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Theoretical estimates for the largest Lyapunov exponent of many-particle systems
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The largest Lyapunov exponent of an ergodic Hamiltonian system is the rate of exponential growth of the
norm of a typical vector in the tangent space. FoNgparticle Hamiltonian system with a smooth Hamiltonian
of the typep?+1(q), the evolution of tangent vectors is governed by the Hessian m¥trk the potential.
Ergodicity implies that the Lyapunov exponent is independent of initial conditions on the energy shell, which
can then be chosen randomly according to the microcanonical distribution. In this way, a stochastic process
V(t) is defined, and the evolution equation for tangent vectors can now be seen as a stochastic differential
equation. An equation for the evolution of theerage squared normf a tangent vector can be obtained using
the standard theory in which the average propagator is written as a cumulant expansion. We show that if
cumulants higher than the second one are discarded, the Lyapunov exponent can be obtained by diagonalizing
a small-dimension matrix that in some cases can be as smalk&s B all cases, the matrix elements of the
propagator are expressed in terms of correlation functions of the stochastic process. We discuss the connection
between our approach and an alternative theory, the so-called geometric method.
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[. INTRODUCTION trix methods for modelinguniversal features of Lyapunov
spectrd 12]. These methods were further developed by other

The largest Lyapunov exponent measures the sensitivitguthors and applied to many-particle smooth Hamiltonians
to initial conditions in a dynamical system. In low- [13].
dimensional models, the Lyapunov exponent sets a limit to To our knowledge, the first theory for estimating the larg-
the prediction of the time evolution of a given state of theest Lyapunov exponent of a specific Hamiltonian system, and
system. In the high-dimensional systems encountered in theits dependence on the system parameters, was formulated by
modynamics, one abandons from the start a description iRettini and co-workers some years ddd,15. In this ap-
terms of single(microscopig states, and resorts to a statisti- proach, the dynamics is geometrized by absorbing the force
cal approach. In these cases a positive Lyapunov exponentigrms into a suitable metric, thus mapping the Hamiltonian
usually welcome, as it is a necessary condition for the validproblem onto a geodesic motion on a curved manifold. After
ity of the Boltzmann-Gibbs scenario. A Lyapunov exponentmaking the “quasi-isotropy” approximation, the Hamilton
that becomes null in the thermodynamic limit is a signal ofequations for the tangent vectors become decoupled. As a
anomalous behaviors. For instance, metastable phases @insequence, the initial system di2lifferential equations
some long-range interacting systems, where the Lyapunolias been reduced to only two equations. While the original
exponent vanishes in the lar§Elimit, exhibit breakdown of = problem was governed by the Hessian matrix of the poten-
ergodicity, anomalous diffusion, and non-Maxwell velocity tial, of sizeN X N, the new(reduced one is controlled by the
distributions[1]. An extension of standard statistical me- Laplacian of the potentialAV(t), a scalar function of time.
chanics is required for the theoretical explanation of suchrhereafterAV(t) is treated as Gaussian white noise and the
phenomen42]. 2x 2 system of differential equations is solved using the

In many-particle systems, the Lyapunov exponent is alsenethods developed by van Kampen and oth&é$ See Ref.
an indicator(order parametgmf phase transitiong3—5] and  [15] for a review.
may be related to transport coefficief67]. When applied to a Fermi-Pasta-Ulam ch@i], the so-

In practice, for a given system, the largest Lyapunov ex<alled “geometric method” was extremely successful in re-
ponent must be obtained through numerical simulationsproducing the largest Lyapunov exponent over the entire en-
typically using the method developed by Benettinal. [8]  ergy rangd 15]. However, in other cases the agreement is not
(a proof that this method gives the Lyapunov exponent oo good. For instance, in a chain of rotators with first-
Oseledec’s theoreff®] can be found in Ref.10]). For some neighbor(bounded interactions, the method works well only
special cases, e.g., hard-sphere systems, the theory iofthe low- and high-energy regimes, where the dynamics is
Lyapunov exponents is remarkably develop&d]. This con-  weakly chaotic(integrable in the limitsE—0,%). In the in-
trasts with the situation in smooth Hamiltonian systemsgtermediate region of stronger chaos, the theory has to be
where comprehensive analytical estimates are scarce. bBmended to obtain a good agreement with simulatjdss
1984, when studying two-dimensional billiards, BenettinThis and other exampld$,18] raise several questions con-
made the first step towards the construction of random méeeerning the domain of validity of the theory. What is the

