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We present a unified framework for first-passage time and residence time of random walks in finite one-
dimensional disordered biased systems. The derivation is based on the exact expansion of the backward master
equation in cumulants. The dependence on the initial condition, system size, and bias strength is explicitly
studied for models with weak and strong disorders. Application to thermally activated processes is also devel-
oped.
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[. INTRODUCTION the wordsresidenceand survival have sometimes been used
as synonyms. We distinguish these terms from the fact that
A large number of physical properties of diffusion and the particle can return or ngabsorption to the interval of
hopping transport of classical particles excitationgin dis-  interest. The mean residence tiifMRT) has importance for
ordered media have been investigated by means of randodiffusion influenced catalytic reactions where reactants are
walks (RW) in disordered latticef1—3]. Of particular inter-  localized in a finite domain of the catalyzer diffusion region.
est are the effects of the finite size and boundary conditiongExperimental techniques, generally called single-molecule
on the domain of diffusion. The absorbing boundary ap-spectroscopy, allow one to follow the evolution in time of the
proach allows us to analyze when a process first reachessaate of a single molecule that undergoes a conformational
given threshold valu@4]. This question arises in many situ- change(isomerization reaction This fact has recently been
ations and is equivalent to regarding the relation between theddressed by the MRT study of a single sojourn in each of
underlying dynamics of randomly evolving systems and thethe states of the molecu[&]. The important feature of this
statistics of extreme events for such systems. These statistictass of reactions is that these can be regarded as being one
are important in a variety of problems in engineering anddimensional. The MRT has found several other applications
applied physic¢$5]. Extreme phenomena are experimentally[9,10]. However, the general problem of RT distribution in
accessible and enable us to know the parameters of the sttandom media has been little discussed in the physics litera-
chastic dynamics. ture [11]. One of our goals is to present the FPT and RT
One quantity that naturally arises in this context is thestatistics in random media in a unified formalism.
time for which the particle survives before its absorption in  The effect of bias on FPT in disordered systems has re-
the boundary sinks, i.e., the first-passage tifRET). This  ceived attention since the first works on the survival fraction
time depends on the realization of the RW, thus being a ranef particles in media with randomly distributed perfect
dom variable. The mean first-passage tif=PT) is of fun-  tramps[12]. When the bias is switched dthrough external
damental importance for diffusion influenced reactions, as ifields), the system undergoes a substantial change in its dy-
measures the(reciprocal reaction rate constant. First- namics however small the field is. Several results have been
passage problems appear in a wide range of applicafiins reported on survival probabilityor related quantitiosfor
and have a long histofy6]. Recently, the fact that the MFPT one-dimensional RW with disorder and bias. The models of
is exactly equal to the inverse of the associated Kramerdisorder often regarded are the random traps and Sinai's
escape rate was proved for arbitrary time-homogeneous steodel. Trapping in one dimension is a model of strong dis-
chastic processé€3]. Finite size effects also appear when we order that allows exact results with large b[ds$]. Sinai’s
consider unrestricted diffusiotno boundary, or boundary model [14] is a time discrete RW in one dimension with
condition too far away however we ask for the time spent asymmetrical transition probabilities that fulfill a certain con-
by the diffusing particle in finite domains. This quantity is dition. In this way, in Sinai's model the disorder is coupled
the random variable known as residence ti(R&). Unlike  with the bias strength. The FPT problem for Sinai's model
the FPT, which reckons the lifetime of particles that neverhas been extensively studigtb]. In this work we consider a
abandoned a given domain, the RT involves the case wheRW on a chain with site disorder in the presence of global
the particle can exit from and enter into the domain an un<{site independeitbias. We analyze weak and strong situa-
restricted number of times. We must stress that unfortunatelfions of disorder{1,16]. For weak disorder all the inverse
moments of the distribution of RW hopping rates are finite,
whereas all these moments diverge if the disorder is strong.
*Electronic address: pury@famaf.unc.edu.ar A successful theory for FPT statistics in disordered media
TElectronic address: caceres@cab.cnea.gov.ar is the finite effective medium approximatigdREMA) [16].
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FEMA combines an exact expansion of the survival prob- Hnn’:W:/ Sno1m W, 5n+1n,_(w:,+w:,)5n .
ability equation in a disordered medium, with the effective 2.2
medium approximatiofil7]. This scheme allows a perturba-
tive analysis around the effective homogeneous medium i%\nd P(ty|to)=1. Thus, the formal solution of Eq2.1) is
the long time limit for weak and strong disordered models.P(tlt )=Oe;)<|:[(t—'t ] " This solution obevs the backward
FEMA also provides a self-consistent truncation criterion. 0 A = y L
The extension of FEMA to biased media was presented jnaster equation t0d,P(t|to) = P(t|to)H, for the same initial
Ref. [18], where we got perturbative expansions for Smallcondlthn[ZO]. . .
bias and weak disorder. In Rgf19], another extension of In this yvork we consider aRWona (_:haln and we a_o_lc_ires_s
FEMA was carried out for periodically forced boundary con-the q_ugsn_on about t_he survival zra]ndf_resu_jenr(]:e probab!:!nes n
ditions. In the present paper, we obtain, in the guidelines o?ﬂe finite mtervaI_D_—[_—L,L]._ The |rs_t_ Is t e_prob_abl iy,
the expansions developed in FEMA, the exact equations fo o(tlto?’ lo.f remaining |nDl (without exiting at tlm.et if the .
MFPT and MRT and construct their solutions in the leadingWalker initially began at siteioe D. The second, instead, is
relevant order for small bias. MRT for one-dimensional dif- the probability,R, (t|to), of finding the particle within the
fusion in a constant field and biased chains was analyzed idomainD at timet, given that it initially began at site, (not
Ref. [10]. However, we could not find explicit expressions necessary iD). Therefore, the residence probability is de-
for the RT distribution in disordered media in the literature.fined by
Therefore, another goal of our work is to consider the mixed
effects of disorder and bias in the FPT and RT distributions.

