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Self-similar Gaussian processes for modeling anomalous diffusion
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We study some Gaussian models for anomalous diffusion, which include the time-rescaled Brownian mo-
tion, two types of fractional Brownian motion, and models associated with fractional Brownian motion based
on the generalized Langevin equation. Gaussian processes associated with these models satisfy the anomalous
diffusion relation which requires the mean-square displacement to varytitB<a<2. However, these
processes have different properties, thus indicating that the anomalous diffusion relation with a single param-
eter is insufficient to characterize the underlying mechanism. Although the two versions of fractional Brownian
motion and time-rescaled Brownian motion all have the same probability distribution function, the Slepian
theorem can be used to compare their first passage time distributions, which are different. Finally, in order to
model anomalous diffusion with a variable exponer(t) it is necessary to consider the multifractional
extensions of these Gaussian processes.
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[. INTRODUCTION Ornstein-Uhlenbeck process, and the time-rescaled Brown-
ian motion to their corresponding “multifractional” pro-
Anomalous diffusion occurs in many physical and bio- cesses. Their local properties are studied to see whether they
logical systemg1-3]. It is characterized by the following can be used to model anomalous diffusion with variable scal-
mean-square displacemgffior the one-dimensional case ing exponents.

(X3(1))~t*, 0<a<2. (1) Il. TIME-RESCALED BROWNIAN MOTION

For 0<a<1, x(t) represents subdiffusiofor suppressed _1ne Simplest Gaussian model that satisfies the anomalous

diffusion), and for I<a<2 it is called superdiffusioror  diffusion relation(1) can be derived by time rescaling the

enhanced diffusion while @=1 corresponds to the normal Brownian mOtIOﬂX(t) using the following nonlinear time

diffusion or Brownian motion. transformation:
There have been many attempts to model anomalous dif-

fusion by means of generalized diffusion equations, which

mostly provide a mathematical description of the process, iRy gptain the time-rescaled Brownian motidor scaled
particular, the second moments of the solutions of thesg,ownian motion(SBM)] X, (t)=X(t,), which is again a

equations are shown to exhibit the desired time dependenggayssian process with mean zero and correlation function
(1). Despite the various models proposed for anomalous dif-

fusion (see, for example],2,4]), there still exists a need to (X(te )X(84)) =1, /\s, =t*A\s*=(X, ()X, (s)), (3
obtain a deeper understanding of its underlying mechanism.
In this paper, we study some Gaussian models of anomavhere/\ denotes the minimum. Note thA, (t) can also be
lous diffusion. Even though all these Gaussian processes satefined in terms of white noisg(t):
isfy the anomalous diffusion relatiofl), they have quite
different properties. We_ then consider thg Langevin eqL_Jation X, (t)= Jtu“‘l’zn(u)du, (4)
approach with a solution that can be linked to fractional 0
Brownian motion either asymptotically or in the high fre-
quency limit. An explanation and solution are given for thewhere 7(t) satisfies(#(t) 7(s))= 8(t—s). The differential
anomaly that exists in the generalized Langevin equation aprersion of Eq.(4) is
proach, which gives asymptotic mean-square displacement
for a=1 astInt instead oft as required for Brownian mo- dX, (1)
tion. Two types of fractional Langevin equations and their dt
suitability for modeling anomalous diffusion are considered.
We next show that the Slepian theorem can be used to conit can be easily verified that the variance Xf (t) satisfies
pare the first passage time distributions of the three Gaussidd).
processes, namely, the two versions of fractional Brownian The SBMX, (t) preserves the basic properties of Brown-
motion and the time-rescaled Brownian motion. Finally, weian motion. Just like Brownian motioiX, (t) is a Gaussian
generalize the fractional Brownian motion, fractional Markov process since far>0, the scaling transformation
—1t% a>0 preserves the time ordering, hence the Markov
property. One can also prove the Markov property for SBM
*Corresponding author. Email address: sclim@pkrisc.cc.ukm.myby verifying the Chapman-Kolmogorov equation using its

t—t, =t%, 0<a<2, 2

=tle=Di2y(t). (5
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FIG. 1. The sample paths of rescaled Brownian motion with

H=0.25 andH =0.75. where D, (t)=aDt* ! can be regarded as the time-
dependent diffusion coefficient. Equati¢t?) is also known
probability distribution functionX, (t) is a self-similar pro- as the effective Fokker-Planck equation, which has solution
cess with scaling exponeat/2. Forb>0, we have (10) when subjected to initial conditioR, (x,0)= §(x).
The PDF given in Eq(10) is self-similar under the scal-
(X, (bt)X, (bs))=(X([bt]*)X([bs]®))=b*(X, (1)X,(s)),  ing transformations— bt andx— b2, thus one gets
(6)

P, (b*?x,bt)=b*"?P, (x,t). (13
where we have used the self-similar property of Brownian ) ) )
motion, X(bt)=b2X(t). Similarly, one can verify that the We shall show below that fractional Brownian motion also
SBM has independent increments for nonoverlapping inter?@s the same PDF.
vals, just like in the case of ordinary Brownian motion. The
sample paths of the rescaled Brownian motions simulated IIl. FRACTIONAL BROWNIAN MOTION
using the time-rescaling transformation of Brownian motion
are shown in Fig. 1. FoH=0.75, X, (t) represents an ac-
celerated Brownian motion; and fét=0.25 it becomes de-
celerated Brownian motionRefer to Appendix A for the
details of numerical algorithms.

Brownian motionX(t) satisfies the diffusion equation dXx(t)

Fractional Brownian motioiFBM) can be regarded as a
natural generalization of Brownian motion from the perspec-
tive of the Langevin equation. Recall that the following
Langevin equation:

g F(X(1), )+ n(t) (14
IP(x,1) . PPP(x,t)

ot (9)(2

, ()

has Brownian motion as the solution in the absence of exter-
nal force[ F(X,t)=0]:
with P(x,t) the probability distribution functiofPDF for

the .Browniar? m_otion, qndD the diffusion constant. When X(t):jtr](r)dr. (15)
subjected to initial condition P(x,0)= 8(x), Eq. (7) has the 0
solution

Now one considers the fractional Langevin equation for a

1 X2 free particle,
P(x,t)= exg — —<|- 8
(x4 V4D 7t F{ 4Dt ® dBX(t)
S =n(b), (16)
The diffusion equation for the SBM has the same form as Eq. dt
7), that is, . . ) .
(7). that is where the fractional derivative can be defined in terms of the
) fractional integral,l ? [5],
IP(x,ty) b I“P(X,ty) 9
e T ? B (1) = — ft(t VB Lfuydu 0
=—_ -u u)du for B>0.
TR . P
and with initial conditionP(x,t, =0)= &(x), its solution is (17)
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4 - ' ' ' - t28-1