nature of the quasi-isotropic approximation? Or, what are the

parameters that control the quality of the estimates of the
*Email address: vallejos@cbpf.br theory? Is the geometric method perturbative? If so, what are
"Email address: celia@cbpf.br the next leading corrections?
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In this paper we present an alternative theoretical apFor a Hamiltonian of the special forrfl), and settingm
proach in which the validity domains of the successive ap=1, the operatoA has the simple structure
proximations can be precisely delimited. The basic idea is to
employ van Kampen’s method46] to solve theoriginal 0 1
system of N differential equations for the evolution of tan- A(t):( —V(t) 0)'
gent vectors. By applying this scheme to a three-dimensional
dilute gas, Barnetet al. [7] established a link between the HereV is the Hessian matrix of the potentit] namely,
Lyapunov exponent and the self-diffusion coefficidaee
also Ref.[19]). We show that this approach can be extended 3V
to reach other systems, such as the Fermi-Pasta-Ulam chains Vij :&qiﬁqj : ®
and lattices of classical spins, either with short- or long-range
interactions. By doing so, we shall settle down a connectiomdnce initial conditionsc, and &, have been specified, Egs.
with the results of the geometric method and suggest som@) and (4) allow one to find the Lyapunov exponentby
answers to the above-mentioned questions. calculating the limif 8]

The paper has been organized as follows. Section Il pre-
sents the theory that leads to an estimate of the largest 1 )

Lyapunov exponent. This is a perturbative theory that rests A= lim o Inf&(txo, &0) [ (0
on a cumulant expansion. We argue that the ger(eeatur- e
bative) solution can be obtained by diagonalizing a small-

dimension matrix. In Sec. Ill we analyze an approximation hase-space trajectorft:x,) is ergodic on its energy shell
that reduces the problem to diagonalizing x 3 matrix. pnase-sp: JECIOR(L, X godic on gy :
This implies that\ is independent of initial conditions,,

Section IV discusses some examples that illustrate the work-

ing of the theory. The connection between our results an&"hICh can ther) be. chosen randomly according to the micro-
%anomcal distribution. There will also be no dependence on

those obtained by the geometric method is discussed in SeC... e
V. Finally, Sec. VI contains the concluding remarks. !I’]Itl?.| tangent vectors, becausegy is also chosen randomly,_
it will have a nonzero component along the most expanding
direction.
Il. THEORY If the corrections to the exponential law in E) go to
Jero fast enough as—~, one can also write

®

We will assume that for any initial conditiow,, the

The theory we present in this section can, in principle, b
applied to any smooth Hamiltonian system. For simplicity, (E(tixg, o)D) e 6)
and for the sake of comparisons with the geometric method, 170050 '

we restrict ourselves to the “natural” Hamiltonians where the brackets mean microcanonical averages xyer
N We will prefer the estimate of Eq8) because the averaging
H=S p—i+V( 1 procedure is crucial for finding an analytical expression for
=2 om T AN, () the Lyapunov exponent. In case of doubt, the equality of the
exponents defined by Eq&) and(8) can be tested numeri-
cally, e.g., using the data generated by Benettin's algorithm.
By letting X, be a random variable, a stochastic process
t;Xo) is defined, and Eq4) can be thought as a stochastic
Ldifferential equation. However, the quantity we are interested
in is the square of the norm &f which can be written as the
trace of the “density matrix’¢T. Thus, we must focus on
the equation for the evolution af¢':

whereq; and p; are conjugate position-momentum coordi-
nates. Other Hamiltonians can be considered but they ma¥
require modifications of the theory. (

