has stationary increments ast→`, with the incre-
ment process ofXRL approaching increment process ofXW in
the mean-square limit. This property can also be infer
from the sample path properties of the standard FBM~Fig. 3!
simulated using the midpoint displacement algorithms,

FIG. 3. The sample paths of the standard FBM forH50.25 and
H50.75.
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comparison to the sample paths of the RL-FBM~Fig. 2! in
the large-time asymptotic limit. The local regularity prope
ties of the latter will approach the former when the larg
time asymptotic is considered but the processes differ n
the time origin. Since from the physical point of view, FBM
cannot be made to start att52`, RL-FBM may turn out to
be more appropriate in some applications, particularly in
modeling of anomalous diffusion where one usually cons
ers the asymptotic process. Another advantage of RL-FBM
that it is defined for allH.0, thus it can be used for trans
port phenomena that are characterized byH.1.

IV. GENERALIZED LANGEVIN EQUATION APPROACH

A. Generalized Langevin equation

We shall first consider the Gaussian model proposed
Wang and co-worker@10,11#. They consider the following
generalized Langevin equation for a particle of massM:

dX~ t !

dt
5V~ t !, ~28!

M
d2X~ t !

dt2
1ME

0

t

l~ t2t!V~t!dt5F~ t !, ~29!

wherel(t2t) is the memory kernel of frictional force an
F(t) is a stationary Gaussian noise with zero mean and
long-range correlation property

^F~0!F~ t !&5F0~a!t2a, 0,a,2. ~30!

With the help of the generalized second fluctuatio
dissipation theorem, they obtained

l~ t !5
F0~a!

MkBT
t2a, ~31!

whereT is temperature andkB is Boltzmann’s constant. By
considering the large-time asymptotic condition, they o
tained the following correlation function for the velocity pro
cess@11#:

^V~0!V~ t !&;~a21!ta22 ~32!

for 0,a,1 and 1,a,2. Equation~32! agrees with the
correlation function for the fractional Gaussian noise asso
ated with FBM if a52H. They proceeded to obtain a gen
eralized Fokker-Planck equation for the PDFP(x,t) for
X(t), which is basically the same as the effective Fokk
Planck equation~12! for V(0)50 with some adjustments o
constants. Thus the variance for the processX(t) is given by
^X(t)2&;ta,t→`.

In the case ofa51, Wang did not recover the usual di
fusion equation for Brownian motion. Instead, the followin
asymptotic effective Fokker-Planck equation is obtain
@11#:

]P~x,t !

]t
5

kBT

M
ln t

]2P~x,t !

]x2
~33!
4-4
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with solution @subjected toP(x,0)5d(x)#

P~x,t !5
1

A4pD1t~ ln t21!
expF2

x2

4D1t~ ln t21!G ,
~34!

whereD15kBT/M . The variance has the power-logarithm
growth

^X~ t !2&;t~ ln t21!, t→`. ~35!

They drew the conclusion that the generalized Lange
equation shows anomalous diffusion that is associated
FBM for 0,a,1 and 1,a,2; and the long-range corre
lation of the fluctuation forceF(t) is the physical origin of
anomalous diffusion. Fora51, one does not recover th
normal diffusion, instead an anomalous diffusion with
mean-square displacement that varies with logarithmic ti
This implies thata51 gives anomalous diffusion that is no
related to FBM. A result similar to Eq.~35! was also ob-
tained in@12,13#.

We shall now show that the so-called anomaly mention
above does not exist if the velocity process is regarded
generalized random process. LetV(t) be used to denote th
continuous time derivative ofX(t). V(t) cannot be consid-
ered pointwise for eacht. Instead, it is a generalized functio
@14#:

V~w!5^V,w&5E
2`

`

V~ t !w~ t !dt ~36!

with w P S(R), the Schwarz space of test functions whi
satisfy

limutu→`tm
dnw~ t !

dtn
50 for all positive integersm,n.

~37!

SupposeV is a real-valued generalized random process w
zero mean and correlation functional

C~w,c!5^V~w!V~c!&5E
2`

` E
2`

`

w~ t !Ca~ t2s!c~s!dt ds,

~38!

where

Ca~ t !5^V~0!V~ t !&5cautua22 ~39!

with ca;a(a21). Note thatCa(t) is locally integrable for
0,a,1. For 1,a,2, Ca(t) is given by the generalized
function cadt1

a22e, where d(x1
r ) e denotes the finite part o

x1
r , 22,r,21. Here d(x1

r ) e,22,r,21, defines
uniquely a homogeneous generalized function of degrer,
whose restriction to (2`,0)ø(0,̀ ) coincides with the func-
tion uxur. Noticing thatCa(t) has a simple pole ata51, we
have in the sense of a generalized function, the limit

lima→1cautua22;d~ t !, ~40!
02111
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whered(t) is the Diracd function.
Now we consider the large-time asymptotic velocity as

generalized process, then its correlation function~32! has in
the sense of a generalized function, the following limit f
a51:

lima→1^V~0!V~ t !&; lima→1~a21!utua225d~ t !. ~41!

