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Non-Markovian random processes and traveling fronts in a reaction-transport system
with memory and long-range interactions
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The problem of finding the propagation rate for traveling waves in reaction-transport systems with memory
and long-range interactions has been considered. Our approach makes use of the generalized master equation
with logistic growth, hyperbolic scaling, and Hamilton-Jacobi theory. We consider the case when the waiting-
time distribution for the underlying microscopic random walk is modeled by the family of gamma distribu-
tions, which in turn leads to non-Markovian random processes and corresponding memory effects on mesos-
copic scales. We derive formulas that enable us to determine the front propagation rate and understand how the
memory and long-range interactions influence the propagation rate for traveling fronts. Several examples
involving the Gaussian and discrete distributions for jump densities are presented.
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[. INTRODUCTION been showrj4—-9] that in general the diffusion approxima-
tion for a transport process is not correct for problems in-

The problem of calculating the propagation rate for trav-volving traveling waves for which the appropriate scaling
eling waves in reaction-transport systems with an unstablenust be hyperbolic. The basic idea is that production term
state has attracted widespread interest from the scientifidescribed by the logistic growtin(1—n) is very sensitive
community in recent years. This interest is due to the widgo the tails of a concentration profile, while these tails are
variety of problems, examples include population growthtypically “nonuniversal,” “nondiffusional” and dependent
and dispersion, the spread of epidemics, combustion waveen the microscopic details of the transport processes. While,
and magnetic front propagation, efd—8]. The simplest on average, transport processes may behave diffusively, un-
model used is the Fisher-Kolmogorov-Petrovskii-Piskunovstable media are more affected by the weak tails of the trans-
(FKPP equationdn/dt=Dd°n/9x>+Un(1—n), whereD is  port process. As a result, the macroscopic dynamics of fronts
the diffusion coefficient andl is the reaction rate parameter propagating into an unstable state of the reaction transport
[1-3]. However, there exist certain deficiencies in the abovesystem ought to be dependant upon the particular random
model, in particular a¥) — the propagation rate for trav- walk model underlying the transport process. The detailed
eling wavesu=2(UD)2 becomes infinite, and this clearly discussion of this idea can be found in R€#®,7]. From a
contradicts the physical fact that the ratshould be finite.  practical point of view, this is a very important conclusion
This shortcoming of the FKPP equation is due to the diffu-showing simple models based on reaction-diffusion ideas
sion approximation for the transport process. Several studiessed in physics, mathematical biology, etc., do not work
have focused on modifications to the classical diffusionproperly in general. Hence it is desirable to extend these
model that include more information about the particles dy-+esults by considering more realistic models for the transport
namics on a microscopic levgd—7]. processes based on integro-differential and integro- differ-

Very recently there have been some important developence equations.
ments in the theory of wave propagation for the integro- It would be interesting now to consider the integrodiffer-
differential equations and integro-difference equations in-ential equations with the time integral as well. An advantage
volving a space integrdi4,6,7,9. These equations provide being that this will allow us to take into account the memory
more realistic models for various wave phenomena in physeffects associated with non-Markovian random processes. It
ics, chemistry, biology, etc. Various examples of the spacés clear that due to non-Markovian character of the micro-
integral terms describing long-range interactions and theiscopic movements of animals, bacteria, etc., their random
physical and biological meanings can be found in an excelwalks cannot be approximated by Brownian motion in gen-
lent book (p. 481 of Ref.[1]). The macroscopic transport eral. Memory effect is a significant feature in many areas of
process comes from the overall effect of many partiles  physics, chemistry, and biology, but may often be ignored
bulent eddies, bacteria, animals, gfeerforming very com- through the difficulties of how to deal with [t1,8,10. In
plex random movements on a microscopic level. The classifact, only Markov random processes have been considered in
cal diffusion term in the FKPP equation is just an Refs.[6,7]. The main purpose of this paper is to find out how
approximation for this transport in the long-time large- non-Markovian random processes with long-range interac-
distance parabolic scaling limit. In other words, microscopictions and associated memory effects influence the propaga-
random walks are modeled by Brownian motion that has ndion of traveling waves into an unstable state of a reaction-
jumps and inertia or characteristic relaxation time. It hastransport system.
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ll. MESOSCOPIC DESCRIPTION: GENERALIZED a(t—s) ande(z) in terms of the statistical characteristics of
MASTER EQUATION WITH LOGISTIC GROWTH the underlying random walk. For this reason let us consider