The Hamilton equations can be written in the compac
form

oH

X=J—, (2)
IX d R
m(ééT)=A§§T+ EETAT=AEET, 9
where we have introduced théN2dimensional column vec-
_ T g A~
tor %, x= (0, d i ’qup%’ T ’pNI) ’.the sug(egrspnpt MeAN- the rightmost identity defining the linear superoperator
Ing “transposed,” and the symplectic matrixbeing Except for the fact that we must deal now with a superop-
erator, Eq.(9) is not different from Eq.(4), and can be
J:< o 1 3) handled with the same techniques. For the purpose of the
-1 0 perturbative approximations that will follow, the operafor

is split into two parts:
with 1 being theNXN identity matrix. Differentiating the
Hamilton equations, one obtains the evolution equations for A=Ag+A (), (10)
tangent vectorg= (89, . . . ,80N,0P1 - - - ,0PN)
where A, corresponds to the evolution in the absence of
E=A(1)E. (4) interactions. In our casef\o andA1 are associated with
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0 0 metry of the density matrijx First, notice that the exponen-

—V(t) 0)' 1D tials oon represent no problem as they are finite polynomi-
als,

respectively. Whenevek, (t) is small(in a sense that will be
discussed beloyyit is possible to manipulate E¢9) to de-
rive an explicit expression for the evolution of theerageof ., any matrixQ. Inserting this expression into E6L3), we
£€T. A clear exposition of this derivation, together with a arrive at
very detailed discussion of its domain of validity has been
given by van Kampeml6]. We just outline the basic steps: « % ~
(a) Rewrite Eq.(9) in the interaction representation associ- ~ AM=(Ag+(A))M+ fo d7(5AL (D[ 6A(t—7)M
ated with A,. (b) Write the propagator as a time ordered
exponential(c) Expand its average in a series of cumulants. +MOAL(t—7) ]+ (-- )T, (17)
(d) Go back to the original representation. The final result is

where (- -)T means “the previous terms transposed,” and

e™0Q=[1+7Ao]Q[1+ 7AT] (16)

T\(+) — atAg T
(€61 (1) =0ty (12 SAL(t— 1) =[1+7A0]6A(t— D[1—7A,]. (18

where A is a time-independent superoperator given by theSubstituting Eq.(11) into Eq. (17), we arrive at the final
perturbative expansion result of the second-order perturbative approach,

w . R . 0 1 « (0 O
AEAO+<A1>+f0 dr(SA(t)e™0sA (t—T)e” o)+ .. AI\/I=(_<V> 0 MJrf0 dT(T —72)
(13 (VV'y 0 )
. X M
with 0 (oVoV')
SAL(D=Ay()~ (Ay) 14 “arl [0 O[T O T l)
= - . +
' ' ' foTavoMoav' -2 -7
Let Loy be the eigenvalue ok which has the largest real +(--)T. (19
part. We find that the largest Lyapunov expongrnis related
to the real part ot ,5: To abbreviate the notation, we have writtef instead of
1; 8V and 8V' substituteSV(t) and sV(t— ), respec-
A=3Re(Lmay. (15)  fively.

The largest Lyapunov exponent is buried into E). To

In Eq. (13) we give explicitly only the first two cumu- 9et an explicit expression, one must diagonalize the matrix
lants, the dots stand for third cumulants and higher-ordepf A. The outcome will bex as a function of the first two
ones. The perturbative parameter can be understood as themulants of the stochastic proceé¢t), i.e., averages and
product of two quantities. The first one, let us calldt  (integrated two-time correlation functions:
characterizes the amplitude of the fluctuationsaﬁfl(t). "

The secoAndrc, is a typical(the largest relevaintorrelation <Vij>;f dr P(8Vi;(0)8Viq(m), n=0,12. (20)
time of 6A4(t). Thus, the second cumulant is of the order of 0

0?7, the third one is of the order af®72, and so on. If all
cumulants were summed up, EG2) would be exact in the
long-time regimet> 7. [16].