Then the effective Fokker-Planck equation~33! and its solu-
tion ~34! now become the ordinary diffusion equation f
Brownian motion with lnt and t(ln t21) to be replaced by 1
and t, respectively. In other words, fora51 one recovers
Brownian motion witĥ X(t)2&;t instead of Eq.~35!. It can
be concluded that if proper care is taken to interpret the c
of a51, the anomaly mentioned above does not exist. T
asymptotically (t→`) the generalized Langevin equation
Wang and co-worker@10,11# provides a Gaussian model fo
the anomalous diffusion. The position processX(t) re-
sembles RL-FBM since it is assumed to start att50 and
acquire the properties of FBM ast→`. However, one can-
not identifyX(t) with RL-FBM since its correlation function
at intermediate times is not known. Due to this reason, s
a Langevin approach to FBM is not unique as various p
sibilities may exist with different intermediate process
which have the same asymptotic limit process.

B. Fractional Langevin equation

Recall that the Ornstein-Uhlenbeck~OU! processXOU(t),
which describes the Brownian particle in a harmonic osci
tor potential, is the stationary solution of the Langevin equ
tion

S d

dt
1aDXOU~ t !5h~ t !, a.0. ~42!

Brownian motion is recovered in the limita→0 or in the
high frequency limit. Thus the OU process can be regar
as the stationary analog of Brownian motion. One would l
to see whether the generalization of Eq.~42! to the fractional
Langevin equation can give a solutionXOU

n (t), which satis-
fies an analogous relation with the standard FBM. Consi
first the following fractional Langevin equation :

~Dn1a!XOU
n ~ t !5h~ t !, n.0,a.0. ~43!

For n21,n,n,n.1 and the following boundary condi
tions:

XOU
n ~0!5Xo ,

djX~ t !

dtj U
t50

5Xj , j 51, . . . ,n21,

~44!

the Laplace transform of Eq.~43! is

snX̃~s!1aX̃~s!5h̃~s!1(
j 51

n

sn2 jXj 21 , ~45!

which gives
4-5
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X̃~s!5
h̃~s!

sn1a
1(

j 51

n

Xj 21

sn2 j

sn1a
. ~46!

The inverse Laplace transform gives the solution of Eq.~43!:

XOU
n ~ t !5(

j 51

n

Xj 21t j 21En,j~2atn!

1E
0

t

~ t2u!y21En,n@2a~ t2u!n#h~u!du,

~47!

whereEa,b(z) is the generalized Mittag-Leffler function de
fined by @15#

Ea,b~z!5 (
k50

`
zk

G~ak1b!
, a.0,b.0. ~48!

For simplicity, one can let allXj ’s equal to zero without
affecting the conclusion to be drawn later on. Then, the
variance ofXOU

n (t) can be calculated fors,t ~see Appendix
B!:

^XOU
n ~s!XOU

n ~ t !&5 (
j ,k51

`
~2a! j 1k22

G~n j 11!G~nk!
sn j tnk21

3 2F1S 1,12nk,11n j ,
s

t D , ~49!

which shows thatXOU
n is nonstationary, hence it cannot b

the stationary analog for FBM.
In order to see whetherXOU

n (t) can be used to describe th
behavior of anomalous diffusion, one needs to consider
variance. It can be shown~see Appendix B! that for t→`,

^@XOU
n ~ t !#2&'t2n21. ~50!

With n5H11/2 and 1/2<H,1, the variance ofXOU
n varies

asymptotically ast2H23/2, which differs from t2H of the
anomalous diffusion. On the other hand, foruatu!1 one gets

^@XOU
n ~ t !#2&'t2n215t2H. ~51!

This is expected asa→0,XOU
n →XRL as Eq.~43! reduces to

the equation of RL-FBM.
Another way to fractionalize the Langevin equation

given by

~D1a!nXOU
n ~ t !5h~ t !, a.0,n.0. ~52!

Its stationary solutionXOU
n (t) is given by

XOU
n ~ t !5E

2`

`

G~x2u!h~u!du ~53!

with

G~ t !5C~a,n!tn21e2atu~ t !, ~54!
02111
-

ts

whereu(t) is the unit step function andC(a,n) is a constant
that depends ona and n, which can be chosen asC(a,n)
52211n/2an21@G(n)#21. When n51, C(a,n) becomes
unity. The covariance of the stationary processXOU

n (t) is

^XOU
n ~ t1t!XOU

n ~ t !&5
an23/2

A2p
utun21/2Kn21/2~ uatu!, ~55!

whereKn(z) is the modified Bessel function of the secon
kind ~or Macdonald function! of ordern. Its spectral density
is 2n21a2n22G(n)(a21v2)2n @16#, p. 464, Eq.~3771.2!#,
which gives the spectral density for OU process;(a2

1v2)21 whenn51.
By using the following asymptotic property of the mod

fied Bessel function:

Kn~z!;
G~n!

2 S z

2D 2n

for z→0, ~56!

and the symmetric propertyKn(z)5K2n(z), one can verify
from the covariance~55! that for uatu!1,

^@XOU
n ~ t1t!2XOU

n ~ t !#2&

5
Ap/2a2

sin@~n21/2!p#G~n11/2!
uatu2n21, ~57!

which is similar to the variance of the increment process
standard FBM withn5H11/2. In the high frequency re
gime with v@a, the spectral density scales as;v22n or
v2(2H11). Equation ~57! together with the Wiener-
Khinchine theorem, which relates the covariance of a stati
ary process to the power spectral density, allows one to si
late the sample paths~Fig. 4! of the fractional Ornstein-
Uhlenbeck process using an algorithm based on spe
technique@17#. The stationary properties of the process a
evident from the graphs as there exists no obvious tren
the sample paths in contrast to the upward or downw
trends observed in Figs. 2 and 3. From the above discuss

FIG. 4. The sample paths of fractional Ornstein-Uhlenbeck p
cess forH50.25 andH50.75.
4-6
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we see that Eq.~52! is the appropriate Langevin equatio
which gives the fractional Ornstein-Uhlenbeck process or
stationary analog of FBM.