X ()= —————
s ] K02 (28-1)[T(B)]

which satisfies the anomalous diffusion relatigh) for B
=(a+1)/2 with 1< B<2. For a Gaussian process, the PDF
is completely determined from the knowledge of its variance

g I hl b He0.25 | and meanhere assumed to be zg¢rd@herefore the PDF of
< Mr | RL-FBM is similar to that for SBM:

=Cut? 1, (21)

2_

2

1
PrL(X,t)= exg — . (22
N Top p[ 4cﬁt2ﬂ1]

PrL(X,t) will be equal toP, (x,t) if the RL-FBM is taken as
" . . . . . D /CzXry(1). In contrast toX, (t), Xg.(t) does not satisfy
0 200 400 630 800 1000 1200 the Markov property. In fact, the presence of time convolu-
tion in Eg. (19 is a typical manifestation of long-range
FIG. 2. The sample paths of RL-FBM fdd=0.25 andH memory. There exists a suggestion that the effective Fokker-
=0.75. Planck equatiori12) is the diffusion equation for FBM, and
the non-Markovian feature is expressed through a time-
For y=— 8>0, the fractional derivativgD; is then defined dependent diffusion constaflt, =aDt*~* [7]. This state-
as a fractional integral of order— y (withn—1<y<n) and ment is invalid since the diffusion equatigd2) which is
an ordinary derivative of order: linear in time derivative also describes the Markovian SBM.
The non-Markovian character of FBM implies that E2)
n does not fully describe FBM, notably it does not allow one to
DY (1), (18)  derive its covariance. This remark is further reinforced in our
discussion on first passage time distributions of these pro-
cesses later on.
Fora=0, Egs.(17) and(18) are known, respectively, as the  We note that the RL-FBM is not the standard FBM that is
fractional integral and the fractional derivative of the used widely in modeling Gaussian self-similar processes.
Riemann-Liouville type; whera=—, they are known as The standard FBNMKX,, is defined in terms of a modified or

H=0.75
o}

y d
DI (D=| 5

the Weyl fractional integral and derivative. reduced fractional integral of the Weyl typ8:
Let the fractional derivative in Eq(16) be of the
Riemann-Liouville type. Inverting Eq16) results in 1 t B
Xal01= g5 | | (=W
B 1 ‘ B-1

X (0= o0~ o | (=W Ty, (19 0

T —J (—w)? p(u)du (22)
which is known as the fractional Brownian motion of the 1 o
Riemann-Liouville type RL-FBM) [6]. Here, we follow the =X f t—u)B o (—y)Bt d
standard notational convention of the fractional calculus with RL r'p) —oc[( W (W™ n(udu.
index B, instead of using the Hurst exponert (=p (22"

+1/2), 0<H<1 commonly adopted to index FBM. Note

that Xg,_ is well defined forH > — 1/2. However, for the pur- FBM defined by the Weyl fractional integral alofiee., the
pose of comparison with the standard FBM which is definedirst term of Eq.(22')] is divergent, hence it is necessary to
for 0<H<1, we shall confineXg, to the same range df. introduce a compensation term to ensure the convergence.
The sample paths of RL-FBM are shown in Fig. 2 simulatedOne can regard the standard FBK{, as the sum of two
using the algorithms described in Appendix %g,(t) is a independent Gaussian proceXg; and a process that repre-
self-similar Gaussian process with zero mean and a rath&entsa history of infinite pasas in Eq.(24). In other words,
complicated correlation function: Xw has ahead startover Xg, , which begins at timeé=0

with no memory of the past. As a result, the increments of
Xy satisfy the stationary property, whereas they fail to be so

B—1gB
(XRL('E)XRL(S)>=t—stl(l—ﬂ,l,l+ﬁ,§ for Xg_. In fact, the standard FBM is the only Gaussian
BIT(B)]? t self-similar process with stationary increments. Its correla-
(20 tion function has the following simple form:
for s<t, and ,F; is the Gauss hypergeometric function. :E 2H 4 [g|2H_ [{_g|2H
However, the variance ofg, has the following simple form: Xw(OXw(s)) = =+ =[t=5", (23
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4 - - - - - comparison to the sample paths of the RL-FBFg. 2) in

the large-time asymptotic limit. The local regularity proper-
3r 1 ties of the latter will approach the former when the large-
Al 075 time asymptotic is considered but the processes differ near

the time origin. Since from the physical point of view, FBM

| cannot be made to start &t —~, RL-FBM may turn out to
i " be more appropriate in some applications, particularly in the

ﬂ l modeling of anomalous diffusion where one usually consid-

ers the asymptotic process. Another advantage of RL-FBM is

s 1 that it is defined for alH >0, thus it can be used for trans-

port phenomena that are characterized-oy 1.

H=0.25
IV. GENERALIZED LANGEVIN EQUATION APPROACH
=3I
A. Generalized Langevin equation
o 200 200 600 800 1000 1200 We shall first consider the Gaussian model proposed by

t Wang and co-workef10,11. They consider the following

FIG. 3. The sample paths of the standard FBMHor 0.25 and ~ 9eneralized Langevin equation for a particle of miks

H=0.75. AX(1)
——=V(1), (28)
whereVy=[T'(1—2H)cosHm)/Hm and O<H<1. dt
In order to obtain a differential version of ER2') one
rewritesXy,(t) as d?X(t) t
M > +Mj Nt—7nV(n)dr=F(t), (29
Xw()=1§7(t) = 1§7(0), (24) dt °

where\(t— 7) is the memory kernel of frictional force and

where I(,’\, denotes the Weyl fractional integral of ordgr EOD | : G g ' ith dth
Due to the additional temﬂ,n(O), onecannot directly apply (1) is a stationary Gaussian noise with zero mean and the
long-range correlation property

the inverse operation to obtain a stochastic differential equa-

tion similar to Eq.(16) for Xg, . However, from Eq(22r) (FO)F(1))=Fo(a)t™ %, O<a<2. (30)
one gets '
dX(t)  d With the help of the generalized second fluctuation-
W S .
- &'@ﬂ(t): lwn(t), (25  dissipation theorem, they obtained
Fola)
with y=pB—1. Fory<0, Eq.(25) can be written as A= MkBTt : (31)
dXw(t) =Dy (1) (26) whereT is temperature anllz is Boltzmann’s constant. By
dt w ’ considering the large-time asymptotic condition, they ob-

o . o ] tained the following correlation function for the velocity pro-
whereD,,” is the Marchaud fractional derivatifé] defined  cesg[11]:

for sufficiently goodf(t) by (VONV() ~(a—1)te-2 (32)
~(a—

t f(t)—f(u)