This paper presents the survival and residence times sta- R“o(t|t0):n§D P(n,t|no,to), 2.3
tistics. In Sec. Il we define the survival and residence prob-
abilities and construct their expressions from the conditional : .
probability of the random walk on a chain. The random bi-WhereP(n.tino,to) is the solution of Eq(2.1). Due to the
ased model is described in Sec. Ill, whereas in Sec. IV th(g"’_ICt that the master equation links the probab|llt|es for. gll
homogeneougnondisordererchain with bias is treated ana- S|tes_ of the chain, the residence problem involves an infinite
lytically. In Sec. V we introduce the projection operator to Matrix. . . .
average over disorder, obtaining the main equations. The TO. compute the surylval P“’bab"'tyz we need tq eliminate
weak disordered case is analyzed in Sec. VI and strong digontributions from trajectories returning to the intenial
ordered cases are considered in Sec. VII. Finally, in Sec. viIAter having left it. To do it, we must find the solution
thermally activated processes are considered and Sec. IRD(n'”,nO’tO) of Eq. (2.1) with absorbing boundaries in the
provides the concluding remarks. The mathematical detailéterval's extremeg4]. Thus, Pp(n,t[no,to) results in the
of the paper are condensed in two appendixes. In Appendix RUtion of d;Pp(t[to) =HpPo(t|to), where
the survival and residence probabilities for homogeneous

chains are exactly calculated, in Appendix B we study Hyn ifn"eD

Green'’s functions in the presence of bias, and in Appendix C (Hp)nn = 0 otherwise. @4
we evaluate the relevant cumulants used in Sec. VI and VII.
Hence, the survival probability results in
II. SURVIVAL AND RESIDENCE TIMES STATISTICS
The dynamical behavior of random one-dimensional sys- Sno(t|t0)= 2 Pp(n,t|ng,tg). (2.5
tems can be described by the one-step master eqydijon neb
dP(n,t|ng,to) =W,T_1P(n— 1t|ng.to) This definition and the fact that for the survival problem, we
- only need to considemge D allow us to work with a finite
+W,,1P(n+1t[ng,to) square matridHp of dimensionN XN, N=2L+1 being the

number of sites irD.

The presented view of the survival problem is adequate
for chains with a fixed number of sites. Nevertheless, we are
wherew,f(” is the transition probability per unit time from interested in general expressions for domains with an arbi-
sitenton+1 (n—1). P(n,t|ng,ty) is the conditional prob- trary numbeiN of sites and we want to work out survival and
ability of finding the walker at sit@ at timet, given that it  residence problems simultaneously. Due to the time-
was at siteng at timet, (<t) and a particular configuration homogeneous invariance of the problems, we taikeO
of {w, }. We assume thdw, } is a set of positive indepen- from here and throughout the rest of the work. We now con-
dent identically distributed random variables. In this descrip-sider the vector functionF(t) whose components are
tion, the disorder is modeled by the distributigiiw), as-  Fn (1) =Zncp P(n,t[ng,0). The evolution equation for this
signed to these random variables. For a given realization diunction follows from the backward master equation and re-
{w,} (quenched disordgrwe get a Markovian stochastic sults ind,F(t)=H'F(t), whereH" is the transpose matrix of
dynamics. We can write Eq(2.1) in matrix notation: H. Using Eq.(2.2), we can write the last equation in com-
d:P(t|to) =HP(t|ty), where ponents,

— (W, +w,)P(n,t|ng,te), (2.1
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I gD =W [Fys2(D) — ()] Il. RANDOM BIASED MODEL

_ 5 In this work, we are interested in the interplay between
+V\'no[':f1o*1(t)_F"o(t)]' (2.6 the bias and the disorder in the transition probabilities. For

this goal we take
Thus, the residence probability is the solution of E2.6)

with the initial condition, wy=a+&,, W, =b+&, (3.9
1 ifngeD wherea andb are positive constants afd,} are taken to be
Roo(t=0)=15  siherwise (2.7 independent but identically distributed random variables

with (£,)=0. This form of jump transitions involves an or-
and boundary condition at infinityR, (t)—0 for [ng|— dered biased background with a superimposed random me-
0 dium. The strength of the bias is given by the ratio between

for all finite t. On the other hand, the survival probability is a andb and the disorder is characterized by the distribution

the solution of the generic adjoint equati¢h6) for the in- of variables{¢,}. Without lost of generality, we assunze

finite chain with the initial condition, (t=0)=1 for all  _ 5,45 consequence we must to impose the restriction

noe D. Here, theartificial boundary conditiors, (1)=0 for ¢ = _}, This restriction guarantees the positivity of jump

all t if ng=—(L+1) orng=L+1 must be used to prevent probabilities{w,}. We introduce the parameter for bias

the back flow of the probability into the intervg1]. strength byb/a=1— € and we take & e=<1, so that the bias
The survival probability decreases monotonically in timefield points to the right. This election of parameters allows us

from unity to zero. Let us now introduce the first-passageo focus our attention in the small bias limit and to study the

time distribution(FPTD) f,, (t), i.e., the probability density transition to the symmetric diffusive behavi¢23]. The

of exit D at a time betweert and t+dt; then f, (t)= Laplace transform of the evolution equation for our model
— 3,Sn,(t) [4]. The MFPT is the first momeri, (if it ex- ~ 'eSults from Eq(2.6),
Ists) of FPTD, SF(8)— Fo(t=0)=[KP+ &K IF(s), (32
T, = J’mtfn (t)dt. (2.89  where we have introduced the operators
0 0 0

Kl=e*+&™-21,

If tSno(t)—>0 for t—ce, then KP=a(E —T)+b(E—1). 3.3

T, = fxsn (t)dt. (2.9 &7 are shifting operators(” g,=g,-1) andZ is the identity
°© Jo ° operator. Equatiorf3.2) must be solved with the boundary