V. FIRST PASSAGE TIME DISTRIBUTION FUNCTION

It has been shown earlier that three processes, nam
SBM and two versions of FBM, satisfy the same effecti
Fokker-Planck equation~up to a multiplicative constant!.
These processes have quite different properties and they
isfy free Langevin-type equations~5! and~25! with different
noise sources and the free fractional Langevin equation~16!.
The fact that different Langevin equations give rise to
same effective Fokker-Planck equation implies that
former contain more information than the latter. In gene
the Fokker-Planck equation describes the process fully o
if the process is Markovian. We shall show in this secti
that in the determination of the first passage time~FPT! dis-
tribution the effective Fokker-Planck equation~12! can be
used for the Markovian SBM, whereas it fails to apply to t
non-Markovian FBM. However, the FPT distribution o
SBM can be used to obtain bounds for the FPT distributi
of RL-FBM and standard FBM with the help of the Slepia
theorem@18#.

An interesting problem in the theory of random proces
is to determine how long a particle remains in a certain
gion x, where its position is described by a diffusion~or
Fokker-Planck! equation. This leads us to consider the F
denoted byTa , which is the time taken for the process
reachx5a for the first time, having started fromxo at t
50 @19#. One has

Ta5 inf$t.0 u X~ t !5a%. ~58!

Clearly FPT is a random variable which varies from realiz
tion to realization. It can only be determined exactly for
few simple cases, which include the Brownian motion.
this section, we intend to use inequalities in the covarian
of SBM, and the two versions of FBM to obtain an inequ
ity for their first passage time distributions.

In the case of SBMX* (t) we can follow the same metho
for Brownian motion to obtain the distribution function fo
its FPT @19#. The timeTa for X* (t) to hit the levela first
will be less thant iff M (t)5sup0<s<tX* (s), in that time is
at leasta. Thus fort.0,

P$M ~ t !>a%5P$Ta<t%

52P$X* ~ t !>a%

5
1

ApDt*
E

a

`

expF2
x2

4t*
Gdx

5
1

ApD
E

a/At
*

`

expF2
y2

4 Gdy. ~59!

By changing the variables5a2t* /x2, the distribution func-
tion for FPT is
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F~ t !5P$Ta<t%5
a

2ApD
E

0

t
* s23/2expF2

a2

4sGds. ~60!

The distribution densityf (t) of Ta is then given by

f ~ t !5
dF~ t !

dt
5

Ha

ApDtH11
expF2

a2

4t2HG . ~61!

When H51/2, the FPT distribution density for Brownia
motion is recovered. Ast→`, f (t) decays ast2(H11) and
this is illustrated in Fig. 5, which shows the result of the FP
estimation using 1000 realizations for the case whenH
50.4. The estimated value ofH50.4160.12 is in agreemen
with the calculated value despite the small number of
realizations considered.

Alternatively, the FPT distribution ofX* (t) can be deter-
mined by considering the effective Fokker-Planck equat
with appropriate boundary conditions@20#. Since we are in-
terested in first arrival time, we consider the process up
that time and then kill it by absorption. In other words, o
works with an absorbed process, with absorbing bounda
at x52` and x5a. Due to the symmetry of theP(x,t)
under consideration, and by changing the variablex→a2x,
the necessary boundary conditions become

P~0,t !50, P~`,t !50,

P~x,0!5d~x2a!. ~62!

With these boundary conditions, the solution to the effect
Fokker-Planck equation for FBM is given by

Pa~x,t !5P~x,tua,0!2P~x,tu2a,0!, ~63!

whereP(x,tua,0) is the PDF in the absence of boundaries
the position at timet of a particle initially ata. Then

FIG. 5. Estimation of the scaling exponenta of the first passage
time distribution f (t);t2a, where a5H11 for the rescaled
Brownian motion.
4-7
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Pa~x,t !5
1

A4pDtH FexpS 2
~x2a!2

4Dt2H D 2expS 2
~x1a!2

4Dt2H D G .

~64!

Let S(t) denote the survival probability, that is, the probab
ity that the diffusing particle does not reacha until time t.
Then

S~ t !5E
a

`

Pa~x,t !dx.

The FPT distribution functionF(t)512S(t), and the distri-
bution density for the FPT is given by

f ~ t !52
d

dtE0

`

Pa~x,t !dx

52
d

dt F 1

Ap
S E

2a/A4DtH

`

e2u2
du2E

a/A4DtH

`

e2v2
dv D G ,

~65!

whereu5(x2a)/A4DtH andv5(x1a)/A4DtH. Again one
gets Eq.~61!.