F'(l-a)) = (t—u)tte

Dyf(t)= (27 for 0<a<1 and Ka<2. Equation(32) agrees with the
correlation function for the fractional Gaussian noise associ-
ated with FBM if a=2H. They proceeded to obtain a gen-
eralized Fokker-Planck equation for the PDP(x,t) for
PX(t), which is basically the same as the effective Fokker-
Planck equatiori12) for V(0)=0 with some adjustments of

constants. Thus the variance for the procé&s is given by

In other words,Xy(t) does not satisfy a fractional sto-
chastic differential equation of a simple form as in the cas
of Xg.(t) [to be more exact Eq25) is a fractional integro-
differential equatioh In order to see the link between RL-
FBM and the standard FBM, we first note that tbr>1, the N ra
incrementXg (t+ 7) — Xg. (1) is stationary. Furthermore, it (X(O)F)~1%,t—ee. . .
can be shown that in the large-time asymptotic limit, RL- I.n the case Obr=1, Wa.”g did not recover the usual d.'f'
FBM approaches the standard FBM in the following senserus'on equation fo_r Brownian motion. Instea.d, thg foIIowmg
[9]: X has stationary increments &s»c, with the incre- asyrnptouc effective Fokker-Planck equation is obtained
ment process oKg, approaching increment processXqf; in [11]:
the mean-square limit. This property can also be inferred
from the sample path properties of the standard FBig. 3) PP _ KT |ntm (33

simulated using the midpoint displacement algorithms, in ot M ax?
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with solution[subjected tdP(x,0)= 5(x) ] where §(t) is the Diracé function.
Now we consider the large-time asymptotic velocity as a
1 x2 generalized process, then its correlation functi®®) has in
P(xt)= 47D t(nt-1) exg — 4Dt(Int—1)|’ the sense of a generalized function, the following limit for
(34) a=1:

H i _ a—2_
whereD;=kgT/M. The variance has the power-logarithmic lim a1 (V(O)V(D) ~lim_y(a@—D)|t[* *=4(1). (4D

growth Then the effective Fokker-Planck equati@38) and its solu-

(XA ~t(Int—1), t—oo. (35) tion (3_4) now_beco_me the ordinary diffusion equation for
Brownian motion with Irt andt(Int—1) to be replaced by 1
They drew the conclusion that the generalized Langevirandt, respectively. In other words, for=1 one recovers
equation shows anomalous diffusion that is associated witBrownian motion with{ X(t)%)~t instead of Eq(35). It can
FBM for 0<a<1 and I<a<2; and the long-range corre- be concluded that if proper care is taken to interpret the case
lation of the fluctuation forcd(t) is the physical origin of 0f =1, the anomaly mentioned above does not exist. Thus
anomalous diffusion. For=1, one does not recover the asymptotically {(—c) the generalized Langevin equation of
normal diffusion, instead an anomalous diffusion with aWang and co-workef10,11] provides a Gaussian model for
mean-square displacement that varies with logarithmic timethe anomalous diffusion. The position procexgt) re-
This implies thate=1 gives anomalous diffusion that is not sembles RL-FBM since it is assumed to startta0 and
related to FBM. A result similar to Eq(35) was also ob- acquire the properties of FBM ds-%. However, one can-
tained in[12,13. not identify X(t) with RL-FBM since its correlation function
We shall now show that the so-called anomaly mentionedt intermediate times is not known. Due to this reason, such
above does not exist if the velocity process is regarded as @ Langevin approach to FBM is not unique as various pos-
generalized random process. [\ét) be used to denote the sibilities may exist with different intermediate processes
continuous time derivative oX(t). V(t) cannot be consid- Which have the same asymptotic limit process.
ered pointwise for each Instead, it is a generalized function
[14]: B. Fractional Langevin equation

o Recall that the Ornstein-Uhlenbe@®U) processXq(t),
V((p)=<V,(p>=J V(t)e(t)dt (36)  which describes the Brownian particle in a harmonic oscilla-
o tor potential, is the stationary solution of the Langevin equa-

with ¢ € S(R), the Schwarz space of test functions WhichtIon
satisfy
Xou(t)=n(t), a>0. (42)

d+
aa

d"e(t) L
m =0 for all positive integersn,n. . S . - .
dth Brownian motion is recovered in the lim#&—0 or in the

(37)  high frequency limit. Thus the OU process can be regarded
as the stationary analog of Brownian motion. One would like
SupposeV is a real-valued generalized random process withto see whether the generalization of E4p) to the fractional
zero mean and correlation functional Langevin equation can give a solutidt(t), which satis-
fies an analogous relation with the standard FBM. Consider

Clo, )= (V()V(4h))= fw fm o(1)C (t—s)y(s)dt ds first the following fractional Langevin equation :

Iim|t|_,xt

(39 (D"+a)Xgy(t)=n(t), »>0a>0. (43
where For n—1<w<n,n>1 and the following boundary condi-
tions:
ColH)=(V(0)V(1))=c,|t]*"? (39 |
: . : d’X(t) .
with ¢,~a(a—1). Note thatC (t) is locally integrable for Xou0)=X,, ———| =X, j=1,...n-1,
0<a<l. For I<a<2, C,(t) is given by the generalized dt t=0
function ¢, [t %], where[(x”.)] denotes the finite part of (44)
X, —2<p<-1. Here [(x})],—2<p<-1, defines .
uniquely a homogeneous generalized function of degree the Laplace transform of Eq43) is
whose restriction to{ «,0)U (0,) coincides with the func- n
tion |x|?. Noticing thatC,(t) has a simple pole at=1, we s"X(s)+aX(s)=7(s)+ > s IX: 4, (45)
have in the sense of a generalized function, the limit =1 .

lim,_, 1 lt|* 2~ 8(1), (40)  which gives
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- ) y
7(8S) S
—— D X ——. (46) A ]
s’+a j=1 s’+a H=0.75

The inverse Laplace transform gives the solution of @8):

n

Xou(t) =2 X1t "1E, (—at”)

=1 S
: X |
+ [ t-wE, - at- T B |
0
(47) -2r H=0.25
whereE, 45(2) is the generalized Mittag-Leffler function de- -3t ]
fined by[15] 4 . . . . .
o 200 400 600 800 1000 1200

Eap(2)= zor(akw) a>0,8>0. (48)

FIG. 4. The sample paths of fractional Ornstein-Uhlenbeck pro-
cess forH=0.25 andH=0.75.