To take into account memory effects and long-range in_the following one dimensional random process. Suppose a

teractions. we consider the following generalized masteParticle starts from some initial position, where it remains for
T . i 99 some random time before performing a jump of random
equation with logistic growth:

length, it remains here for some random time before per-

an t oo forming another jump of random length and so on. l4€t)

i J J [K(x,z,t—s)n(s,z) —K(z,x,t—s)n(s,x)]Jdzds  be the probability density functiofPDF of the waiting time
0/ between successive jumps. Lgtz) be the probability den-

+Un(1-n) (1)  Sity function of jump size, which we assume to be indepen-
dent of time. The problem of this kind, when the growth is
with the frontlike initial condition absent U=0), was dealt with extensively in literatufsee,
for example, Ref[13]), and is often termed the continuous-
n(0,x)= 6(x), (2 time random walk(CTRW). If we apply the Fourier trans-

) o ] form in space and Laplace transform in time for the corre-
where d(x) is the Heaviside functiong(x)=1 for x<0 and sponding probability density function(t,x),

6(x)=0 for x>0.
Equation(1) can be considered as a natural generalization ~ (% Etrikx

of the FKPP equation in the case when the memory and n(E,k)=fﬁxJ'0 e n(t,x)dtdx, ®)

long-range interactions are taken into account. In what fol-

lows we assume thai(t,x) is the mesoscopic concentration

of particles at positiorx at timet. The problem here is to then[12,19

give an explicit expression for the kerre(x,z,t —s). In this - ~

paper we restrict ourselves to the case of the factorized ker- R(E k) = [1—4(E)In(0k) 6)
nel only, ’ E[1-$(E)e(k)]’

Kxzt=s)=a(t=s)e(x~2). @ where ¢(E) is the Laplace transform af(t), and (k) is

In particular, whenK(x,z,t—s)=2D&(t—s)[1/25(z—1) the Fqurier.transforr'n oﬁo(z_). For the CTRW there is an
+1/28(z+1)] one can get a discrete version of the FKPpassociated integro-differential equation of the fdri2,13

equation, namely,
an(t,x) t
i foa(t—s)

fw n(s,x+2z)¢p(z)dz—n(s,x) |ds,
(7)

i—?z D[n(t,x+1)—2n(t,x)+n(t,x—1)]+Un(1—n).
4

The aims of this paper ai@) to find the propagation rate
for the traveling waves described by the integro-differential
equation(1) with initial condition (2) and (ii) to find the s . .
connection between theesoscopidescription of the par- a rdeﬁ['onsth bf_tweeanthet mem0r31 kfgme{lt) in Eq. (7)
ticles concentration in terms of the integral operator in Eq.an € wailing ime (1), namely[12],
(1) and themicroscopicrandom walk of one patrticle. In par-
ticular, we are going to consider the case when the waiting-
time distribution for the underlying random walk is modeled
by the family of gamma distributions, which in turn leads to
non-Markovian  random processes and correspondln%here&(E) is the Laplace transform af(t). It is easy to
memory effects on a mesoscopic scale. To the authors

knowledge, this paper is the first attempt to take into accoun e: ;Z?rt]g;(é?e cadé=0 Eq.(7) is equivalent to Eq(1) with

both memory effects and long-range interactions in the prob- Following Ref.[14] one can derive the following equation

lem of wave propagation into an unstable state of a react|0r}-0r the probability densityn(t,x) with the linear logistic
transport system. X
growth (U#0):

where n(t,x) is defined to be the probability of a particle
being at a sitex at timet. Recall the well known Kenkre,
Montroll, and Shlesinger result, which states that there exists