Note that the generalized diffusion equation and Fokk
Planck equation~with appropriate boundary conditions! are
the most commonly used mathematical tools for the deter
nation of FPT distribution. However, due to its no
Markovian character, FBM is not fully characterized by t
effective Fokker-Planck equation~12!. Various attempts to
obtain a Fokker-Planck or generalized master equation w
can provide a correct description of FBM have so far be
unsuccessful. We remarked that, in general, the Lange
equation contains more information than the correspond
Fokker-Planck equation. It is possible to obtain the sa
information from the Langevin equation and the Fokk
Planck equation in the case of a Markov process. In the c
of non-Markovian Gaussian FBM, correlation at differe
times can be obtained from the free fractional Lange
equations~16! and ~25! but not from the effective Fokker
Planck equation~12!. In fact, FBM is highly non-Markovian
and there does not exist a finite-dimensional supplemen
variable representation of FBM which makes it Markovia
As a result of the intrinsically non-Markovian character
FBM, the determination of its FPT distribution becomes d
ficult and so far no exact result has been obtained. Vari
methods have been used to determine the large-time lim
the FPT distribution of FBM. These include the distributio
of the maximum of a FBM@21# and the level crossing an
first return time @22,23#. The result obtained for the FP
distribution density in the large-time limit varies ast2(22a/2)

@or t2(22H)#, which has been verified by computer expe
ments@23,24#. Whena51 ~or H51/2), one gets exactly the
result for Brownian motion. Note that in all these methods
estimating FPT distribution probability, the stationary pro
erty of the increment process of FBM played a crucial ro

Since the FPT distribution of SBM is known exactly, on
can apply the comparison theorem of Slepian@18# to obtain
bounds for the FPT distributions for RL-FBMXRL and stan-
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dard FBMXW . C* (s,t), CRL(s,t), andCW(s,t) denote the
correlation functions ofX* , XRL , and XW , respectively.
Suppose these three centered Gaussian processes are
priately normalized such that their variances are equal. S
their correlation functions satisfy the following inequalitie
for s,t>0 ~see Appendix C for proof!:

C* ~s,t !<CRL~s,t !<CW~s,t ! for 1/2<H,1 ~66!

and

CRL~s,t !<CW~s,t !<C* ~s,t ! for 0,H<1/2, ~67!

then according to the Slepian theorem their FPT distributi
satisfy the following inequalities fort>0:

FW~ t !<FRL~ t !<F* ~ t ! for 1/2<H,1 ~68!

and

F* ~ t !<FW~ t !<FRL~ t ! for 0,H<1/2. ~69!

Since for larget, XRL→XW(t) and thusFW(t)'FRL(t) as-
ymptotically. When appropriately normalized, equality hol
whenH51/2 in the above equations.

VI. MULTIFRACTIONAL GENERALIZATIONS

Many transport phenomena such as anomalous diffus
in certain heterogeneous media have a far more com
scaling behavior than simple fractals. Disordered porous
terials are seldom heterogeneous or irregular in a unifo
sense; they usually contain multiple, nested natural len
and time scales or continuously evolving scales. Local
rosity models are often used to study transport propertie
such media@25#. Another example is hydraulic conductiv
ties that display increasing heterogeneity at decreasing sc
@26#. Such multifractal conductivities have an important e
fect on contaminant transport in the subsurface. Last but
least, the classic example offered by the dynamical proce
associated with turbulent cascades, which are multifra
rather than monofractal. The description of multifractal ca
cade processes, in general, require an infinite hierarch
scaling exponents for its characterization.

Monofractal models with a single scaling parameter p
sented earlier are inadequate for such processes that di
multifractal features, in the sense that their ‘‘irregularitie
can fluctuate from point to point in the media. To descri
these multifractal phenomena, one possible way is to ge
alize the Hurst exponent so that it becomes a local quan

uX~ t1t!2X~ t !u;tH(t) ~70!

for t sufficiently small. This local Hurst exponentH(t) can
then be regarded as the Hurst exponent ofX(t) at the pointt.
Therefore, one can characterize local heterogeneity with
ferent local power-law scaling using the time-~or space-!
dependent Hurst exponents.

The commonly used multifractal analysis was the one fi
introduced by Frisch and Parisi@27# based on the distribution
of singularities in multifractal measures for modeling ener
4-8
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dissipation in turbulent fluids. Such a method has been
ther developed with the help of wavelet analysis@28#. Mul-
tifractal analysis is widely used to model multifractal tran
port processes such as anomalous diffusion in multifra
porous media@29#, random fractals@30# and percolation
clusters@31#, hydraulic conductivity distribution@26#, and
other multifractal transport phenomena. In this section,
shall adopt a different approach, which deals directly w
some Gaussian multifractal processes.

A. Multifractional Brownian motion

We shall first consider the generalization of FBM to t
multifractional Brownian motion~MBM !. The two versions
of FBM, the standard FBMXW and the RL-FBMXRL , can
be extended to their respective MBMsYW and YRL by re-
placing the Hurst exponentH by a time- ~or position-! de-
pendent functionH(t) in Eqs. ~19! @32# and ~228! @33,34#.
H(t) is assumed to be a smooth function with 0,H(t),1.

Due to the fact that the Hurst exponent is not a cons
any more, one expects that the MBMs would not prese
the global properties of the FBMs, such as stationary inc
ments and self-similarity. However, these properties can
hold locally. It can be shown easily that the increments
YW are locally stationary, or to be more exact, locally asym
totically stationary. The variance of the increment proc
satisfies

^@YW~ t1t!2YW~ t !#2&5sH(t)utu2H(t), t→0, ~71!

where sH(t) is dependent onH(t). The covariance of the
standard MBM and RL-MBM can be calculated@32#. How-
ever, for the purpose of local properties it will suffice
consider the local covariance which is the same for b
versions of MBM @35#. By assuming thatH(t) is smooth
such thatH(t1t).H(t) for t→0, the local covariance ca
be calculated and is given by

^YW~ t1t!YW~ t !&5
sH(t)

2
@ ut1tu2H(t)1utu2H(t)

2utu2H(t)#, t→0. ~72!