For simplicity, one can let alX;’s equal to zero without
affecting the conclusion to be drawn later on. Then, the cowhereé(t) is the unit step function an@(a, ») is a constant
variance ofX},(t) can be calculated f@<t (see Appendix that depends om and v, which can be chosen &5(a,v)
B): =2"1"2a"= 1T (»)] L. When v=1, C(a,v) becomes
unity. The covariance of the stationary procégs,(t) is
e (_ a)] +k—-2 )
(Xou(s)Xou(t) 21 W skt ar 32

<X6U(t+ T)Xg)u(t»: \/E |T|

v— 1/2K

V7l/2( | aT| )1 (55)

X oF,

S
1,1-vk,1+ VJ’{)’ (49) whereK,(z) is the modified Bessel function of the second

kind (or Macdonald functionof orderv. lts spectral density
which shows thaiXg, is nonstationary, hence it cannot be is 2"~ *a?"~2I'(v)(a?+ w?) " [16], p. 464, EqQ.(3771. 3]
the stationary analog for FBM. which gives the spectral density for OU procesya?
In order to see whethet(t) can be used to describe the +?) ™! whenv=1.
behavior of anomalous diffusion, one needs to consider its By using the following asymptotic property of the modi-
variance. It can be showisee Appendix Bthat fort— o, fied Bessel function:

([XouHI)~t" "% (50 K,(2)~ F(”)(Z) for z—0, (56)

With v=H +1/2 and 1/2<H <1, the variance oKy varies
asymptotically ast~ 732 which differs fromt? of the ~ and the symmetric propert{,(z)=K_,(2), one can verify
anomalous diffusion. On the other hand, fat|<1 one gets from the covariance55) that for|ar|<1,

([XGy(1) D) ~t2r 1=t (51) ([Xou(t+ 1) —Xgu(1)1%)
This is expected aa—0,X{,— Xg. as Eq.(43) reduces to _ m/2a? lar|2""t,  (57)
the equation of RL-FBM. sif(v—=1/2)7]I'(v+1/2) '
Another way to fractionalize the Langevin equation is = = ) ]

given by which is similar to the variance of the increment process for

standard FBM withv=H+1/2. In the high frequency re-
(D+a)"Xgy(t)=7n(t), a>0,r>0. (52)  gime with w>a, the spectral density scales asw™ 2" or

o~ @GN+ Equation (57) together with the Wiener-

Its stationary solutiorXg(t) is given by Khinchine theorem, which relates the covariance of a station-

ary process to the power spectral density, allows one to simu-
Y * late the sample path&ig. 4) of the fractional Ornstein-
XOU(t):J’,wG(X_U)”(u)dU (53 Uhlenbeck process using an algorithm based on spectral
technique[17]. The stationary properties of the process are
with evident from the graphs as there exists no obvious trend in
the sample paths in contrast to the upward or downward
G(t)=C(a,»)t" te 34(t), (54 trends observed in Figs. 2 and 3. From the above discussion,
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we see that Eq(52) is the appropriate Langevin equation 2 ' ' - - '
which gives the fractional Ornstein-Uhlenbeck process or the
stationary analog of FBM.

V. FIRST PASSAGE TIME DISTRIBUTION FUNCTION 15l

It has been shown earlier that three processes, namel
SBM and two versions of FBM, satisfy the same effective
Fokker-Planck equatiorfup to a multiplicative constahnt
These processes have quite different properties and they sa
isfy free Langevin-type equatior{5) and(25) with different
noise sources and the free fractional Langevin equdfién
The fact that different Langevin equations give rise to the
same effective Fokker-Planck equation implies that the
former contain more information than the latter. In general,
the Fokker-Planck equation describes the process fully only g 2 2.2 24 26 2.8
if the process is Markovian. We shall show in this section log, f
that in the determination of the first passage tifRET) dis-
tribution the effective Fokker-Planck equatidh2) can be
used for the Markovian SBM, whereas it fails to apply to the
non-Markovian FBM. However, the FPT distribution of
SBM can be used to obtain bounds for the FPT distributions
of RL-FBM and standard FBM with the help of the Slepian _ . b g a
theorem[18]. FO=PT=b=2 = f s Vex - 45

. . . T 0

An interesting problem in the theory of random processes

is to determine how long a particle remains in a certain 'eThe distribution densiti(t) of T. is then given b
gion x, where its position is described by a diffusidar ¥ a ¢ y

s
=3
-
jo2)
2

1F

FIG. 5. Estimation of the scaling exponenbf the first passage
time distribution f(t)~t~ ¢, where «a=H+1 for the rescaled
Brownian motion.

2
ds. (60)

Fokker-Planck equation. This leads us to consider the FPT dF(t H 2
denoted byT,, which is the time taken for the process to f(t)= ( ): a exn — a . (61)
reachx=a for the first time, having started from, at t dt  /zDt"+! 4¢2H

=0 [19]. One has
When H=1/2, the FPT distribution density for Brownian
T,=inf{t>0| X(t)=al. (580  motion is recovered. As—x, f(t) decays ag~"*1) and
this is illustrated in Fig. 5, which shows the result of the FPT
estimation using 1000 realizations for the case wlikén
=0.4. The estimated value f=0.41+0.12 is in agreement
with the calculated value despite the small number of the

Clearly FPT is a random variable which varies from realiza-
tion to realization. It can only be determined exactly for a
few simple cases, which include the Brownian motion. In™""" *'" )
this section, we intend to use inequalities in the covariancefealizations considered.

of SBM, and the two versions of FBM to obtain an inequal- Alternatively, the FPT distribution oK, (t) can be deter-
ity for their first passage time distributions. mined by considering the effective Fokker-Planck equation

In the case of SBMK, (t) we can follow the same method with appr_opr_iate bo_unda_lry conditioﬂjg(_)]. Since we are in-
for Brownian motion to obtain the distribution function for terested in first arrival time, we consider the process up to

its FPT[19]. The timeT, for X, (t) to hit the levela first that time and then kill it by absorption. In other words, one
will be less thart iff M(t)=sug.-X, (S), in that time is works with an absorbed process, with absorbing boundaries
at leasta. Thus fort>0 at x=—o and x=a. Due to the symmetry of th@(x,t)

' under consideration, and by changing the variablea— X,
P(M(t)=a}=P{T,<t} the necessary boundary conditions become

= A<

=2P{X, (t)=a} P(0t)=0, P(x,t)=0,

P(x,0)=8(x—a). (62)
dx

1 Jw F{ x?
expg — —
JaDt, Ja at,

With these boundary conditions, the solution to the effective

1 fw ;{ yz} Fokker-Planck equation for FBM is given by
= — exg — —|dy. (59
VaD Ja i, 4 P.(x,1)=P(x,t|a,0— P(x,t| —a,0), (63)
By changing the variable=a?t, /x?, the distribution func- whereP(x,t|a,0) is the PDF in the absence of boundaries for
tion for FPT is the position at time of a particle initially ata. Then
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Pa(x,t)=