From now on, we restrict our analysis to the propagétor
truncated at the second order, i.e., EDB) without the dots.
This approximation will be better for smaller values®f. .
However, if A;(t) is not far from a Gaussian process, the
validity of the second-order approximation may extend out- "example in Sec. IV. So, if desired, the largest Lyapunov ex-
side the perturbative regiom7.<1. In the exceptional case ,onent could be found by numerical diagonalization, at least

thatA,(t) is a Gaussian process, cumulants higher than thgyr systems wittN~ 1000 degrees of freedotprovided one
second one will be strictly zero and the truncation will intro- can estimate the correlation functions

duce no error. A An alternative to exact diagonalization is the approximate
To proceed further, one needs the matrixAofin some diagonalization, i.e., the diagonalization of the restriction of

basis. So, let us calculateM, M being a symmetric matrix A to some small-dimension subspace. Notice that the prob-

(it is easy to see that the truncation has not spoiled the symem we are dealing with is not very different from finding the

At first sight it may be thought that akis a superoperator,
the matrix one should diagonalize is of the order of
N2X N2, then straightforward diagonalization would be out

of the question for largé\. Notwithstanding,f\ is an aver-

aged object, and as such, it possesses some symmetries that
can be exploited to reduce the dimensionality of the problem
to tractable levels, sa) X N. This will be illustrated with an
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[} |2

ground-state energy of a quantum system. However, in théisotropic,” and it consists in restricting\ to the subspace
quantum problem, the operator one must diagonalize is Hespanned by the following three matrices:
mitian, and it is well known that diagonalization in a trun-
cated basis produces an upper bound to the exact ground- 1 O 00 0 1
state energy. It frequently happens that this bound is close to 1=lg o o 1" "=y of (26)
the exact result, even if the ground-state wave function is
not. In spite of the operatok not being Hermitiar(see Sec. These matrices are mutually orthogonal with respect to the
1), we still expect that diagonalization in a small basis will standard Euclidean scalar product, i.e.,
give a lower bound for the Lyapunov exponent. If the basis is
suitably chosen, this estimate may be close to the result of Tr(IinT)ocaij . (27
the exact diagonalization.
To proceed with the construction of a basis forwe take ~ Then the matrix elements ok with respect to the basis

advantage of the fact that is independent of,, and sim-  {l,1,,l3} are
plify Eq. (12) further by averaging over an orthonormal set R
of initial tangent vectors, obtaining | Tr([AIj]IiT)
T (28

Tr(l;l;

1 “
((eeM =556 (21) _ o _ .
Using Eq.(19) and skipping some simple algebra, we arrive

. ) _ ) - at the 3x 3 matrix
This second averaging allows us to consider, instead of

itself, the restriction ofA to the subspace spanned by the 0 0 2

matricesf\k}l_, k=0,1,2... . Alook at the first terms of this Al 2¢27) 20273 —2u
sequence gives a hint for constructing an appropriate basis. 2 (2) 2 (3)
The first term is the identity, the second one is —pt20°Tg 1 —20°7¢
. 0 1—(V) (29
Al= I-(V)y 0 with the definitions
+2fwd noVaV?) (22 _1
o\ H(SVEV'y (1-)(sVaV'))’ p=qmv), (30
and so on. 1
02=Fﬂ7«5V)§, (31)
Ill. THE ISOTROPIC APPROXIMATION
Typically, the diagonal elements &f(t) will be larger (k+1)_ f“ k
than the off-diagonal ones. This is evident in the case of Te 0 drrt(7), (32)

translational invariance, where one has the property
where we have introduced the normalized correlation func-

JFI

1

Introducing a matrixy having all entries equal to one, i.e., f(r)= FTN oV(0)aV(1))
o

Yij=1, V i] (24) N
N > (8Vii(0)8V; (1) (33)
we can rewrite Eq(23) as T Ne2 i< (8Vii( ij (7))
YV =VY =0, (25)

It is evident from Eq(29) that the operatof\ is not Hermit-
ian. Normalization of the basis will not makeA' symmet-