The increments of RL-MBM also satisfy the locally asym
totically stationary property, hence its local covariance h
the same form as Eq.~72! ~up to a multiplicative determin-
istic function of time!. It is interesting to note that whe
extended to MBM, the advantage of the standard FBM o
RL-FBM, namely, the stationarity of increments disappe
and the two versions of MBMs have very similar propertie

In order to give an appropriate definition of local se
similarity, recall that the increments of a self-similar proce
X(t) are self-similar provided that the increments are stati
ary. Then forr .0,

X~ t1t!2X~ t !5r 2H@X~ t1r t!2X~ t !#. ~73!

For increments that are locally asymptotically stationary, o
has the following characterization of local self-similarit
The standard MBM YW(t) is indexed by H(t)
PCg

„R,(0,1)…,tPR for some positiveg with g.supH(t),
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then it can be shown thatYW(t) is said to satisfy the locally
asymptotically self-similar property if

limr→01S YW~ to1ru!2YW~ to!

rH(to) D
uPR

5@XH(to)~u!#uPR ,

~74!

where the equality in law is up to a multiplicative determi
istic function of time andXH(to) is the standard FBM indexed

by H(to). Equation~74! holds also for the RL-MBM ifYW
anduPR are replaced byYRL anduPR1 , respectively@32#.
This property can be verified by using the local covarian
~72!. One can interpret Eq.~74! as the existence of a tange
FBM X(to) at each timeto where the MBM is defined. The
Hurst exponent of this local FBM isH(to).

For applications to anomalous diffusion processes that
hibit multifractal features, the following characterization
the local property of MBM can be useful. To be specific,
us consider the RL-MBM~it applies to standard MBM as
well!. Let He(t)5H(t/e),sHe(t)5sH(t/e) , and

YHe(t)~ t !5
1

G„He~ t !11/2…E0

t

~ t2u!He(t)21/2h~u!du.

~75!

The variance of the increment process ofYHe(t) is

^@YHe(t)~ t1t!2YHe(t)~ t !#2&'DHe(t)utu2He(t) ~76!

for e sufficiently small such that the increment process
stationary overt!e21 and also we have assumedHe(t
1t).He(t). One can regard the parametere as a measure
of stationarity since it determines the size of the neighb
hood of t for which the increments ofYHe(t) are approxi-

mately stationary. In other words,YHe(t) behaves locally like

FBM with the Hurst exponent frozen atto for scales that are
smaller than the interval of stationarity. Based on the resa
pling algorithm mentioned in@36#, the sample path of RL-
MBM is shown in Fig. 6 for a particular choice of time
varying function, H(t)5a exp(2bt2)1c, where a,b,c are
arbitrarily chosen parameters. Details of the simulation al
rithms are given in Appendix A.

Finally, we consider the possibility of describing MBM
by fractional stochastic differential equations analogous
Eqs. ~16! and ~25!. Note that although the usual fraction
calculus is well suited for the description of anomalous d
fusion, it is not applicable if the diffusion occurs in mult
fractal media with a fractional exponent that depends on t
~or space!. Thus it is necessary to generalize the usual fr
tional calculus. One way to do this is to consider a fractio
derivative and fractional integral of variable order. A dire
generalization of the RL-fractional integration and differe
tiation to variable orderb(t) is @37,38#

I b(t) f ~ t !5
1

G„b~ t !…E0

t

~ t2u!b(t)21f ~u!du, b~ t !.0

~77!
4-9
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and the fractional differentiation of variable orderb(t),0
,b(t),1:

D b(t) f ~ t !5
1

G„b~ t !21…

d

dtE0

t

~ t2u!2b(t) f ~u!du,

0,b~ t !,1. ~78!

Equation ~77! gives RL-MBM if f (t)5h(t) and b(t)
5H(t)11/2. However, in contrast to the caseb(t)5b, it is
not possible to obtain a stochastic equation of variable o
for YRL(t) analogous to Eq.~16! by inverting Eq.~77!. The
reason is that Eq.~78! is not the left inverse of the operato
I b(t), that is,

D b(t)I b(t) f ~ t !Þ f ~ t !, ~79!

which can be verified by direct computation for some sim
functions@37,38#. Much work needs to be done to derive
stochastic fractional differential equation for MBM.

B. Multifractional Ornstein-Uhlenbeck process

It may be interesting to find out whether the link betwe
the fractional OU process and the standard FBM still ho
when extended to the multifractional case. For this purp
we need to extendXOU

n (t) to the multifractionalXOU
n(t)(t),

which is given by Eq.~53! with n replaced byn(t).0. The
multifractional OU process is a nonstationary process.
covariance is rather in a complicated form, which can
expressed in terms of the confluent hypergeometric func
1F1(a,g,z):

FIG. 6. ~a! The time-varying Hurst exponentH(t)
50.5 exp(2t2)10.25 and ~b! the corresponding sample path
RL-MBM.
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^XOU
n(s)~s!XOU

n(t)~ t !&5
C„a,n~s!…C„a,n~ t !…e2a(s2t)

G„2n~s!…~2a!11n(s)1n(t)

3$G„2n~s!…G„11n~s!1n~ t !…

3 1F1„2n~s!,2n~s!2n~ t !,2a~s2t !…

1„2a~s2t !…11n(s)1n(t)G~11n~ t !…

3G„212n~s!2n~ t !… 1F1„11n~ t !,

321n~s!1n~ t !,2a~s2t !…%. ~80!