1 (x—a)? p( (x+a)? dard FBMXy. C, (s,t), Cr.(s,t), andCy(s,t) denote the
—|eXp ——— | —exp ————
V4mDt" 4Dt 4Dt?H
(64) priately normalized such that their variances are equal. Since
Then
C,(5t)<Cpg(s,t)=<Cy(s,t) for 1/2<H<1 (66)

S. C. LIM AND S. V. MUNIANDY PHYSICAL REVIEW E 66, 021114 (2002
. correlation functions ofX, , Xg_, and Xy, respectively.
Suppose these three centered Gaussian processes are appro-
Let S(t) denote the survival probability, that is, the probabil-their correlation functiqns satisfy the following inequalities
ity that the diffusing particle does not reashuntil ime t.  for S,t=0 (see Appendix C for proof
S(t):f P.(x,t)dx. and
a

Cru(s,1)=Cy(s,t)=<C,(s,t) for 0<H=1/2, (67)
The FPT distribution functiofir (t) = 1—S(t), and the distri-
bution density for the FPT is given by then according to the Slepian theorem their FPT distributions
satisfy the following inequalities for=0:

d o
f(t)=—afo Pa(x,t)dx Fw(Dh<Fg()<F,(t) for 1/2<H<1 (69

d and

~dt

1 - 2 “ 2
— J et du—J e Vdv
Jar | J —as ot a/ 4Dt

F,()<Fy(t)<Fg(t) for 0O<H<1/2. (69

(65 Since for larget, Xz, — Xw(t) and thusk,(t)~Fg.(t) as-

o H B H . ymptotically. When appropriately normalized, equality holds
whereu=(x—a)/\4Dt" andv=(x+a)/\4Dt". Again one whenH=1/2 in the above equations.
gets Eq.(61).
Note that the generalized diffusion equation and Fokker-
Planck equatio{with appropriate boundary conditionare VL. MULTIFRACTIONAL GENERALIZATIONS
the most commonly used mathematical tools for the determi-  \jany transport phenomena such as anomalous diffusion

nation of FPT distribution. However, due to its non- i, certain heterogeneous media have a far more complex
Markovian character, FBM is not fully characterized by thegcajing behavior than simple fractals. Disordered porous ma-
effective Fokker-Planck equatiof12). Various attempts t0 erigls are seldom heterogeneous or irregular in a uniform

obtain a Fokker-Planck or generalized master equation whicBense: they usually contain multiple, nested natural length
can provide a correct description of FBM have so far beemyng time scales or continuously evolving scales. Local po-
unsuccessful. We remarked that, in general, the Langevigysity models are often used to study transport properties in
equation contains more mfo_rmatlon_ than the cqrrespondmguch medig 25]. Another example is hydraulic conductivi-
Fokker-Planck equation. It is possible to obtain the samgjes that display increasing heterogeneity at decreasing scales
information from the Langevin equation and the Fokker-[2g] Such multifractal conductivities have an important ef-
Planck equation in the case of a Markov process. In the casgct on contaminant transport in the subsurface. Last but not
of non-Markovian Gaussian FBM, correlation at different|aast, the classic example offered by the dynamical processes
times can be obtained from the free fractional Langevingssociated with turbulent cascades, which are multifractal
equations(16) and (25) but not from the effective Fokker- ather than monofractal. The description of multifractal cas-

Planck equatiori12). In fact, FBM is highly non-Markovian  cade processes, in general, require an infinite hierarchy of
and there does not exist a finite-dimensional supplementaryca|ing exponents for its characterization.

variable representqtion o_f FBM which mak_es it Markovian.  pmonofractal models with a single scaling parameter pre-
As a result of the intrinsically non-Markovian character of sented earlier are inadequate for such processes that display
FBM, the determination of its FPT distribution becomes dif- 3 tifractal features, in the sense that their “irregularities”
ficult and so far no exact result has been obtained. Variougap fluctuate from point to point in the media. To describe

methods have been used to determine the large-time limit Ghese multifractal phenomena, one possible way is to gener-
the FPT distribution of FBM. These include the distribution g)ize the Hurst exponent so that it becomes a local quantity:

of the maximum of a FBM 21] and the level crossing and
first return time[22,23. The result obtained for the FPT |X(t+r)—X(t)|~rH(t) (70)
distribution density in the large-time limit varies &s?~ /)
[or t~~")], which has been verified by computer experi- for 7 sufficiently small. This local Hurst exponehi(t) can
ments[23,24]. Whena=1 (or H=1/2), one gets exactly the then be regarded as the Hurst exponerX@) at the point.
result for Brownian motion. Note that in all these methods ofTherefore, one can characterize local heterogeneity with dif-
estimating FPT distribution probability, the stationary prop-ferent local power-law scaling using the timér spacer
erty of the increment process of FBM played a crucial role.dependent Hurst exponents.

Since the FPT distribution of SBM is known exactly, one  The commonly used multifractal analysis was the one first
can apply the comparison theorem of Slepi8] to obtain  introduced by Frisch and Par{g7] based on the distribution
bounds for the FPT distributions for RL-FBMg, and stan-  of singularities in multifractal measures for modeling energy
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dissipation in turbulent fluids. Such a method has been furthen it can be shown thafy(t) is said to satisfy the locally

ther developed with the help of wavelet analyl§]. Mul- asymptotically self-similar property if

tifractal analysis is widely used to model multifractal trans-

port processes such as anomalous diffusion in multifractal Yu(to+ pu) = Yy(to)

porous media[29], random fractal§30] and percolation lim,_ o+ ) =[XH(tO)(u)]uER,
clusters[31], hydraulic conductivity distributiorj26], and pe ueR

other multifractal transport phenomena. In this section, we (74

shall adopt a different approach, which deals directly with

some Gaussian multifractal processes. where the equality in law is up to a multiplicative determin-

istic function of time and(H(tO) is the standard FBM indexed

A. Multifractional Brownian motion by H(t,). Equation(74) holds also for the RL-MBM ifYy
i ) o andu e R are replaced byg, andue R, , respectivelyf32].