Then it is clear that Eq(23) is also satisfied byV), e

,<5V5V ), and b}’kthe higher moments.Mthat wil appegr In the isotropic approximation, the Lyapunov exponent is
in the blocks ofA*l for k>1. So, in a first(crude approxi- expressed in terms of the set of four parametgrsand
mation one may be tempted to discard the off-diagonal E|ea_27_((:k+1), k=0,1,2. The parameterg and o are, respec-
”?e”ts of the momgn'ts of. It we also assume th.at all caor- tively, the mean and variance of the stochastic prot&ss,
dmatgsqh are staustlcally_equwalen_t, and rem|_nd that theand can in principle be obtained analytically by calculating
matrices A1 are symmetric, we arrive at the simplest ap-the corresponding microcanonical averagés practice, the
proximation for diagonalizingh. We call this approximation calculations can be done in the canonical ensemble, and then
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connected with the microcanonical results by the formula of 1 N
Lebowitz, Percus and Verl¢0].) Hi=3 > LA+
The characteristic timegl) is naturally interpreted as the =1
correlation time of the proceds(t). Its calculation requires
thﬁ, IF]nowledge ofdthe a:jutocol\r;elatlon fUQCt'O”S \l‘[’lﬁ_(t)' funSENts a lattice of classical spins with infinite-range interac-
which are system dependent. Moreover, the correlation UnGjo g - Each rotator is restricted to the unit circle and it is
tions of a given SVSte.m will, in general, deper?d on €Nnergyinerefore described by an angle:®,=<2 and its conjugate
However, if the functional form of the correlation function angular momenturh; , with i =1 N. At the critical en-
f(7) is known (or conjectureyl its parameters can also be ergyE.=3N/4, there is a second-order phase transition sepa-

calculated as thermal averages. For instancé(4j is ap- rating a disordered regimeEG-E,) from an ordered one
proximately Gaussian, (E<E,) :
o)

1
2N i

|MZ

 [1-cog6-6)].  (39)

This is the so-called mean-fieldY Hamiltonian. It repre-

2 In both limits E—0,, the Lyapunov exponent goes to
f(r)~e 7, (34 zero. For a fixed energg>E., \ also goes to zero when
N— 0. This behavior has also been observed in a metastable
the expansion ofV(0)V(7)) around7=0 gives an explicit  disordered phase witlE<E.. The perturbative approach
formula for the correlation time, namely, should be a good approximation in these regimes. Moreover,
we argue that the infinite-range interactions justify the iso-

1 2 dv2\ |2 tropic approximation.
NON 2NT at (39 All single-particle averages are equal, and, given that the
e’ LTO forces are independent of the distances between spins, all

. 2 (3) o o two-particle averages must also be equal. So, one has
In this caser;™ and r;” are trivially related torg”’:

(Vii>=C1, Y i, (39)
2
2)__ 1
1@ =—[7V7, (36) (Vi)=Cp V i#]. (40)
5 Notice that translational symmetry, E@3), implies that
& =—[7PP. (37) .
Cp= — — (41)
27 N-1

A purely numerical calculation ofg") may be very diffi-
cult, if not impossible, because correlation functions esti-This is the reason why the isotropic approximation will work
mated from finite-length time series usually fail to damp asin this case, i.e., off-diagonal matrix elements are indeed
expected 21]. Perhaps, a more sensible approach to the essmaller than diagonal on¢48]. But let us keep the discus-
timation of 7% should start with a numerical study of the sion quantitative, and rewrite E¢39) as
correlation functions; then a functional form fo¢7) could
be proposed, based on the short-time behavior of the numeri- (V)=ciltcy(Y—1) (42)
cal correlation functions; finally, the parameters defining
f(7) would be calculated as suitable thermal averages. A
alternative, more powerful approach involves the use o
“memory functions”[22]. They are related in a one-to-one o riv
way to ():/orrelation functions aynd seem to be more amenable (V(0)oV(n)=cylteca(Y—1). 43

to simple approximationtsee, e.g., Re{23)). Then all blocks ofAl [Eq. (22)] belong to the subspace
spanned by andY. Taking into account Eq.25) and

ith Y defined in Eq(24). Using the time-reversal symme-
fry of the stochastic proced4(t), one can also show that