a(E) . EWE)
or

eram © YT

W(E)=

IlI. MICROSCOPIC DESCRIPTION

t 0
A. Underlying microscopic random walk model n(t,x)=v(t)n(0x)+ jo f_m$(t—S)n(S,X+Z)(p(Z)dZdS
In this section we discuss the underlyintcroscopicran- .
dom walk models corr_esponding to the transport operator in + Uf Y (t—s)n(s,x)ds, (9)
Eqg. (1). The key question when using the integro-differential 0

equation(1) with the kernel(3) to modelmesoscopidynam-
ics of particles concentration is to determine the functionswvhere
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t IV. PROPAGATION RATE FOR TRAVELING WAVES
«If(t)=1—f y(s)ds (10)
0

In this section, we consider the problem of calculating the
. - ] propagation rate of traveling waves for the integro-
is the probability that the particle does not move up to time gjferential equatior(1) when the waiting time PDF is given
[14]. It should be noted that E¢8) still holds, and Eq(9) is by a member of the family of gamma distributiofi<2). The

equivalent to frontlike initial condition (2) ensures the minimal speed of
propagation[1]. The standard way to deal with the above
an(t,x) t o . . . N
:J a(t—s) J n(s,x+2)¢(z)dz—n(s,x) |ds problem is to find a traveling wave solution in the form
at 0 —o n(t,x) =f(x—ut). Here we consider the problem in the hy-
+UN(tX) (11) drodynamic limit where the problem of wave propagation
T into an unstable state can be reduced to a problem of the
dynamics of the reaction froi2,6,7,11. If we make a hy-
B. The family of gamma distributions perbolic scaling—t/e, x—x/e , wheree is a small param-
To model the waiting time density(t) we use here the €ter we encounter the Cauchy problem for a rescaled par-
family of gamma distributions with parametersand\, ticles concentratiom®(t,x) =n(t/e,x/¢). We expect that
n®(t,x) tends to a step function as—0 [2,11]. The idea
AMM- e M now is to derive the eikonal equation governing the position
P (D)= W me N, (12) of front. If we first replacen®(t,x) by an auxiliary field

G(t,x)=0 by using the exponential transformatiaf(t,x)
wherel'(m) is the gamma function. Our motivation for such =exd —G(t,x)/e], then expanding to leading order we can
a choice of the waiting time density(t) is that whenm  deduce the Hamilton-Jacobi equati@tG/dt+H(dG/x)
=1 we have the exponential pdiis(t)=xe ], the only =0. When the reaction rate parameteris independent of
“memoryless” type PDF, whereas for all othene N we  space, one can find th&i(t,x) =px—H(p)t, which we rec-
have non-Markovian dynamics for the underlying randomognize as the action functional of a free particle. Taking into
walk. Our aim is to investigate how the front propagationaccountx=ut we find from G(t,x(t))=0 the propagation
rate changes through the introduction of non-Markovian efrateu [6,7],

fects.

WhenU =0, one can derive the following partial differ- 9H
ential equation involving time derivatives up to ordei(see u= 75 pu=H(p). (17
Appendix A): P

These two equations together with the appropriate Hamil-

tonian H(p) give the complete solution to the problem of

front propagatior{6,7]. Recall that the Hamiltonian for the

whereD; is the partial derivative operator with respecttto FKPP equation is given b (p) = Dp?+ U [2,11] thus from

i.e., Din(t,x)=an/at, Dfn(t,x)zazn/atz, etc. Eqg. (170 we can obtain the classical propagation rate
WhenU#0 andm=1, one can get from Eg¢8) and =2,/DU. Let us note that the same results can be derived by

(12) that ¢(E)=N/(A+E), hence, «(E)=\ that is a(t  USiNg marginal stability analyss}].