. N _ conditions corresponding to each problem,
The residence probability does not necessarily decrease to

zero at infinitely long times. Moreover, it need not even be S_(L+1)(8)=S+1)(5)=0, (3.43
monotonic in time. Thus, the residence time density is gen- R
erally not equal to the negative time derivative of the resi- R,(s)—0 for |n|—, (3.4b
dence probability11]. Nevertheless, we can define the MRT,
Tng in a manner analogous to E@®.9), namely, Y s>0. The initial condition is given by
o 1 if neD
= | R0t (2.10 Falt=0)=1{ oo 359
Thus, from Eqs(2.9) and(2.10, we obtain MFPT and MRT Rémember that for FPT we only need to considerD.
from the asymptotic limit of the Laplace transforméde- The classes (_)f dlsor_der analyzed are genera_llzanons of
noted by hatssurvival and residence probabiliti€22], standard cases in the literatu® 16]. Our expressions are
constructed introducing the parametein such a way that
T, =1mS, (s), (2.113  Wwe guarantee the positivity of transition rates and reproduce
 s.0 ° the known expressions in the limi—0. We have consid-
ered the following three classes of disorder for the transfer
Tn,= MRy, (S). (2.119  ratew=w, .
s—0 (a) The mean values of the inverse moments of jump tran-

sition w, B,=((1M)¥), are finite quantities for ak=1, e
For MFPT, this limit exists ifS, (s)~ T, +cs¥, wherecand >0 and remain finite in the limie—0.
T, are assumed constants age-0. In this manner, from (b) The probability distributionp(w) is
fno(s)=1—sS]O(s), the normalization condition of the B if we(aeQp)

FPTD is also guaranteegig"fno(t)dt=Iimsﬁo?no(s)=1. p(w)= 0 otherwise, 3.6
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where the values d and () are fixed by the normalization ' ' ' ' '
condition (f§p(w)dw=1) and the fact thatw)=a,

B=(2(1—¢€)a) }, (3.7a
Qg=(2—¢€)a. (3.7b
(c) The probability distributiorp(w) is

Cw * if we(aeQg)

p(w)= (3.8

0 otherwise,

where < «<1 and the values o€ and() . are also fixed by
the normalization condition andv)=a. For smalle it gives

e~ 2 (-] N
[(2-wa]'" ’
(3.93 ° ! l l ! !
2—a 1—q\l @ -15 -10 -5 0 5 10 15
chma 1—(m El_a . (39b) n

FIG. 1. MRT for a nondisordered chajas given by Eq(4.2)]
plotted against the discrete initial condition with a=1 andL
=10. The solid lines are only to guide the eye.

The expressions given in Eg8.6) and(3.7) can be obtained
from the corresponding expressions given in E§s8) and
(3.9) in the limit «— 0. Clasgq(a) corresponds to the situation
of weak disorder. There, the mean-square displacement of . )

the RW behaves like for long times. Classe) and ()  Where y=b/a<1. Figure 1 shows the behavior of, for

become strong disordered casesdes0, and correspond to  SOMe values ofy. We would like to stress that far<-—L,
situations of anomalous diffusion. For clag), B MRT is a constant proportional to the width of the interval

« In(1/e) and B,x et X if k>1. For class(c), B,x et <. (2L+1), whereas fon—, MRT vanishes. Given that the

In the strong disorder Iimit{n(t)2> behaves for long times bias_points to th_e right, for any.initial condition at the.IefF of
ast/Int andt2- /(=) for casegh) and(c), respectively. the interval of interest, MRT is equal to the transit time

Though, the MFPT in the presence of strong disorder is &cross the interval. F_or a given initial condition, MR_T is
divergent quantity[16]. We will show in Sec. VII that our 9réater whereas the bias is smaller. For one way motjon (
model allows us to study the transition to strong disorder in—©), from Eq.(4.2) we obtain

the limit € going to zero, i.e., the zero bias limit.

2L+1, n<-L
IV. NONDISORDERED BIASED CHAIN ™=y L+1-n, neD 4.3
0, n>L,

Thenondisorderedtase is obtained from the trivial distri-
bution p(w)= é(w—a). Therefore, basic results about the . o .
survival and residence probabilities in nondisordered chainwhereas in the small bias limit, i.ey=1—¢€, e<1, takinga

can be easily obtained from the equatiari,(s)—F,(0)  constant results in
=K bIA:n(s), with the boundary conditions given by E§.4).

In particular, exact expressions for MFPT and MRT for a 1on<-L
homogeneous biased chain are givensse Appendix A for c2L+1) o (L4n)(L+n+1) b
detailed calculations T ae 2oL+ © "eb (49
— n_ L+1 1-—ne, n>L.
Tn:L+1 n 2L+l Y-y .
a(l—y) a(l—y) 4 L+ L+l . . . .
It is worthwhile to emphasize that MFPT exhibits a cross-
with —L<n=L, and over from the drift (strong biag regime [T,=(L+1
(oL 41 —n)/a)] to the diffusive (small biag regime (T,e[(L
— +1)?—n?]/2a). The diffusive behavior is also present for
1-y’ MRT for ne D, but it is not in the leading term. Moreover,
1] L=n 1_,yn+L+1 MFPT remains finite in the limie— 0 for finite domains,
;== . —L=n<L 4.2) whereas MRT diverges as we can see from B). Thus,
"al lmy (1-9)? the MRT is not a defined quantity for unbiased chdip4].
1 2+l Expressions for the MFPT in nondisordered biased chains
y—yn—L, n>L, following from Eq. (4.1), and the study of the drift and dif-
| (1- ¥)? fusive regimes were reported in R¢L8].
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V. PROJECTION OPERATOR AVERAGE

The basic equation for the evolution of probabilities has

been written in Eq(3.2). The operators in this equation ex-
plicitly show the splitting of the transition probability in an
average biased party, )=a,(w, )=b) and a random non-
biased part §,). Defining the operatoA = £,K°, let us re-
write EqQ.(3.2) as

sF(s)—F(0)=[KP+A]F(s). (5.1)

PHYSICAL REVIEW B6, 021112 (2002

where the superscrif@ (R) corresponds to the survivéalesi-
dence problem. Exact expressions of Green'’s functions are
calculated in the Appendix B.