IV. EXAMPLES

, . I Y2=NY, 44
In this section, we analyze the application of the pertur- “4

batlvg the_-ory of Sec. Il to some simple models. We remarkwe conclude that the blocks of all the sequerdg belong
that, in principle, the theory is expected to be successful onl

in regimes where the Lyapunov exponent is very small. AII)(0 thg sup§pa9{dl,Y}. Th.us, the rglevant subspace for diago-
the systems considered below exhibit regimes with vanishf@/izing A is six dimensional. It is spanned by, 15,15 [Eq.

ingly small Lyapunov exponents. It is understood that ourt26)] andY1,Y5,Ys, with the definitions
discussion will be restricted to such regimes. . (Y 0) . (0 0) . ( 0 Y) "
l= 1 2= y 3= .
A. Mean field XY Hamiltonian 00 0y Y o

Let us begin by analyzing one special case in which thedowever, it can be showsee the Appendijxthat the largest
isotropic approximation of Sec. Ill is exact. Consider theeigenvalue of the corresponding<® matrix coincides with
one-dimensional Hamiltoniaf24-26 that of the isotropic ¥ 3 matrix up to corrections of order
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1/N. In this way we have proven the validity of the isotropic Si=38j+1. (48
3X3 approximation for one-dimensional systems with
infinite-range forces. where it is understood thgt+1 must be taken moduldl.

Then the set of symmetrical matrices,

B. Dilute gases 3, =5+SK 0=<k=N/2 (49

Consider now a one-dimensional gas with Hamiltonian
N is a basis for the blocks oA™1. A suitable basis for diago-

1 N A
HZZE ;1 pi2+ijz:1 v(gi—d)), (46) nalizing A is the set

3, 0\ (0 O 0 3
whereq andp are linear coordinates, and we assume that the ( 0 0) ’(O 2) ,(Ek 0 (50)
potential v is bounded. For large enough energies, this sys- J
tem is disordered and weakly chaotic. All particles, and allwith 0<i,j, k<N/2. The length of this basis isN¥2. Not-
pairs of particles, are statistically equivalent. Then this prob-withstanding, we expect that a small subset of this basis will
lem is formally equivalent to the infinite-rangeY Hamil-  be enough to get a satisfactory convergence to the largest
tonian: The isotropic ¥ 3 approximation becomes exact.  gigenvalue ofA. Even in the worst case of no truncation at

Of course, the statistical equivalence also holds for a dix| nymerical diagonalization is possible for relatively large
lute three-dimensional gas with short-range interactions. "éystems.

this case, Barnett al. have shown that the largest Lyapunov
exponent is found by diagonalizing ax4 matrix[7]. V. CONNECTION WITH THE GEOMETRIC METHOD
C. aXY Hamiltonian In Sec. Ill, we motivated the isotropic approximation by

There are cases in which no strong reasons exist to &y guing that, in the first approach, one can neglect the off-

lieve that the isotropic approximation will work satisfacto- diagonal matrix elements of the blocks &f1. Then in Sec.
rily. Consider, for instance, the arbitrary-range analog of thdV We proved that this approximation is indeed justified in

XY Hamiltonian[27,28: various cases. Looking back to the results of Secs. Il and I,
we realize that the isotropic approximation is equivalent to
1N 1 N 1-cog6,— 6)) postulating an “effective” system of equations,
Hy== > L2+— (47
2510 2N j=TT#)) ri _ ( 0 1)
&= ko of& (5