(Dt+)\)mn(t,x)=7\mﬁc n(t,x+z)e(z)dz, (193

—s)=\&(t—s). Substitution of this expression into Ed.1) Now we are in a position to find the Hamiltonian function
gives a classical Feller-Kolmogorov equation with a linearH(P) corresponding to the integro-differential equatidn
growth [14], with the kernel(3). It is well known that the rate at which

the traveling wave propagates into an unstable state depends
an(t,x) o on the leading edge of the scalar field profile wha(g x)
P :)\[ f_wn(t,x+z)go(z)dz—n(t,x)} +Un(t,x). —0 [1-3]. Therefore to findi it is sufficient to consider the
(14) linearized version of Eq1). By similar methodology used to
obtain Eq.(13), we can derive the equation for the particles
The casem=2 corresponds to a non-Markovian random concentratiom(t,x) with growth (U= 0) (see Appendix B

walk. One can find that the Laplace transforfy(E)
=N?/(A+E)?, hencea(E)=\%/(E+2\), that is,

oo

(D+ A)mn(t,x)=)\mj n(t,x+2z)p(z)dz

a(t—s)=N2%exd — 2\ (t—9)]. (15)
™ /m
Equation(11) takes the form +UD, ( ))\mr(Dt)rln(t,x).
r=1\T
an(t,x t ke
( )=)\2f e”“s)[f n(s,x+z)e(z)dz (18
&t 0 —
After making a hyperbolic scaling—t/e, x—x/e we obtain
—n(s,x) |ds+Un(t,x). (16)  for né(t,x)=n(t/e,x/e),
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% where the momenturp can be found fron{17)
(sDt+)\)mn€(t,x)=>\mf n®(t,x+ez)p(z)dz

p20_2

(1—p202)exp( > ):1—%. (26)

" (m
+UD, ( ))\mr(eDt)rlnS(t,x).
r=1\T It follows from Eqgs.(25) and(26) that the introduction of the
(19 long-range interactions without memory leads to the increase
of the speed of traveling fronisee Sec. IV E

We seek a solution of Eq19) ase—0 of the exponential

form n®(t,x) =exd —G(t,x)/e]. Substituting this expression B. Example 2 (with memory effects)

into Eq. (19) we find that the leading order behavior as

—0 is given by the Hamilton-Jacobi equation B8(t,x), Now consider the case when the waiting dengfty) is

given by I',, (t)=A%te ™, and the jump densityp(2) is
G G given by the normal distributioN(0,0%). From Eq.(21) we
=t + H(&_x =0, (200  have a quadratic equation fét(p),

2_\ 2.p%c?12
whereH(p) represents the Hamiltonian associated with Eq. [H(p)+A]"=A%eP +UH(p)+20).

(19) and can be found from Solving this equation,

m

m
[H(p)+)\]m=)\mf(p)+ur§=:l ( ; ))\mr[H(p)]r11 H(p)= %_)ﬂL A /U72+U)\+)\2,ep202/2

(21

we can find the propagation rate,
wheref(p)=[”_.e *Pp(z)dz is the bilateral Laplace trans- propag o

form of the PDF¢(z), also known as the moment generating IH(p) )\zozpepzuzlz
function. By using Eqs(17) and(21), we can now find the Up= = , 27)
propagation ratel when the waiting density(t) is given by ap u? o 2020
a member of the family of gamma distributiofig, , (t), m 2 7+U>\+7\ eP
e N.
Remark It is interesting to note that when the growth is wherep has to be found from Eq17)
absent, i.e.lU =0, the HamiltoniarH (p) can be shown to be ’
_ m_ o2p2ePio’i2 U uz u
H(p)=[f(p)*™~1], (22 e T e
in particular, if we suppose that the jump densityz) is u? 020212 4\
given by the normal distributionN(0,0%), then f(p) E”L ;”Le
=exp(p’0?/2) and so the Hamiltonian is now given by 28)

(23) One can show that the introduction of memory effects leads
to a decrease of the propagation régee the following sec-
tion).

H(p)=X\ -1

p20_2
eXn S,
Thus, the effect of changing the waiting density frbm, (t)
to I'; ,(t) say, can be replicated by changing the jump den-
sity from N(0,0?) to N(0,0%/r).