We shall first consider the generalization of FBM 10 the This property can be verified by using the local covariance
multifractional Brownian motiofMBM). The two versions (72). One can interpret Eq74) as the existence of a tangent
of FBM, the standard FBNKy and the RL-FBMXg_, can g x(t,) at each time, where the MBM is defined. The
be gxtended to their respective MBMSy and Yre by re-  Hurst exponent of this local FBM Bl (t,).
placing the Hurst exponer by a time-(or pos,ltlon) de- For applications to anomalous diffusion processes that ex-
pendent functiorH(t) in Egs. (19) [32] and (22') [33,34.  nipit muyltifractal features, the following characterization of
H(t) is assumed to be a smooth function witkBI(t)<1.  he |ocal property of MBM can be useful. To be specific, let

Due to the fact that the Hurst exponent is not a constant,s consider the RL-MBM it applies to standard MBM as
any more, one expects that the MBMs would not Presenvgyell). Let H (t)=H(t/€)

the global properties of the FBMs, such as stationary incre-
ments and self-similarity. However, these properties can still 1 .
hold locally. It can be shown easily that the increments of vy, o= —f (t_u)HE(t)—UZ,?(u)du_
Yy are locally stationary, or to be more exact, locally asymp- ¢ F(H(t)+1/2) Jo

totically stationary. The variance of the increment process (75
satisfies

OH, ()= OH(e)» and

The variance of the increment processYqu‘E(t) is
(Yw(t+ D) =Yw(D)]) = opl 7?"®, 70, (72)

([Yn t+ D= Yy (D] =Dy |7/ (76)
where oy is dependent orH(t). The covariance of the <0 0 0
standard MBM and RL-MBM can be ce_llcul_até@TIZ]. HO,W' for e sufficiently small such that the increment process is
ever, for the purpose of local properties it will suffice to stationary overr<e ! and also we have assumed,(t

consider the local covariance which is the same for both, 7)=H (). One can regard the parametens a measure
versions of MBM(35]. By assuming that(t) is smooth ¢ siasionarity since it determines the size of the neighbor-
such thatH(t+ 7)=H(t) for ~—0, the local covariance can 004 oft for which the increments O¥y oy are approxi-

be calculated and is given b . .
g y mately stationary. In other wordS’HEm behaves locally like

_ OH() SH(t Mt FBM with the Hurst exponent frozen 8§ for scales that are
(Yw(t+7)Yw(t) = 2 [t 72RO+ [ 270 smaller than the interval of stationarity. Based on the resam-

o pling algorithm mentioned ih36], the sample path of RL-

—|72H0],  7—o0. (72 MBM is shown in Fig. 6 for a particular choice of time-

varying function, H(t)=aexp(—bt®)+c, where a,b,c are
arbitrarily chosen parameters. Details of the simulation algo-
Sithms are given in Appendix A.

Finally, we consider the possibility of describing MBM

The increments of RL-MBM also satisfy the locally asymp-
totically stationary property, hence its local covariance ha
the same form as Eq72) (up to a multiplicative determin-

istic function of time. It is interesting to note that when b ; PR ; ;

y fractional stochastic differential equations analogous to
extended to MBM, the ad\{antage of Fhe standard _FBM OVeEqs. (16) and (25). Note that although the usual fractional
RLAFEM’ namely_, the ?tatlonanrt]y of lncremeqts dlsapp(,aarst:alculus is well suited for the description of anomalous dif-
andt edtwo versions of MBMs | avedvef.ry. simi afr Proﬂert'is'fusion, it is not applicable if the diffusion occurs in multi-

_In order to give an appropriate definition of local self- ¢ o media with a fractional exponent that depends on time
similarity, recall that the increments of a self-similar processq, space Thus it is necessary to generalize the usual frac-
X(t) are self-similar provided that the increments are stationgjona)| calculus. One way to do this is to consider a fractional
ary. Then forr>0, derivative and fractional integral of variable order. A direct

L _.-H fro)— _ ger)erallzat|o_n of the RL—frapnonaI integration and differen-
X(t+ 7= X(O=r" X (t+rn) = X(U)] (73 tiation to variable ordep(t) is [37,3§
For increments that are locally asymptotically stationary, one 1 .
has the following characterization of local self-similarity. | BOF (1) = f t—wAO-Lf(u)du >0
The standard MBM Y (t) is indexed by H(t) ® rp(t)) o( ) (Wdu, A1)
e C”(R,(0,1)),t e R for some positivey with y>suH(t), (77
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1

' C(a,v(s))C(a,v(t))e 3D
0.8 @ - X&) (s)Xg ()=
0.6f ] (Xou et I'(—v(s))(2a)t &+
T .l ] X{T'(— v()) (1 + v(s)+ v(1))
0.2f 1 X 1F1(=v(s),—v(s)—v(t),2a(s—t))
% 200 400 600 800 1000 +(2a(s— )OO (14 p(t))
t
. . . . . XI(=1-wv(s)=v(t))1F1(1+ (1),
0 -
®) X2+ v(s)+ v(t),2a(s—1))}. (80)
s-1r ]
>§2- | If v(t) is assumed to be a smooth function, the¢s)
- =(t) for |t—s|=7<1. The local covariance of the multi-
3l j fractional OU process can be shown to be
0 200 400 600 800 1000
r (XEDOXE(t+ 7)) =Ca,v(1)) 7O~ ) yar)
FIG. 6. (@ The time-varying Hurst exponentH(t) J(712)a?
=0.5exp(1?)+0.25 and(b) the corresponding sample path of ~—
RL-MBI\/FI).e ) ® POREng Sampie P sinf[»(t) = 1]} (v(1) +1/2)
x|ar|2 -1 (8D)

and the fractional differentiation of variable ordg(t),0

<B(t)<1: for r<1. ThusX4(t) is a locally asymptotically stationary
process. In other words, it behaves like the fractional OU
process indexed by(t). Therefore one can conclude that the
link between the standard FBM and fractional OU process is
preserved locally when extended to their corresponding mul-
tifractional process.

t(t—u)*f”(t)f(u)du,

1 d
PO T ail,

0<pB(t)<1. (78 C. Time-rescaled Brownian motion with variable scaling

Finally, we consider the generalization of SBM by replac-
Equation (77) gives RL-MBM if f(t)=7(t) and A(t) ing the constant scaling exponeatby a variable scaling
=H(t) + 1/2. However, in contrast to the cag¢t) =3, it is a(t):
not possible to obtain a stochastic equation of variable order X oy (1) = X(1°0), (82)
for Yg.(t) analogous to Eq(16) by inverting Eq.(77). The
reason is that Eq.78) is not the left inverse of the operator

i where «(t) is assumed to be a smooth function with O
1O that is,

<a(t)<2. In terms of white noise, one has
t
DAOIPOL(t) £ 1(1), (79 xam(t)zf u -2 uydu. (83)
0

which can be verified by direct computation for some simpleThe covariance oK) is
functions[37,38. Much work needs to be done to derive a
stochastic fractional differential equation for MBM. (Xa) (1) Xag(8)) =t*OAs*E), (84)