The parameterr sets the range of the interactions=0

recovers the mean-field case adgdwo corresponds to first- whereé; = (5q; , 5p;) is the projection of the tangent vectdr
neighbor couplings. The prefacthr (a function ofN anda)  on the subspace of thi¢h degree of freedom. The equations
is included to make the system “pseudoextensil29]. Pe-  above represent the evolution of a typical componert
riodic boundary conditions are assumed, apds the mini-  this sense they could alternatively be called “mean-field” or
mum between|i —j| and N—|i—j|. For any value ofa,  “single-particle” equations. The scalar obje(t) is an ef-
there exist(i) a low-energy regime of harmonic oscillators fective random process that substitutes the Hesé{aj, and
weakly coupled by nonlinear forces arii) a high-energy s in principle unknown. However, its first two cumulants can
disordered phase where the spins rotate almost freely. Wee identified in the following way. First solve E(1) for the
expect our theory to produce good estimates for the largesfverage of¢? by using second-order perturbation theory, as
Lyapunov exponent in both low- and high-energy regimes. done in Sec. I[just changeV by K, and setN=1 in Eq.

If the forces are not of infinite range but just long-ranged,(19)]. Notice that, a¥ (t) is a real number, the blocks of the
the isotropic approximation will still give good estimates in ¢ o tive A are also real numbers. and the “isotropic ap-
weakly chaotip regimes. Evidencc_a supporting this Stat(;“merﬁroximation“ is exact now. Then thé matrix one must diag-
can be found in Ref$30] (geometric methodand[31] (ran- 1176 1o obtain the Lyapunov exponent is exactly that of

dom_ mat_rix approach where some kind_ of “isotrop_ic" ap- Eq. (29), provided one makes the identifications:
proximations were used to derive scaling laws Xom the

high-energy regime, in good agreement with numerical simu- 1
lations[27,32. (K)= NTV<V>, (52

For @ not too small, it may be necessary to improve the
isotropic approximation by diagonalizinl in a larger basis. 1
In this case, the statistical equivalence holds for all pairs of (K (0) 8K (7)) =Tr(8V(0)6V (7)) (53
particles separated by the same distance. This means that the
blocks of A¥l are symmetric and cyclical, i.e., the matrix with K=K —(K). From this point of view, the isotropic
elements only depend on the distangge. A basis can be basis{l,l,,l3} is a single-particle basis. It is the most natu-
constructed starting from the XN matrix S of a cyclical ral one in the sense that it treats all degrees of freedom on the
shift: same footing.

021110-6



THEORETICAL ESTIMATES FOR THE LARGES. ..

PHYSICAL REVIEW E 66, 021110 (2002

The perturbative-isotropic approximation, as presentednultiplicative noise. Then, an analytical estimate for the
above, is very similar to the geometric approach. In fact, inargest Lyapunov exponent of a many-particle system in

the geometric method 5] an effective equation like Eq51)
is proposed, containing the unknown procksst). Then, it
is argued that the first two cumulantskf are related to the
Laplacian of the potentiah V(t):

(K')= (AW, e

<5K'<0>5K'<r)>=%<(5w>2>?5(r>, (55

whereSAV=AV—(AV), andr is the correlation time of the
procesK’(t), which is assumed to bé correlated.

It is obvious that the averages of both procedsemdK'’
coincide because TV=AYV. So, the differences between the

geometric method and the perturbative-isotropic approac
h

appear only in the fluctuations. The similarity between bot
theories could be enhanced by relaxing theorrelation as-
sumption of the geometric method, and substituting (B§)

by
(5K’(0)5K’(T)>=%<6AV(O)5AV(T)). (56)

But even so, we have not been able to find any analytic
relationship between the correlation functionskondK'.

In principle, the difference between both is non-negligible,
and both the effective theories will lead to different estimate
for the Lyapunov exponent. We expect that numerical simu-

lations will decide which estimate is better.

One comment about the correlation timeof Eq. (55) is
in order; Geometric arguments lead to the estinfafd

m
2Vu(p+o)+mo

with u=(K’) and o?=((5K')?). Some slightly different
expressions have also been propop&8,14. The criterion

(57)

equilibrium was derived by using standard perturbative tech-
nigues. Our analysis has been focused on the second-order
approximation. In this case the Lyapunov exponent can be
obtained by diagonalizing a matrix whose entries are calcu-
lated from the first two cumulants of the Hessian of the po-
tential energy, i.e., the average¥;;) and the correlation
functions(6V;;(0)6V,(7)). The dimension of this matrix is,

in principle, of the order oN X N, but we have proposed the
conjecture, based on an analogy with the Hermitian problem,
that diagonalization in a truncated basis may be enough to
obtain satisfactory results.