C. Comparison with the FKPP equation

Here we compare the propagation speeds generated by the
A. Example 1 (no memory) waiting densitiesI’;, (t), I',(t), andI'3,(t), denoted by

) , u;, U,, andus, respectively, and the FKPP propagation rate
As our first example let us consider the case when thg,

waiting density ¢(t) is of the exponential form[I';,(t)

=\e M. Let us also suppose that the jump densig) is u=2.UD, (29
given by the normal distributioN(0,0%). From Eq.(21) one
can find the Hamiltonian where
p20'2 <22> 2 C 2

H(p)=\|ex 5 —1|+U. (29 D=2—T, (z >=f Z°p(z)dz (30

If we denote the propagation rate by then and r is defined to be the mean time between successive
) jumps. For the waiting density,, , (t), the mean timer is
_dH(p) p o m/\. It is convenient to write the FKPP propagation rate in
U= =\o’pex , (25)
ap 2 the form
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121 ence explicitty demonstrates that the introduction of
— Yy “memory effects” into our random walk model decreases the
115 _ _yp y K .

u2ju propagation rate of the traveling wave. In Fig. 2, we observe
1Ap a similar phenomenon, with the exception that fift)

1.05} =TI',,\(t) the propagation ratei, is still greater thanu,
; whereas form>2, the propagation rate decreases. From

Tms o these two simple examples, we can conclude that although
0.95¢ T T el the introduction of memory effects and long-range interac-
ool T -- tions certainly affect the propagation rate of the traveling

wave, it is not immediately clear as to whether this rate will

0.85r - be more or less than the propagation rate calculated by the
0.8 . . . . - FKPP equation.
0 0.2 0.4 0.6 0.8 1
Ut
, , , V. SUMMARY
FIG. 1. Dependencies of the rati,/u on U7 for various val-

ues ofm when the jump density(z) is 35(t+a)+ 3 8(t—a). In this paper we have investigated the problem of deter-
mining the propagation rate for traveling waves in a reaction-

(22 transport system with memory and long-range interactions.

u=ugy2U7, Ug= — (31 In particular, we have used the family of gamma distribu-

tions to model the waiting-time density in order to gain an
lénderstanding of how non-Markovian dynamics affects the
behavior of the traveling fronts. Using a generalized master
equation with logistic growth, hyperbolic scaling, and
Hamilton-Jacobi theory we have derived formulas which en-
able us to determine the front propagation rate. By using two
simple examples we have shown that for the case when the
characteristic growth tim&) ~* is much larger than the mean

= . : time between successive jumpgUr<1), the FKPP equa-
=\ exp(-At) the propagation rate, is greater tham, and tion is an appropriate model in determining the propagation

the ergtne%UIs {#Cénfr{ga::ssgpa? G;Qg;e?nfeﬁéi t-lrh:flvzrlj\?euslda lZic_rate. However, whetd r=<1 the inability of the FKPP model
P ! L quati plcitly . to take into account the tails of the jump density and memory
ond order approximation for the jump densitfz), i.e., up

10 (22)/2. In fact, if we suppose that ~<1, then by writing effects induced by non-Markovian densities, leads to an

i AR N 5 overestimation/underestimation of the propagation rate. We
D f(p2) —2coshep)~1+a p2 and (2) f(p)=exp( 02/2.) have shown that it is not immediately clear as to whether the
~1+p“o°/2, one can show that the propagation rateis

. ropagation rate will be greater or less than that found via
equal to the FKPP propagation rateHowever, forUr<1 bropag g

! oo : the FKPP equation, and detailed study of both the jump den-
this approximation is not appropriate, and so we have to tak

§ity and waiting-time density is required before this conclu-
into account the tails ofp(z) which contribute to the in- Y g y d

: . ) sion can be made.
crease in the propagation rate. From Fig. 1 we can conclude

that, when the waiting density(t) is given byI’,,(t) and
I3, (1), with propagation rate, andu respectively, bothi,

whereu, can be regarded as the characteristic speed of th
random walk. It turns out that,,/u depends only upon the
parameteld 7.