First we note that the Markov property is preserved for
Xa(t), provided a(t) is a monotonic increasing function
It may be interesting to find out whether the link betweensuch that the time ordering will not be changed by the time
the fractional OU process and the standard FBM still holdsscalingt—t*("). Due to the time-dependent scaling exponent,
when extended to the multifractional case. For this purpos@roperties oX, (t) such as independent increments and self-
we need to extend,(t) to the multifractionalx{)(t), ~ Similarity are lost. However, one can still hope that these
which is given by Eq(53) with v replaced byv(t)>0. The  Properties may hold locally, that is, for a fixeg, X )(to)
multifractional OU process is a nonstationary process. ltbehaves likeX, (t,) with a scaling exponent(t,). For non-
covariance is rather in a complicated form, which can beoverlapping intervals §,s+ r;) and {,t+r,) with 7,7,
expressed in terms of the confluent hypergeometric function>-0, one has a(s+ 71)=a(s),a(t,t+m)=«a(t) for 7,
1Fi(a,v,2): <s,7,<t. The covariance of the increment process is

B. Multifractional Ornstein-Uhlenbeck process
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<[Xa(s)(5+ 71)—Xa(s)(5)][xa(t)(t+Tz)—xa(t)(t)D The other non-Gaussian process widely used to model
o9 o) (9 A rll) el anomalous diffusion is the Levy stable procg2s]. Such a
=(s+ 1) " IN(t+ 1) V= (s+ 1) “CFNt* V=5 Markov jump process can be associated with the fractional-

A(t+ 75) 20 + AN a®) (85 ~ Space diffusion equation
JP(x,t)
at

which vanishes for eithes>t or s<t if «(t) is a monotonic =DV#P(x,1), (89

function. Thus the increments of,,(t) are asymptotically
locally independent for nonoverlapping intervals. whereV* denotes the Riesz fractional derivative:

In contrast to the standard MBM, the absence of locally
stationary increments foX,)(t) rules out the use of Eq. dk ..
(74) to characterize a locally asymptotic self-similarity. In Vi=— f 5. [k|#,  0<wm<2. (90
fact, precisely due to this reason, the time-rescaled Brownian
motion of variable order does not satisfy self-similarity lo- The solution of Eq(89) in the Fourier space gives the sym-
cally. To characterize the self-similar property over a verymetric Levy distribution in the fornP(k,t)~exdD|k/*]. It
short interval, it is necessary to consider the increment prohas the heavy tailed behavior inspace forx*>1:
cess over such an interval. Let, (t,+ ), (t,+ 7)) be two
overlapping intervals withry,7,>0 and r,7,<t,. Since
a(t) is smooth, a(ty+ 71)= a(ty)=a(t,+ 7). Then one P(x)~
has

(91)

|X|1+,u'

One shortcoming of the Levy process is that its variance

<[Xa(to)(to+ Tl)_Xa(to)(to)][Xa(to)(toﬁL72)_)(a(to)(t0)]> is infinite (in fact, all nth moments withn> « are infinite.

_ alt)  palte) This leads to a difficulty in terms of physical interpretation,

=(tot 71/\ 7)ol =t e (86) in particular, when applied to the case of enhanced diffusion
(superdiffusion. However, there are ways to overcome this
No matter how smallr; and 7, are, any scaling by>0  problem. For example, the truncated Levy process with val-
inevitably leads to the exponert(rt,), thus denyingX ues of P (x) vanishing outside some specified “length.”
to satisfy the condition for a locally asymptotic self- One can also impose restrictions on the spatiotemporal step-
similarity. As a resultX,,y is unsuitable for modeling mul- ping distributions or on velocities of the particles. Such con-
tifractal transport phenomena which satisfy local self-ditions, of course, will alter the Markovian character of the

similarity. original process.
The Levy stable process isga stable, (14)-self-similar
VIl. BEYOND GAUSSIAN MODELS process with independent increments. Note that, in general,

Levy processes are multifractal; this is true when their mea-
There are empirical evidences indicating that there exisgure is neither too small nor too large near zg38]. How-
non-Gaussian anomalous diffusion processes3], which  ever, for application to non-Gaussian anomalous diffusion
includes diffusion with jumps. We shall comment briefly on with variable exponents, it may be useful to generalize Levy
some common non-Gaussian models and their possible coprocesses to stablelike processes by allowing variable
nection with the Gaussian models. Bass[40] constructed a one-dimensional stablelike process
As RL-FBM is the solution of the fractional Langevin using the(one-dimensional analog of thpseudodifferential
equation for a free particle, it is natural to consider the dif-operator— (— A)*("’2 of variable order of differentiation as
fusion equation with fractional time derivative as follows: jts generator. Hereu(t) is required to satisfy some mild
conditions such as the continuity and regularity condition O
AP(x,t) At PPP(x,t) <inf,u(t)<supu(t)<2. This generalized stablelike pro-
ot :Daatl,a PR O0<a<2. (87) cess behaves locally like a symmetric Levy stable process,
i.e., for a fixedt,, the process is a symmetrje(t,)-stable
o _ _ . process.
Its solution is a non-Gaussian PDF which can be associated pA on-Gaussian generalization of FBM that preserves its
to a continuous time random waflk]. It is a symmetric PDF 1y qef_similar property and the stationary of its increments is

and for largex, each branch ok>0 an_dx<02/gxhibits €X- the linear fractional Levy motion, which can be defined as
ponential decay in the “stretched” variabje|?(~): [41]

" (a=1)/(2-a) _ 2/(2—a) ®
P(x,t)~g(t)|x]| exd —h(t)[x| 1 (89 X,L,H(t):f x[|t_u|H71/;L_|u|H71/,u]d|_#(u), (92)
for |x|>t*2, whereg(t) andh(t) are certain positive func-
tions of t. This non-Gaussian PDF satisfies the anomalousvhereL , is anH-self-similar, u-stable measure. Such a pro-
diffusion relation(1). In the limitt%/x?>1, the leading terms cess may provide more flexibility as far as applications are
for the non-Gaussian PDF and the Gaussian PTF have  concerned since it is characterized by two paraméteasd
the same time dependence ™% w. However, it still suffers the same problem as the Levy
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stable process, i.e., it has infinite variance. Finally, one can APPENDIX A

zlsto ?enf):a!'ththﬁ (T:ffpontgnt tlo La time ;’.W'?ﬁ. function The sample paths of the rescaled Brownian motion are
(t) to obtain the multifractional Levy-motion; this process obtained by considering the discrete version of E4.for

will be discussed elsewhere. discrete timetj=jA, jeZ" and time step\t=1/(N—1):