We will find it useful to write Eq.(5.7) in components.
For this task, we use the explicit form af, Terwiel's cumu-
lants [25] of the random variables: (§,&y, - - .gmp>T

= Pén(1 —7?)§ml (1= P)gmp, and we define the propa-
gator: J,(s) =K °G,,(s), where the operatok ° acts on

the first index ofénm(s). Explicit expressions fod,(s) are
iven by Eqs(B7) and(B12) in Appendix B. In this manner

Our goal in this section is to obtain exact equations for th
averaged survival and residence probabilities. This average
can be formally carried out introducing a projection operator
P (P?="P) that averages over the joint probability density of

e can write

variables{£,}: (FY=PF, F=(F)+(1-P)F. Applying the
operatorP to Eq.(5.1) we obtain

S(FYy—F(0)=KP(F)+PA(F)+PA(1L-P)F. (5.2
Also, applying the operator (1P) to Eqg.(5.1) we arrive to
S(1-P)F=K°(1-P)F+(1-P)A(F)
+(1-P)A(1-P)F. (5.3

A formal solution of Eq(5.3) can be obtained using Green'’s
function for the nondisordered chain,
G(s)=(s—KP L. (5.4

Applying G to Eq.(5.3) and using the definition given in Eq.
(5.4), results in

(1-P)F=G[(1-P)A(F)+(1-P)A(1-P)F].

(5.9
Equation(5.5) can be iteratively solved for (1 P)F,
(1—7>)ﬁ=k2l [G(1-P)ATNF). (5.6)

Putting this formal solution in Eq(5.2) we find a closed
exact equation for the average probabilify),

s(ﬁ)—F(0)=icb<ﬁ>+<k20 [Aé(l—P)]kA> (F).

(5.7
The operatof is solution of the equation,
(s—KP)G=1, (5.9
with the boundary conditions
GS (L ym(9) =G 1ym(9)=0 V sandmeD,
(5.9a
GR (s)—0 for |n|—o andm finite, (5.9p

S(F oy = Fn(0) =K (F )+ >,
p=0mq, ..., Mp

X (£ném, - - - Em ) TInmy(S)

X Jinymy(8) I (S ).
(5.10

We must understand that,=n, and for the survival prob-
lem we have the additional restriction,, ... ,m,eD. The

exact effective backward equation given by E510 can be
rewritten as

S(Fn)—Fn(0)

:’Cb<|§n>+ 2 2 <lr/fn‘//ml s l/’mp>TJnml(s)
p=0 my#n
my#my

Mp#Mpy_1

X Jmymy(S) - - I, ym (S (Frm ), (5.1
where we have used the definition of Terwiel's cumulants.
Here, we have summed up all the terms containing the diag-
onal parts of],(s) through the introduction of the random
operatoriy,(s) defined by

wk(s>=,20[Jkk<s>§k<1—7>>]ik§k. (5.12

=

This operator acts on any disorder-dependent quantity at its
right. The geometrical sum in E¢5.12 can be evaluated,
resulting in

-~ My (S)Jkk(S)
where
B &k
I T30 o4

In the following, we take the limis— 0 in order to obtain
from Eg. (5.11) the corresponding equations for the MFPT
and MRT in disordered media, which are defined from Eq.

(2.11) by
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(T)= Iim(én(s)) (5.153 dependent random operators, so it vanisteEe Appendix
" 50 ' C). Therefore, it turns out that only the term with=0 con-
tributes to ordere. From Eq.(C14) results
()= I (Ri(9)). (5.15H . Li1on y
<¢n>T_:81 _a_aFZ(L+l) €, ( . )

In this limit the propagatod,(s) can be written as\,,

+0(s), and the exact expression fdr,,, in the FPT(RT)  where we have introduced the fluctuation of the quenched
problem is given by Eq(B14) [Eq. (B15)] in Appendix B.  disorder:F=(3,— 81)/ 2. Up to ordere, takinga constant
Therefore, the resulting equation for the averaged MFTRind usingk P~a[ K%~ (£~ —1)€], the explicit form of Eq.

(T is (5.16 is
- -n
_ —0)— kb S 14— p-140 _ - 40 -
St=0)=KXTy+ 2 2 (Ynbhm, - ¥im)F 1=y K ATo) =8 Foy KO+ (€7 =D e (To)
mp#my 2
; +0(é?). (6.2)
Mp#Mp_1
S AS AS AS 0 (5. For e=0, Eq. (6.2 immediately gives the well-known
A”mlAmlmz Amp—lmplC <Tmp> (.19 MFPT for the unbiased case{T,(e=0))=[(L+1)?

_n2 -1
lts solution must satisfy the boundary conditions: " /(281 "), where we can see that the effect of weak
(T_ L+ 1)=(TL,1)=0. A similar equation for the averaged disorder is to replace the constamby the effective coeffi-
MRT ({7,)) is obtained from Eq(5.16 replacing theS cient,Bl‘l. To construct the consistent solution up to order
quantities by the correspondirg quantities and imposing ©f Ed. (6.2), we propose the expression
the boundary conditiong;r,,)=const forn<—L and{(r,)

2 2
—0 for n— +oo (given that the bias field points to right _ (L+1)°—n n n
We, additionally, consider the case of small bias. Thus, (Tn) 2p;t [1+(An+B)e], ©3
the expressions foh ,,, can be further expanded, and taking
a constant results in which immediately satisfies the boundary conditions:

(T_(L+1))=(TL+1)=0. To fit the constants andB we sub-

( stitute this expression in E@6.2) and retain only the terms

———[m—(L+1)]e, n<m : s
2(L+1) alm=( e up to ordere. If the factor ofe in the expressioi6.3) were
1 1 a polynomial of degree greater than 1, we can easily see that
AS=8 —=+ m[m—(u— 1)]le, n=m the coefficients of the terms of degree greater than 1 vanish.
a ( )a Thus, we obtain fone D
L 2t palt™t b+ Dle n=m, Ly (LHDPon? 3-2n L+1-nf3_
(5a7a  (T)= T 5 T aTn) )b
0, n<m (6.4
AR ~ 1] _ 1, n=m (5.17n  From this expression we can analyze the interplay between

the bias and the fluctuation of the quenched disotBem
the presence of bias, the escape time from the finite interval

Again, the superscrips (R) corresponds to the survival increases for all initial conditions, with respect to the un-
(residenékproblem HenceA e for n=m and, from Eq biased case, if the fluctuation is large enough. This is an
. nm 1 .

(B15), the diagonal components of the propagator in the resiimportant result related to the control of the trapping process.
dence problem result independenteof This fact was reported in Reff18] where the solution of Eq.

(6.2) was constructed from FEMA. Now, we can evaluate the

difference between the exact solutirdere) given by Eq.

(6.4) and that approximation, obtaining that the correction to
For a disorder of clas¢a), the quantitiesg, are finite ~FEMA is [(L+1)*~n?}/[6(L+1)InFae.

and we obtain that (i, - .- lpmp>$oc & and In the residence problem, from Eq&C9) and (C14) re-

R_ p-1_ . .
<</fn¢fm1 o (»[/mp>$ is independent of. Thus, Eq.(5.16) is a sults ()= B; ~—a. Thus, the corresponding equation for

. . the averaged MRT is
perturbative expansion in the sense t{iB}) can be calcu- g

€, nN>m.

VI. WEAK DISORDER

lated up to order? truncating thep series in theg term (p ~Rn(0)=B1 KX m) —ae(€ " —I)(m)+O(€),

=0, ... q). The corresponding equation for,) is strictly a (6.5
perturbative expansion given that the contribution to the or-

der €9 comes entirely from the term=g. whereR,(0) is given by Eq(3.5). Now we have to deal with

In Eq. (5.16), the cumulant fop=1 consists of two in- a backward master equation with constant coefficients. In

021112-6
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this casethe fluctuations of disorder are not presefor- U

; U . -1 1

mally, this equation is equal to the one corresponding to a L ") i " d
nondisordered chain in the small limit bias. Therefore, from
Eq. (4.4), with the substitutions

a—prt,

b— B, (1-aBse), - but
—¢ d
e—ape, (6.6) \/] #na v

we obtain, up to orde, the solution FIG. 2. Disordered potential in the chaid.is the distance be-

tween nearest-neighbor sites. The particle jumps to neighboring

1, n<-L sites through potential barriers equal ¢6- ¢,,, where ¢,, are in-
2L+1 (L+n)(L+n+1) b dependent identically distributed random variables with zero mean.
~ — a , N
T e 2(2L+1) Pre, ne

In this case, we get an unbiased backward master equation
with linear coefficients. General solutions of this equation
6.7 will be given elsewhere. Nevertheless, we hold our attention
in the divergent behavior of the averaged MFPT éo+ 0.
VIl. STRONG DISORDER From Eq.(7.3) we can see thafT,)xB,;xce” .

FEMA [18] consists in introducing an effective nonhomo-
geneous mediunt’, and truncating Eq(5.16 to the first
term: —1=/"(T,). Here, the operatok® is constructed
with the constanta+1I",, andb+T',,. The effective ratel’,,

1-naB;e, n>L.

For the classes of strong disordg, are divergent quan-
tities in the limite—0,

Ar=lin<l/(2a) is fixed imposing the conditiot,(T',))3=0. The resulting
, forclass(b), solutions give the exact law$T,)|In ¢ for a disorder of
(ae)l K class(b) and(T,)xe™ for a disorder of clasfc), however

B~ 2a(k—1) (k>1) (7.1a in the last case the predicteddependent coefficient is not

exact. Strikingly, the predicted divergence laws for the aver-

aged MFPT in biased chains agree with the corresponding
B~ (ae)t™% @, forclass(c), (7.1 laws for the survival probability, obtained for the unbiased
k=1+a case in the limits—0 [16]. The behavior of the survival

probability obtained from FEMA i€S,(s))x|Ing for a dis-

order of clasgb), and(S,(s))xs ¢ for a disorder of class
(c). Accordingly, both problems have the same exponents

where 0<a<1 andC is given in Eq.(3.9b. Also in this
limit, Terwiel's cumulants diverge except the first one,
(¥n)7, Which vanishes. However, all the terms of thee- ) .
ries in the Eq.(5.16 vanish and the one corresponding to d€SPite their different natures. _
p=0 is the leading term. We reckon the relevant cumulants N the residence grobl?{n, for both classes of strong disor-
in Appendix C. der we get that )7~ ~, and then the equation for the

For a disorder of claséh) we obtainF~2[¢In?e], and ~ averaged MRT results-R,(0)=pB; K %), i-e., an unbi-_
from Eq. (6.1) results(y,)3~B; L. Therefore, the leading ased equation. Therefore, the averaged MRT is not a defined

terms in the equation for the averaged MFPT resultin ~ quantity for strong disorder.