If n(t) is assumed to be a smooth function, thenn(s)
.n(t) for ut2su5t!1. The local covariance of the multi
fractional OU process can be shown to be

^XOU
n(s)~ t !XOU

n(t)~ t1t!&5C2
„a,n~ t !…tn(t)21/2Kn(t)21/2~at!

'
A~p/2!a2

sin$@n~ t !21#p%G„n~ t !11/2…

3uatu2n(t)21 ~81!

for t!1. ThusXOU
n(t)(t) is a locally asymptotically stationary

process. In other words, it behaves like the fractional O
process indexed byn(t). Therefore one can conclude that th
link between the standard FBM and fractional OU proces
preserved locally when extended to their corresponding m
tifractional process.

C. Time-rescaled Brownian motion with variable scaling

Finally, we consider the generalization of SBM by repla
ing the constant scaling exponenta by a variable scaling
a(t):

Xa(t)~ t !5X~ ta(t)!, ~82!

where a(t) is assumed to be a smooth function with
,a(t),2. In terms of white noise, one has

Xa(t)~ t !5E
0

t

ua(t)21/2h~u!du. ~83!

The covariance ofXa(t) is

^Xa(t)~ t !Xa(s)~s!&5ta(t)`sa(s). ~84!

First we note that the Markov property is preserved
Xa(t)(t), provideda(t) is a monotonic increasing functio
such that the time ordering will not be changed by the ti
scalingt→ta(t). Due to the time-dependent scaling expone
properties ofX* (t) such as independent increments and s
similarity are lost. However, one can still hope that the
properties may hold locally, that is, for a fixedto , Xa(to)(to)

behaves likeX* (to) with a scaling exponenta(to). For non-
overlapping intervals (s,s1t1) and (t,t1t2) with t1 ,t2
.0, one has a(s1t1).a(s),a(t,t1t2).a(t) for t1
!s,t2!t. The covariance of the increment process is
4-10
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^@Xa(s)~s1t1!2Xa(s)~s!#@Xa(t)~ t1t2!2Xa(t)~ t !#&

5~s1t1!a(s)`~ t1t2!a(t)2~s1t1!a(s)`ta(t)2sa(s)

`~ t1t2!a(t)1sa(s)`ta(t), ~85!

which vanishes for eithers.t or s,t if a(t) is a monotonic
function. Thus the increments ofXa(t)(t) are asymptotically
locally independent for nonoverlapping intervals.

In contrast to the standard MBM, the absence of loca
stationary increments forXa(t)(t) rules out the use of Eq
~74! to characterize a locally asymptotic self-similarity.
fact, precisely due to this reason, the time-rescaled Brown
motion of variable order does not satisfy self-similarity l
cally. To characterize the self-similar property over a ve
short interval, it is necessary to consider the increment p
cess over such an interval. Let (to ,to1t1),(to1t2) be two
overlapping intervals witht1 ,t2.0 and t1 ,t2!to . Since
a(t) is smooth,a(to1t1).a(to).a(to1t2). Then one
has

^@Xa(to)~ to1t1!2Xa(to)~ to!#@Xa(to)~ to1t2!2Xa(to)~ to!#&

5~ to1t1`t2!a(to)2to
a(to) . ~86!

No matter how smallt1 and t2 are, any scaling byr .0
inevitably leads to the exponenta(rt o), thus denyingXa(t)
to satisfy the condition for a locally asymptotic se
similarity. As a resultXa(t) is unsuitable for modeling mul
tifractal transport phenomena which satisfy local se
similarity.

VII. BEYOND GAUSSIAN MODELS

There are empirical evidences indicating that there e
non-Gaussian anomalous diffusion processes@1–3#, which
includes diffusion with jumps. We shall comment briefly o
some common non-Gaussian models and their possible
nection with the Gaussian models.

As RL-FBM is the solution of the fractional Langevi
equation for a free particle, it is natural to consider the d
fusion equation with fractional time derivative as follows:

]P~x,t !

]t
5Da

]12a

]t12a

]2P~x,t !

]x2
, 0,a,2. ~87!

Its solution is a non-Gaussian PDF which can be associ
to a continuous time random walk@1#. It is a symmetric PDF
and for largex, each branch ofx.0 andx,0 exhibits ex-
ponential decay in the ‘‘stretched’’ variableuxu2/(22a):

P~x,t !;g~ t !uxu(a21)/(22a)exp@2h~ t !uxu2/(22a)# ~88!

for uxu@ta/2, whereg(t) andh(t) are certain positive func
tions of t. This non-Gaussian PDF satisfies the anomal
diffusion relation~1!. In the limit ta/x2@1, the leading terms
for the non-Gaussian PDF and the Gaussian PDF~10! have
the same time dependence;t2a/2.
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The other non-Gaussian process widely used to mo
anomalous diffusion is the Levy stable process@2,3#. Such a
Markov jump process can be associated with the fraction
space diffusion equation

]P~x,t !

]t
5D“

mP~x,t !, ~89!

where“m denotes the Riesz fractional derivative:

“

m52E dk

2p
e2 ikxukum, 0,m,2. ~90!