VIIl. DISCUSSION AND CONCLUSIONS X, (H)= E s V2 B( 7). (A1)
i— t

There exist several random processes that satisfy the
anomalous diffusion relation1). Three such processes, Note thatdB(7)= »(7)dr is the increment of Brownian mo-
namely, SBM, RL-FBM, and standard FBM, which are all tion, thus one can approximate
Gaussian and self-similar are considered. Their properties
differ considerably, ranging from the Markov property and dB( T):(l>d7 (A2)
independent increments for SBM to the stationary and non- NIXTA
stationary increments for the non-Markov standard FBM and
RL-FBM, respectively. As there exist a number of differentwhere »; is the discrete sequence of Gaussian white noise
mechanisms leading to the anomalous diffusion, so there iwith zero mean and unit variance. Thus, E&1) is reduced
also a need to have several different random processes to
describe these anomalous diffusive motions. It is necessary
to know additional conditions, both empirical as well as the- J w12 wt 1)
oretical, in order to determine the appropriate random pro- X (1) Z +1/2)[(') (i-1) J(an*
cess to be used for a particular system that undergoes anoma- (A3)
lous diffusion. The model adopted not only has to describe
correctly the asymptotic equilibrium state, it needs to be ablavhich forms the generator of the sample paths shown in
to portray the intermediate stages as well. Thus a better urkig. 1.
derstanding of the physical mechanism of the microscopic The simulation of RL-FBM is carried out based on the
motion for anomalous diffusion is necessary in order to idensimilar algorithms as described above but using the follow-

tify the appropriate model. ing approximation of Eq(19):
As far as these three Gaussian processes are concerned, a _
useful way to verify the suitability of one of them for mod- RL 1 ' iAt W1
eling anomalous diffusion is the knowledge of FPT distribu- ~ Xf ()= ———+ f (tj—7)" 7dB(7).
tion. The FPT distribution for SBM and standard FBM are F( H+ 5) (mat

different, even though they have the same PDFs. In fact, the
connection between the FPT and PDF of a random process,
in general, can be quite complicated. Even a complet
knowledge of the PDF may not be able to determine the FP
distribution, as in the case of FBM. Since only the FPT dis-

tribution of SBM is known exactly among the three Gaussian Lt )= 2 ( )W] AL, (A5)
processes, one can apply the Slepian theorem to compare the JAt

FPT of SBM, and the two FBMs. This provides the upper

bound (for 0<H<=1/2) and lower bound (12H<1) for  with the modified weighting function as suggested4a],
the FPT distributions of the two FBMs.

Finally, we note that multifractional generalizations of 1
FBM and SBM show that the former still preserves the prop- Wi :F(H +1/2)
erties of FBM locally, whereas the latter does not preserve
the self-similarity locally. Thus, only MBM and the multi- to give the accurate scaling of the variance, i.e.,
fractional OU process can be regarded as candidates f%r[XH(t )]~ t2H The sample paths in Fig. 2 are simulated
GaUSSIan mOde|S fOI’ anomalous dlfoSIon W|th Va.”able Scal'US'ng the generator glven |n E(AS) There ex|st a number
ing exponents. of well-known techniques for the simulation of the standard

FBM, such as the random midpoint displacement method
[43] and the wavelet-based algorithi#!,45, these will not
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1/2
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path with the prescribed local regularity is shown in Fig.
6(b). A simple method for numerical estimation bif(t) is

described in33,36].

APPENDIX B
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1 & (—at)itt & (—at)k

v 2\
([Xou®I)=— ,Zo TOL+ 1D & Tk D
:_ty_lEV,V(_atV)[EV,l(_atV)_1]'

(B3)

The covariance of the proce¥g,(t) can be calculated as FOr at—0, one gets, ,(at”)~1 and[E, y(—at’)—1]~

follows:

wo(—als—ul”)E, (—a[t—u]”)
du
(s—u)r "(t—u)t”

sE
(Xou(s)Xdu(t)) = fo

©

B (_a)j+k
_j,kzo I'(vj+v)I'(vk+v)

X js(s_ u)v(jJrl)*l(t_ u)”(kﬂ)*ldu
0

©

(_a)j+k—2
T (vk)

s .
xJ (s—u)" " Yt—u)*du
0

o (e
— vjsvk—
Tk S !

S
XZFl(l,l— vk, 1+ Vj,{). (B1)

Xgy Is nonstationary in contrast to the OU process. Thus it
cannot be the fractional OU process we are looking for.

—at” such that
([Xou(]A)=t>"1. (B4)
For larget — o, the Mittag-Leffler function has the following
asymptotic series expansiph5]:
N -k

z
Ep(D=~ 2 Fg=ar TOUZY, B9

which is valid for |arg(—2z)|<[1—(a/2)]7 and z—. It
follows that

Epol—t)~t72  fort—oe, (B6)

such that E, (—at")~t 2. On the other hand,
[E,i(—at")—1]~—1 as +—c. Therefore,{[Xgy(t)]?)
<t " !ast—oe,

APPENDIX C

Let C,(s,t), Cgr.(s,t), and Cy(s,t) be the correlation
functions of SBM, RL-FBM, and standard FBM, respec-

tively. Suppose these processes have zero means and they are

appropriately normalized such that

C, (t,t) =Cpg(t,t) =Cy(t,1). (C1
Then fors,t=0 and 1/2<H<1,
C,(s,1)=Cgr(s,t)=Cy(s,1). (C2

Furthermore, one can show that its variance does not leadirst note that fors,t=0,s=<t,

to power-law behavior as required for anomalous diffusion.

By using the property of the hypergeometric functidré]

that 2Fi(a,B,yv.1)=F(NI(y—a-B)[I'(y—a)'(y
—B)]° %, and the identity for gamma functionsI'(x)
=TI'(1+x), one obtains the variance as

<[x6u(t)]2>=k21 (_a)j+k72tvj+kal
ik=

I'(vj+vk—1)
T(vj)T(vK)T (vj+ vk)
— 1 S (—a)i+k th+Vk
T a2t i1 (vj+vk— 1T (v))T(vk)
1 & (—at) & (—at)k
<A TOD &kl B2

since (vj +vk—1)=vk for v=1 andj,k=1. Thus

S
C*(S,t)=SZH=2HJ (s—u)?"1du
0

$2HF(s—u)”fl’z(t—u)”*’zdu
0
=Cri(s,1). (Cy
Cwis,t)= %[SZHHZH—(t—s)ZH]
S t
_ 2H—-1 2H—-1
—Hfou du+HJ’tisu du
:H[ fs{(UH*lIZ)Z_F[(t_S_’_v)Hfl/2]2}dv
0

S
BZHI vVt —s+u)" Ydu=Cgi(s,1).
0

(C4)
Combining Egs(C3) and(C4) gives Eq.(C2).
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For O<H=1/2, the inequalit(C3) is reversed, whereas
inequality (C4) remains valid. Since for@H<1, s<t,
si=tH—(t—g)H (C5)
then
2sf=gH+tH— (t—s)", (C6)

which implies

PHYSICAL REVIEW E 66, 021114 (2002
C, (s,t)=Cy(s,t). (C7)
Hence

Cru(s,t)=Cy(s,1)<C, (s,1) (C8

for O<H=<1/2.
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