10 VIIl. THERMALLY ACTIVATED PROCESSES
—1=8; " KXT,)+0

a
— . (7.2
[In‘e] Before concluding this work, we want to analyze the
Bhysical realization corresponding to thermally activated

This is a backward master equation for the unbiased chaifj;ocosses in weakly disordered chains. For this goal we sup-

with constant coefficients whose solution is given {y,) pose a particle that moves in a periodic potentiakith

— -1 .
=[(L+1)*-n?)/(2p;"). Hence, the averaged MFPT di- \inima separated by sharp maxima of heightThe jump

verges ag;[In e. _ _ probability per unit time to neighbor sites involves the
On thezother hand, fo_rla disorder of clags we obtain  Arrhenius factorW exp(— 8¢) with 8= (kgT) %, wherekg
fwlslc[afi(““a)](af)a , and from Eq.(6.]) results 5 goltzmann’s constant ariis the temperature. In the pres-
(fn)7~By (1—al(1+a)(L+1-n)/[2(L+1)]). There- ence of disorder, the transition probabilities are still
fore, the MFPT's equation is symmetrical but depend on the sifsee Fig. 2 w,
=Wexd —B(¢— ¢n)], where(¢,) =0, |,/ < ¢, and we sup-
T a L+1-n BT +0(e). (7.3 pose that the random potential is smaller than the thermal
1+a 2(L+1)/71 N o energy, i.e. 8| ¢,|<1. Now, suppose that an external figd
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(toward righy is added, then the forogE is applied on the

particle of “charge”q. The presence dE alters the heights
of potential barriers. The new jump probabilities are non-

symmetric,

w, =Wexd — B(¢— ¢, FqEA2)], (8.0

PHYSICAL REVIEW E66, 021112 (2002

e—apPe. (8.6

Thus, up to ordege, MRT is equal to the exBression given by
Eq. (6.7) with the changes.—ay and 8,— B;.

IX. CONCLUSIONS

whered is the separation between neighbor sites. In the low

field limit, we can use the aproximation €xpB(—,
FqEd2)]~1+ B+ BgEd2, thus[see Eq.(3.1)],

a=Wexp—B¢)(1+ BgEd2), (8.29
b=Wexp —B¢)(1—-BqEd2), (8.2b
En=Wexp —Bo)Bdn. (8.20

Hence,y=bl/a~1- BqEd, i.e., e= BqEd.
Defining ap=Wexp(—B¢), we can write a=ay(1l
+e€/2), b=ay(1l—€/2), and &{,=ayB¢,. Therefore, we

We have presented a unified framework for the FPT and
RT statistics in finite disordered chains with bias. Exact
equations for the quantities averaged over disorder were ob-
tained for both problems and its solutions up to first order in
the bias parameter were constructed retaining the full depen-
dence on the system’s size and the initial condition.

We have studied the FPT and RT problems for three mod-
els of disorder. For weak disorder, the inverse moments of
the transition probabilities are finite, and we get that the bias
becomes a control parameter for the MFPT, coupled with the
fluctuation of the disorder. The MRT is only defined in the
presence of bias, and for weak disorder the MRT'’s expres-

must adapt the equations of Sec. VI to incorporate the lineg$ions are obtained from the nondisordered case renormaliz-

dependence od on €. In the following, it will be useful to
define the quantiiesw=ag+¢&,, B=(w *), and F
=B,/ 8;>—1, which are independent ef From Eqs.(B14)

and Egs.(B15) results that Egs(5.17) are valid with the
substitution a—agy. Additionally, we can see thay,)t

=B, '—ay—ayFo,e, whered, is given by Eq.(C9). Now,

using thatk P~ a [ K°— (€1 — £ 7)el2], the explicit form of
the MFPT's equation up to orderis

_1:E11K0<Tn>_ao

— 1
FO,K°+ E(&*—g)}em).
(8.3

Proposing the solution given by E(5.3), we now obtain
T (L+1)°—n? L n
( r&’le,l -3t

L+1-n/3— —

(1) 7 | 2oPae

(8.9

ing the transition constants. For strong disordered cases, for
which the MFPT is not defined in unbiased chains, the bias
allows us to study the divergent behavior. Amazingly, the
exponents of the divergences in MFPT obtained for vanish-
ing bias coincide with that obtained for the averaged survival
probability in the long time regime. The MRT is a divergent
guantity under strong disorder because the strength param-
eter is not present in the corresponding equation in the small
bias limit, and the MRT is not defined for unbiased walks.

We complete the work with three appendixes. In Appen-
dix A the derivation of survival and residence probabilities
for nondisordered chains is completely developed. Apppen-
dix B is devoted to the detailed calculation of Green’s func-
tion in a chain with bias. Exact expressions are given, which
display the full dependence on the system’s size, initial con-
dition, and bias strength. The evaluation of the relevant Ter-
wiel's cumulants is reported in Appendix C.
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On the other hand, the MRT's equation up to order

results

—R(0)= By K )+ (67 —E W r). (89

de Cadoba(Code: 05/B160, Res. SeCyT 194)00

APPENDIX A: SURVIVAL AND RESIDENCE
PROBABILITIES IN A NONDISORDERED
BIASED CHAIN

We address the question about the survival and residence

Again, this equation is equal to that corresponding to a nonProbabilities for a RW in the finite interv@d=[ —M,L ] of a
disordered chain for small bias with transition rates given bynomogeneous chain. In the absence of disorder, the Laplace

the substitutions

— a,
a— B+ ?Oe,
— a
b—>BIl— 706,

transform of the evolution equation giveﬁzn(s)—Fn(O)
=K PF(s). This equation can be written as
[a8T+bE™ —(s+a+b)Z]F,(s)=—F,(0), (Al

and must be solved with the boundary conditions corre-
sponding to each problem,
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S m+1)(8)=S(+1)(5)=0, (A2a) X= 3[r+ 1+ y=J(r+1+7y)°—4y] (A4)

R,(s)—0 for|n|—o, A2b . . .
()= Inl— (A2b) and satisfyx;x,=y with x;=1. Then, the general solution

V s>0. Defining the vectoA such thatA, . ;=F(s), Eq.  ©f Ed- (A1) can be written as

(A1) can be written as

_ . 1 —
[a(E7)%2—(s+a+b)ET+DbT]A,=—F,(0). (A3) Fo(9)= S +euxd e, neD. (A5)

Equation(A3) is a second-order linear difference equation. A

particular solution for the inhomogeneous equation is the

constantA,= 1/s. ProposingA,=x" as a solution of the cor- For the survival problem the constamtsandc, are fixed by
responding homogeneous equation, it give$—(r+1 imposing the boundary conditions given by E42a). Thus,
+vy)x+y=0, wherer=s/a and y=b/a<1. The roots of we found for the survival probability the following expres-
this second-order equation are given by sion:

: (AB)

Si(s)

L+M+2 L+M+2y,n—L—-1 L+M+2 L+M+2y,n—L-1
1(1 (x —y )x] T (y —x5 M%)

L+M+2_ L+M+2

S X1

X2
This equation is invariant under the transformatigr-x,. From Eq.(A6) andf,(s)=1—sS,(s), we can immediately obtain
the FPTD for the ordered chain.