The solution of Eq.~89! in the Fourier space gives the sym
metric Levy distribution in the formP(k,t);exp@Dukum#. It
has the heavy tailed behavior inx space forxm@1:

P~x!;
1

uxu11m
. ~91!

One shortcoming of the Levy process is that its varian
is infinite ~in fact, all nth moments withn.a are infinite!.
This leads to a difficulty in terms of physical interpretatio
in particular, when applied to the case of enhanced diffus
~superdiffusion!. However, there are ways to overcome th
problem. For example, the truncated Levy process with v
ues of PL(x) vanishing outside some specified ‘‘length
One can also impose restrictions on the spatiotemporal s
ping distributions or on velocities of the particles. Such co
ditions, of course, will alter the Markovian character of t
original process.

The Levy stable process is am stable, (1/m)-self-similar
process with independent increments. Note that, in gene
Levy processes are multifractal; this is true when their m
sure is neither too small nor too large near zero@39#. How-
ever, for application to non-Gaussian anomalous diffus
with variable exponents, it may be useful to generalize Le
processes to stablelike processes by allowing variablem.
Bass@40# constructed a one-dimensional stablelike proc
using the~one-dimensional analog of the! pseudodifferential
operator2(2D)m(t)/2 of variable order of differentiation as
its generator. Herem(t) is required to satisfy some mild
conditions such as the continuity and regularity condition
, inftm(t)<suptm(t),2. This generalized stablelike pro
cess behaves locally like a symmetric Levy stable proce
i.e., for a fixedto , the process is a symmetricm(to)-stable
process.

A non-Gaussian generalization of FBM that preserves
H-self-similar property and the stationary of its increments
the linear fractional Levy motion, which can be defined
@41#

Xm,H~ t !5E
2`

`

@ ut2uuH21/m2uuuH21/m#dLm~u!, ~92!

whereLm is anH-self-similar,m-stable measure. Such a pro
cess may provide more flexibility as far as applications
concerned since it is characterized by two parametersH and
m. However, it still suffers the same problem as the Le
4-11
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stable process, i.e., it has infinite variance. Finally, one
also generalize theH exponent to a time varying functio
H(t) to obtain the multifractional Levy-motion; this proce
will be discussed elsewhere.

VIII. DISCUSSION AND CONCLUSIONS

There exist several random processes that satisfy
anomalous diffusion relation~1!. Three such processe
namely, SBM, RL-FBM, and standard FBM, which are
Gaussian and self-similar are considered. Their proper
differ considerably, ranging from the Markov property a
independent increments for SBM to the stationary and n
stationary increments for the non-Markov standard FBM a
RL-FBM, respectively. As there exist a number of differe
mechanisms leading to the anomalous diffusion, so ther
also a need to have several different random processe
describe these anomalous diffusive motions. It is neces
to know additional conditions, both empirical as well as th
oretical, in order to determine the appropriate random p
cess to be used for a particular system that undergoes an
lous diffusion. The model adopted not only has to descr
correctly the asymptotic equilibrium state, it needs to be a
to portray the intermediate stages as well. Thus a better
derstanding of the physical mechanism of the microsco
motion for anomalous diffusion is necessary in order to id
tify the appropriate model.

As far as these three Gaussian processes are concern
useful way to verify the suitability of one of them for mod
eling anomalous diffusion is the knowledge of FPT distrib
tion. The FPT distribution for SBM and standard FBM a
different, even though they have the same PDFs. In fact,
connection between the FPT and PDF of a random proc
in general, can be quite complicated. Even a comp
knowledge of the PDF may not be able to determine the F
distribution, as in the case of FBM. Since only the FPT d
tribution of SBM is known exactly among the three Gauss
processes, one can apply the Slepian theorem to compar
FPT of SBM, and the two FBMs. This provides the upp
bound ~for 0,H<1/2) and lower bound (1/2<H,1) for
the FPT distributions of the two FBMs.

Finally, we note that multifractional generalizations
FBM and SBM show that the former still preserves the pro
erties of FBM locally, whereas the latter does not prese
the self-similarity locally. Thus, only MBM and the multi
fractional OU process can be regarded as candidates
Gaussian models for anomalous diffusion with variable sc
ing exponents.
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APPENDIX A

The sample paths of the rescaled Brownian motion
obtained by considering the discrete version of Eq.~4! for
discrete timet j5 j D, j PZ1 and time stepDt51/(N21):

X* ~ t !5(
i 51

j E
( i 21)Dt

iDt

ta21/2dB~t!. ~A1!

Note thatdB(t)5h(t)dt is the increment of Brownian mo
tion, thus one can approximate

dB~t!5S h i

ADt
D dt, ~A2!

whereh i is the discrete sequence of Gaussian white no
with zero mean and unit variance. Thus, Eq.~A1! is reduced
to

X* ~ t j !.(
i 51

j
h i

~a11/2!
@~ i !a11/22~ i 21!a11/2#~Dt !a,

~A3!

which forms the generator of the sample paths shown
Fig. 1.

The simulation of RL-FBM is carried out based on th
similar algorithms as described above but using the follo
ing approximation of Eq.~19!:

XH
RL~ t j !5

1

GS H1
1

2D (
i 51

j E
( i 21)Dt

iDt

~ t j2t!H21/2dB~t!.

~A4!