In Figs. 1 and 2, we show,/u plotted againstJ r for
various values ofm when the jump density(z) is given by
(1) 38(t+a)+38(t—a) and (2) N(0,0), respectively. In
both figures we see that for the case whgft)=1";,(t)

APPENDIX A: DERIVATION OF EQ. (13)

and u; become slower than asU 7 increases. This differ- We write the generalized master equation in the foi3]
121 an(t,x) t o
— ufu =f a(t—s) f n(s,x+2z)¢(z)dz—n(s,x) |ds.
1151 ——U2/U (’)]t 0 — o0
14} - Ugu (A1)
1.05} We know from Eq.(8) that the Laplace transform af(t) is
N e -~
........................................... ~ Ey(E)
095} a(E)= L
1-y(E)
09}
085t If we introduce the auxiliary function
08, 02 0.4 06 08 1 N W(E)
Ut f(B)= ——,
1-¥(E)

FIG. 2. Dependencies of the,/u on U for various values of _ _ )
m for the jump densitye(z) given by the normal distribution then «(t) can be written in terms of the inverse Laplace
N(0,52). transformL 1,
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- d . r<sm-1, (A9)
a(t)=L"{a«(E)]= a{L‘l[f(E)]}H(O)ﬁ(t)-

(A2) m
a_n - jtf(m)(t—S)
0

Since|/(E)|<1, one can write at™

ds

fx n(s,x+2z)¢(z)dz—n(s,x)

+AM J'w n(t,x+z)p(z)dz—n(t,x) |. (A10)

(B)=— = 2 [H(E)]. (A3)

For the waiting time PDR)(t), we choose a member of the NOW we obtain from Eqgs(A9) and(A10)
gamma family of densitie$12). The Laplace transform of

[ (t) is given by -
| >

m\d'n »
—z)\mf n(t,x+2z)e(z)dz
r/ ot oo

A AT
I'ma(E)= m) : (Ad)
This equation can be rewritten as

It follows from Eqgs.(A3) and(A4) that

c . (Dt+)\)mn(t,x)=)\mj n(t,x+2z)e(z)dz
f(h=L"" 2 [HE)Y -
{i ( A jm} APPENDIX B: DERIVATION OF EQ. (18
=L
=1 \AtE Our procedure here is the same as in Appendix A, with the
w exception that Eq(Al) is modified through the addition of
_ 2 (t) (A5) the linear logistic growth term
< jm,\
) an(t,x) t o
andf(0)=A\, for m=1, while f(0)=0, for m>1. Note that P =f a(t—s) f n(s,Xx+2z)¢(z)dz—n(s,x) |ds
0 —co0
d'T (1) o U B1
— N E Cnoja(D(=1)0, r<m, Fun(tx). BD

(A6)  Thus Egs(A9) and(A10) become

whereI'y(t)=0. Let us fixm, and define a new function

A(t) as an infinite sum of certain gamma densities, whereby ‘9_ ftf(r)(t—s)
the first term in the sum iE, ,(t), the second’| ., \(t), the ot

third Iy, o, 1 (1), etc. From Egs(A5) and (A6) we have

Jm n(s,x+z)e(z)dz—n(s,x) |ds

d n
o , +tU——7, r=m-1, (B2)
fOt)=\"D, j An-i(D(=1)"71, r<m (A7) at
=0
and f((0)=\" for r=m—1, while f{7(0)=0, for r<m M [t o0
-1. On(e )can show that © atm ff(m)(t—s) f— n(s:x+2)¢(z)dz=n(s,x)|ds
o (m m—rg(r) m-1 «
> | A =o. (A8) +U A" | n(tx+2)e(z2)dz—n(t,x)|.
r=0\ I otm—1 —®
The case whem=1 has already been considered in Sec. (B3)
[lIB. Let us further suppose than>1, thusf(0)=0. It
follows from Egs.(Al1) and(A2) that From Egs.(B2) and(B3) one can obtain

i—?zftf(l)(t—s) fw n(s,x+z)e(z)dz—n(s,x) |ds
0 —x

T [m)an oc
> Amr : —=)\mf n(t,x+2z)e(z)dz
r=0 —oo

Further partial differentiation with respect to time gives at’
an [t = il m\ 4 ~in
—=f fO(t—s) f n(s,x+z)e(z)dz—n(s,x) |ds +UD, AT .
(9tr 0 — 0 r=1 [?tl’—l
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