For the residence problem, the boundary conditigk2b) impose that

dix] for n<—M

ms):[ (A7)

dyxj for n>L.

Now, the constants,, c,, d;, andd, are fixed by writing explicitly Eq(Al) for the sitesh=—-(M+1), —M, L, andL
+1. Thus, we finally found the expression for the residence probability,

(1=x) (x5 ™M 1—1)x)™ 5 n<—M

. 1
R(s)= —————1 1-[(1=x)x] "+ —1)xg "], —M=n=<L (A8)
S(X1—X2) LMt L
(X — 1 (L=x53"MHx3t n>L.
|
Taking the limits of Eq.(2.11) it gives, on one hand the APPENDIX B: GREEN'S FUNCTION IN A CHAIN
MFPT for the ordered chain, WITH BIAS
N L1 In this section we are concerned with the solution of Eq.
T _L+1l-n L+M+2 vy (A9) (5.8). In components, this backward equation can be written
Ta(l-y)  a(l-y) o (ME_ L1’ as
with —M<n=<L, and on the other hand the MRT, aG, . 1m(S)+bG,_1m(S)—(s+a+b)G,m(S)=— Sym.
(B1)
([L+M+1
SV n<—M We must solve this equation with the boundary conditions
Y corresponding to each problem,
1 L—n 1— ,yr‘l+M+1
== + , —M=sn=<L ~ ~ —
™2l 1oy (1—4)2 (A10) GS e ym(8)=6S . 1ym(8)=0 V s and meD,
1— ,yL+M+1 (B2a
———""5 n>L R N
. (1-v) Grn(8)—0 for [n|—% and m finite.  (B2b)

Equations(4.1) and(4.2) follow from Egs.(A9) and (A10), Here, the superscri@ (R) denotes the solution correspond-
respectively, takingl =L. ing to the survivalresidencg problem.
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The solution of Eq(B1) in a finite domain(survival prob- y1iX3+y,x5  for n<m
lem) can be constructed using the method of imajgds It s . _
consists in summing to Green’s function in the absence of Gnm(S)= with n,meD,
boundaries, terms corresponding to the specular image of the 81 X7+ 8, x5 for n=m
index n with respect to the boundary considered. For absorb- (B3)

ing boundaries the image must have a negative sign. Mor&yhere the function; , are defined in Eq(A4). The con-
over, in the presence of bias, the image must change the bl%ﬁantsh, v2, 81, and 8, are solutions of the set of four
direction (@« b). Additionally, in a closed domain, each algebraic equations that result from imposing the boundary
boundary reflects the image of the other boundary. This factonditions given by Eq(B2a), imposing the equality be-
introduces an infinite set of images. However, we adopt hereveen both expressions given by E@®3) for n=m, and

the simpler algebraic approach developed in Appendix Awriting Eq. (B1) for n=m. Additionally, using the relation

Thus, we propose

n+M+1 m+L+1

a Xi,z‘ (st+a+Db) x; ,+b=0, we obtain

- —m+L+1 +M+1,, —m+L+l_ —mtL+1
&5 (s) 1 [x] (X1 -x, M )+x5 (x; ™M -x; M ), N=m (84
S)=
nm D XTX|£+1(le M+1 szleJrl)_f_XgX&Jrl(xzm M+1 lexg/lJrl), n=m,
|
where D=a(x;—Xp)(x: "M*2-x5*M¥2) = pefining the function corresponding to the survival problem without bias

variable z=s+a+b—2 u, the constantu=+/ab, and the
functions

7 7 22 1/2
A(Z):l‘f‘ﬂ— ;_'—4_/1/2 , (BSa)
1 7 22 —-1/2
B(z)= 20\ 4_M2 : (BSb)

result inx,=\/yA(z) anda(x,—x,)=B(z) 1. Using these

(and taking w=+ab) [16], we can immediately see
that GS, (s)=y""™2GS (z). Moreover, given that 1
— 1k %G%(z)=1, we immediately obtain EqB1).

We now compute the propagatdy,(s) = Icoénm(s). Ap-
plying the operatoiC® defined in Eq.(3.3) to Eq. (B6), the
following expression is found:

J5 (5)=B(z)[1-A(z)*L V172

functions we can recast the expressi@d), for the caseM B n \/— m
=L, as Az)?t D (A(Z)) [NyA@)]
Gam(9)=7"""B(2)[1-A(2)* D] f A(2) (A(z))m
——+— 2|+ (JyA@)"| —=
X[A(z)" "M —A(z)2ED Ay (A Vy
X{A(Z)"F M A(z) " (MY 1 )
A(z)+ -2 Zamls B7
+A(z)4CFDA(z) " Inmmh, (B6) 7A@ VYA(2) &7
The last expression satisfies the symmetry relation
(a,b),(n,m)«(b,a),(m,n). Denoting by@ﬁm(s) Green’s wheren,meD and
( \/— n—-m—1 \/— 2
(F:)) (M‘l +A@ DAy AZ) - D2 nsm
— Al2) 4(L+1) ﬂ o ) -
Zom=4 VyA(2)+ 5 2+A(2) A(Z)+J§A(z) 2], n=m (B8)
n-m-—1 2
Wy A@)" " L(JyA(z)— 1)2+A(z)4(L+1)(A\Z)) (%—1) . n>m.