Upon integrating Eq.~A4! gives

XH
RL~ t j !5(

i 51

j S h i

ADt
D wj 2 i 11Dt, ~A5!

with the modified weighting function as suggested in@42#,

wi5
1

G~H11/2!
F t i

2H2~ t i2Dt !2H

2HDt G1/2

, ~A6!

to give the accurate scaling of the variance, i.
var@XH(t j )#;t j

2H . The sample paths in Fig. 2 are simulat
using the generator given in Eq.~A5!. There exist a numbe
of well-known techniques for the simulation of the standa
FBM, such as the random midpoint displacement meth
@43# and the wavelet-based algorithms@44,45#, these will not
be described here.

A discrete sequence ofN points RL-MBM,YH(t j )
(t j ) with

time sequenceH(t j ) is obtained by sampling the points
namely, YH(t j )

(t j )5XH(t j )
RL (t j )1,0< j <N from a set of

N-sample paths of RL-FBM generated for the respect
pointwise values ofH(t j ) evaluated att j5 j /(N21). For a
particular choice ofH(t) as shown in Fig. 6~a!, the sample
4-12
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path with the prescribed local regularity is shown in F
6~b!. A simple method for numerical estimation ofH(t) is
described in@33,36#.

APPENDIX B

The covariance of the processXOU
n (t) can be calculated a

follows:

^XOU
n ~s!XOU

n ~ t !&5E
0

sEn,n~2a@s2u#n!En,n~2a@ t2u#n!

~s2u!12n~ t2u!12n
du

5 (
j ,k50

`
~2a! j 1k

G~n j 1n!G~nk1n!

3E
0

s

~s2u!n( j 11)21~ t2u!n(k11)21du

5 (
j ,k51

`
~2a! j 1k22

G~n j !G~nk!

3E
0

s

~s2u!n j 21~ t2u!nk21du

5 (
j ,k51

`
~2a! j 1k

G~n j 11!G~nk!
sn j tnk21

3 2F1S 1,12nk,11n j ,
s

t D . ~B1!

XOU
n is nonstationary in contrast to the OU process. Thu

cannot be the fractional OU process we are looking for.
Furthermore, one can show that its variance does not

to power-law behavior as required for anomalous diffusi
By using the property of the hypergeometric function@16#
that 2F1(a,b,g,1)5G(g)G(g2a2b)@G(g2a)G(g
2b)#21, and the identity for gamma functionsxG(x)
5G(11x), one obtains the variance as

^@XOU
n ~ t !#2&5 (

j ,k51

`

~2a! j 1k22tn j 1nk21

3
G~n j 1nk21!

G~n j !G~nk!G~n j 1nk!

5
1

a2t
(

j ,k51

`
~2a! j 1k

~n j 1nk21!G~n j !G~nk!
tn j 1nk

<
1

a2t
(
j 51

`
~2atn! j

G~n j ! (
k51

`
~2atn!k

nkG~nk!
, ~B2!

since (n j 1nk21)>nk for n>1 and j ,k>1. Thus
02111
.

it

ad
.

^@XOU
n ~ t !#2&<

1

at
(
j 50

`
~2atn! j 11

G~n@ j 11# ! (
k51

`
~2atn!k

G~nk11!

52tn21En,n~2atn!@En,1~2atn!21#.

~B3!

For at→0, one getsEn,n(atn);1 and @En,1(2atn)21#;
2atn such that

^@XOU
n ~ t !#2&&t2n21. ~B4!

For larget2`, the Mittag-Leffler function has the following
asymptotic series expansion@15#:

Ea,b~z!52 (
k51

N
z2k

G~b2ak!
1O~ uzuN!, ~B5!

which is valid for uarg(2z)u,@12(a/2)#p and z→`. It
follows that

Ea,a~2t !;t22 for t→`, ~B6!

such that En,n(2atn);t22n. On the other hand
@En,1(2atn)21#;21 as 1→`. Therefore,^@XOU

n (t)#2&
<t2n21 as t→`.

APPENDIX C

Let C* (s,t), CRL(s,t), and CW(s,t) be the correlation
functions of SBM, RL-FBM, and standard FBM, respe
tively. Suppose these processes have zero means and the
appropriately normalized such that

C* ~ t,t !5CRL~ t,t !5CW~ t,t !. ~C1!

Then fors,t>0 and 1/2<H,1,

C* ~s,t !<CRL~s,t !<CW~s,t !. ~C2!

First note that fors,t>0,s<t,

C* ~s,t !5s2H52HE
0

s

~s2u!2H21du

<2HE
0

s

~s2u!H21/2~ t2u!H21/2du

5CRL~s,t !. ~C3!

CW~s,t !5
1

2
@s2H1t2H2~ t2s!2H#

5HE
0

s

u2H21du1HE
t2s

t

u2H21du

5HH E
0

s

$~vH21/2!21@~ t2s1v !H21/2#2%dvJ
>2HE

0

s

vH21/2~ t2s1v !H21/2dv5CRL~s,t !.

~C4!

Combining Eqs.~C3! and ~C4! gives Eq.~C2!.
4-13
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For 0,H<1/2, the inequality~C3! is reversed, wherea
inequality ~C4! remains valid. Since for 0,H,1, s,t,

sH>tH2~ t2s!H ~C5!

then

2sH>sH1tH2~ t2s!H, ~C6!

which implies
ts
,

li-

ob

i,

s

02111
C* ~s,t !>CW~s,t !. ~C7!

Hence

CRL~s,t !<CW~s,t !<C* ~s,t ! ~C8!

for 0,H<1/2.
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