In the crudest approximation, which consists in choosing
the three-dimensional isotropic basis of E6), the
Lyapunov exponent is extracted from ax3 matrix. We
argued that this “isotropic approximation” is equivalent to
odeling the tangent dynamics of the many-particle system
y an “effective” processK(t) for a single degree of free-
dom. In this way we established a connection with the so-
called geometric method, the alternative effective theory for
estimating the Lyapunov exponent. Both theories are very
similar, but differ at the point of the definition of the corre-
lation function ofK(t). The difference is nontrivial and is
expected to lead to different predictions.

In special cases, e.g., one-dimensional lattice systems
\fvith infinite-range interactions, we have been able to prove

athat the isotropic approximation is exact. However, in the

general case, it may be necessary to consider larger bases.
We have given examples where these bases are constructed

sDy following the symmetries of the moments é{t).

The theory we have presented is perturbative. Loosely
speaking, we expect to obtain good estimates of Lyapunov
exponents in weakly chaotic regimes. More quantitatively,
the domain of validity of the theory is controlled by the
“Kubo number” o7 that quantifies the strength of the fluc-
tuations 8V(t). For a given system, it is difficult to say
priori in which regimes the theory will work satisfactorily.
This question and others, like the validity of the isotropic
approximation and its comparison with the geometric
method, will be decided with the aid of forthcoming numeri-
cal simulations.

for testing the accuracy of these estimates has been the

agreement between the geometric estimate.fand numeri-
cal simulations, i.e., the goodness of fithich is indeed
excellent in some casesTo our knowledge, there is no-

dependentest of the expressiofb7), or others, in the litera-

ture. Accordingly, a precise definition ofseems to be lack-

ing. [Is 7 equal to the integral of the normalized
autocorrelation function oA V(t)?] This is a point that af-
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fects the consistency of the geometric method. Unless a defi-

nition is given, to some extent; will have the status of a

fitting parameter. Comparisons of the geometric method with

other theories will have to take this fact into account.

VI. SUMMARY

We showed that the evolution equation in tangent spacerthogonal

APPENDIX: THE INFINITE-RANGE CASE

We have seen in Sec. IV that in the case of a one-
dimensional system with infinite-range interactions, the sub-
space spanned by the matricA&l is six dimensional. An

basis for this subspace is the set

can be thought of as a stochastic differential equation witH14,1,,15,Z21,Z,,Z3}, where
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AVl (A AB~ AR, (A6)

The 6x6 matrix of A can be naturally split into four blocks

of size 3x3. The blockll has already been calculatffq. 1

(29)]. Let us now calculate the blodiZ, i.e., AFP~Ag;+ NA” , (A7)
!;:Tr(AZi)|i (A2) where the symbok means that terms of relative sizeN1/
" Tr1? ' have been discarded. Thex® matrix reads

) ) ) N A Al — Al
By settingV=0 in Eq.(19) we obtain the operatok, (A in 1
the absence of interactionst has the following properties: A=~ 1, a1 (A8)
- NA]_ AO + NAl

AYJ':‘;\OYJ" (A3) ; - N Al All ;

with the definitionAy+A; =A". Then it can be checked

Tr(AY )i =Tr(Agl )1 (Ad) that the matrix above has three zero eigenvalues while the
0n oLt remaining three are the eigenvalues of the matrix

Using these two properties together with E41), one ar-

rives at Al + —N; 1A'l' ~A". (A9)
Ang:AIol,ij_A:jI : (A5) . . . L .
Thus the isotropic approximation is essentially exact for the
Analogously one obtains infinite-rangeXY Hamiltonian.
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