\
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On the other hand, for the residence problem we propose 0, n<m
1
Ax] for n=m A§m=5 -1, n=m (B15)
~ — _ n—-m—1
ER ()= with n,meD. (B9) (1=y)y" "% n>m.
Aoxy  for n=m We remark that we keep the exact dependence in the param-

eterL (size of the systeinfor the FPT problem. From Eq.
This expression immediately satisfies the homogeneous cas$B14), we can also see that tiséndependent contribution is
of Eg. (B1) and the boundary condition®2b), given that quite different from that which is obtained without bids].
X1 X,=7y<1 with x;=1. The constantd, and\, are fixed In the presence of bias we get nondiagonal contributions to
by imposing forn=m, the equality between both expres- the propagator for the survival and residence problems in the
sions in Eq(B9), and writting Eq.(B1) for n=m. Hence, we limit s—0, which also remain for small bias, as has been
obtain shown in Eq.(5.17).
1 Y"1 fornsm APPENDIX C: TERWIEL'S CUMULANTS

GR =— Bl
Grml(S) a(x;—xz) x5~ ™ for n=m. (B10

Terwiel's cumulants were introduced in RE25]. In this

Using the functions defined by EGBS), the last expression Appendix we are concerned with the evaluation of the cumu-

can be recast as lants of the random operat@r, defined by
éﬁm(s):,y(n—m)/ZB(Z)A(Z)h‘I—m\. (Bll) lﬂn:Mn(l_NnPMn), (Cl)
. . h
Applying the operatoikC® to Eq. (B11) we find where
IR(8)=7""""2B(2)A(z)l" ™ M=ot (C2)
1_§n‘]nn
YA(2) "y YA(2) -2, n<m _ g bl and
is a random variable, an
x3{ Y?A2)+y Y?A(z)—-2, n=m
1/2 —1/2 -1_ J
vA(2)+ v YA(2) 2, n>m. _ nn
No l_<Mn>‘Jnn. €3

(B12)

We are interested in analyzing the propagatgg(s) in  F'om its definition,

the limit s— 0 for a given bias, also we are concerned with _ _ _
the expansion for small biase{~0). We must stress that (Ynthm, - ¢mp>T PUn(1=P)m, - - (1= P)hm,
these limits do not commute. Thus, we first must take the (C9
limit s—0 for a fixed bias, and then perform the expansion.a, pe easily obtained

in the parametek. Defining the variabley=s/(a—Db), we

get from Eq.(B5), for smalls, that (oyr={n),

A(Z)*\/;/(l—y-i- 1T1.yy2)' (B133 <‘/’n‘r/fm>T:<‘r/fn¢’m>_<‘r/fn><'r/fm>v
<‘/’n'pm1¢m2>T:<¢n¢m1¢m2>_<¢n><’//mlwm2>

- < ¥n ¢m1>< ¢m2> + < ¢n>< ¢ml>< ¢m2>-
(B13b (CH

242
B(2)~ 1+y  (1+y)°+2y 2>.

a(1—7)< 17T T 1oy

These approximations allow us to write the propagator in thd=or n#m, ¢, and ¢, are statistically independent, then
form: J,,m(S) =~ A ,m+ O(y), where for the survival problem (i, ¥m) = {n){¥m). Therefore,

N SRR (nhm)r=0,
nm 1_
Ay (ntmtbr =0 (n#0"),
(1_ ,y2)(_ ,yn+L+ ,yn—m+2L+1)’ n<m
% —(1—y2)7”+L+(1—y)(y2L+1—1), n=m <¢n'//m'//n>T:<'/’n‘/’m¢n>+<¢n><¢m><'/’n>a (CG)
(1= (="t E4 M) n>m, and using Eqs(C1)—(C3) results in
(B14) (M)
()= T
and, on the other hand, for the residence problem 1+(Mn)dnn
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<¢n¢mwn>T:(1+<M n>Jnn)_2
X ({(MEM ) =Ni(Mp)2(Mp)?). (C7)

In the limit s—0, from Eg.(5.17) the diagonal compo-

nents of the propagatak,, can be written as

1
Jnn~— a(1+ Ohe), (Cy)
where
LELTN o prob
_— roblem
6,=4 2(L+1) P (C9)
0, RT problem.
Using the transfer rate =a+ ¢,,, we obtain
1 J—1~a11a9 C10
( én nn) ~ o » n€|- ( )
Thus, we can write
a a
M,~a 1——)[1—(1——)6,15 . (C1)
w w

For a disorder of clas&) for which the quantitieg, are

a

a 2
<(1— Z) > =1-2ap;+a%B,. (C12

Hence,

PHYSICAL REVIEW E66, 021112 (2002

(My)~a[1—-aB;—(1—-2aB1+a%B,) bhel,

1+{M)J~aBq 1— 1—a& Onel,
B1
1 B
Nn~—;/311 1+ 2—aﬂ—j One (C13
and therefore
($n)=P1 —a—aFbpe,
(Ynthminyr=B1 [a(1—aB;)(1—2aB;,+a%B,)

+B1(1-aBy)*1+0(e), (C14

for n#m. Here, we have used thaTz(,BZ/,Bi)—l.

For the strong classes of disorder, the quantifgsdi-
verge in the limit e—~0 and it can be seen thaf(1l
—alw)¥)cBy. In particular, for a disorder of clas®) B,
«|In € and B> et for (k>1). Thus, from Eq(C11) we
obtain(M)=|In € and(M2)xe~*, which give

<¢n>~ﬁilm

[Inel’

(Unthmin) 7> (C19

ellne|”

1-k—«a

Finally, for a disorder of clas&), By e and results in

My)xe ¢ and M2 xe e Therefore,
< n> n
<¢n>:::851 €,

(nthmipn)roce t. (C16
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