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Theoretical estimates for the largest Lyapunov exponent of many-particle systems

Raúl O. Vallejos* and Celia Anteneodo†
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The largest Lyapunov exponent of an ergodic Hamiltonian system is the rate of exponential growth of the
norm of a typical vector in the tangent space. For anN-particle Hamiltonian system with a smooth Hamiltonian
of the typep21V(q), the evolution of tangent vectors is governed by the Hessian matrixV of the potential.
Ergodicity implies that the Lyapunov exponent is independent of initial conditions on the energy shell, which
can then be chosen randomly according to the microcanonical distribution. In this way, a stochastic process
V(t) is defined, and the evolution equation for tangent vectors can now be seen as a stochastic differential
equation. An equation for the evolution of theaverage squared normof a tangent vector can be obtained using
the standard theory in which the average propagator is written as a cumulant expansion. We show that if
cumulants higher than the second one are discarded, the Lyapunov exponent can be obtained by diagonalizing
a small-dimension matrix that in some cases can be as small as 333. In all cases, the matrix elements of the
propagator are expressed in terms of correlation functions of the stochastic process. We discuss the connection
between our approach and an alternative theory, the so-called geometric method.
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I. INTRODUCTION

The largest Lyapunov exponent measures the sensit
to initial conditions in a dynamical system. In low
dimensional models, the Lyapunov exponent sets a limi
the prediction of the time evolution of a given state of t
system. In the high-dimensional systems encountered in t
modynamics, one abandons from the start a descriptio
terms of single~microscopic! states, and resorts to a statis
cal approach. In these cases a positive Lyapunov expone
usually welcome, as it is a necessary condition for the va
ity of the Boltzmann-Gibbs scenario. A Lyapunov expone
that becomes null in the thermodynamic limit is a signal
anomalous behaviors. For instance, metastable phase
some long-range interacting systems, where the Lyapu
exponent vanishes in the largeN limit, exhibit breakdown of
ergodicity, anomalous diffusion, and non-Maxwell veloc
distributions @1#. An extension of standard statistical m
chanics is required for the theoretical explanation of su
phenomena@2#.

In many-particle systems, the Lyapunov exponent is a
an indicator~order parameter! of phase transitions@3–5# and
may be related to transport coefficients@6,7#.

In practice, for a given system, the largest Lyapunov
ponent must be obtained through numerical simulatio
typically using the method developed by Benettinet al. @8#
~a proof that this method gives the Lyapunov exponent
Oseledec’s theorem@9# can be found in Ref.@10#!. For some
special cases, e.g., hard-sphere systems, the theor
Lyapunov exponents is remarkably developed@11#. This con-
trasts with the situation in smooth Hamiltonian system
where comprehensive analytical estimates are scarce
1984, when studying two-dimensional billiards, Benet
made the first step towards the construction of random

*Email address: vallejos@cbpf.br
†Email address: celia@cbpf.br
1063-651X/2002/66~2!/021110~9!/$20.00 66 0211
ty

o

r-
in

t is
-
t
f
of

ov

h

o

-
s,

f

of

,
In

a-

trix methods for modelinguniversal features of Lyapunov
spectra@12#. These methods were further developed by ot
authors and applied to many-particle smooth Hamiltonia
@13#.

To our knowledge, the first theory for estimating the lar
est Lyapunov exponent of a specific Hamiltonian system,
its dependence on the system parameters, was formulate
Pettini and co-workers some years ago@14,15#. In this ap-
proach, the dynamics is geometrized by absorbing the fo
terms into a suitable metric, thus mapping the Hamilton
problem onto a geodesic motion on a curved manifold. Af
making the ‘‘quasi-isotropy’’ approximation, the Hamilto
equations for the tangent vectors become decoupled. A
consequence, the initial system of 2N differential equations
has been reduced to only two equations. While the origi
problem was governed by the Hessian matrix of the pot
tial, of sizeN3N, the new~reduced! one is controlled by the
Laplacian of the potential,nV(t), a scalar function of time.
Thereafter,nV(t) is treated as Gaussian white noise and
232 system of differential equations is solved using t
methods developed by van Kampen and others@16#. See Ref.
@15# for a review.

When applied to a Fermi-Pasta-Ulam chain@17#, the so-
called ‘‘geometric method’’ was extremely successful in r
producing the largest Lyapunov exponent over the entire
ergy range@15#. However, in other cases the agreement is
so good. For instance, in a chain of rotators with fir
neighbor~bounded! interactions, the method works well onl
in the low- and high-energy regimes, where the dynamic
weakly chaotic~integrable in the limitsE→0,̀ ). In the in-
termediate region of stronger chaos, the theory has to
amended to obtain a good agreement with simulations@15#.
This and other examples@5,18# raise several questions con
cerning the domain of validity of the theory. What is th
nature of the quasi-isotropic approximation? Or, what are
parameters that control the quality of the estimates of
theory? Is the geometric method perturbative? If so, what
the next leading corrections?
©2002 The American Physical Society10-1
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In this paper we present an alternative theoretical
proach in which the validity domains of the successive
proximations can be precisely delimited. The basic idea i
employ van Kampen’s methods@16# to solve theoriginal
system of 2N differential equations for the evolution of tan
gent vectors. By applying this scheme to a three-dimensio
dilute gas, Barnettet al. @7# established a link between th
Lyapunov exponent and the self-diffusion coefficient~see
also Ref.@19#!. We show that this approach can be extend
to reach other systems, such as the Fermi-Pasta-Ulam ch
and lattices of classical spins, either with short- or long-ran
interactions. By doing so, we shall settle down a connec
with the results of the geometric method and suggest s
answers to the above-mentioned questions.

The paper has been organized as follows. Section II p
sents the theory that leads to an estimate of the lar
Lyapunov exponent. This is a perturbative theory that re
on a cumulant expansion. We argue that the general~pertur-
bative! solution can be obtained by diagonalizing a sma
dimension matrix. In Sec. III we analyze an approximati
that reduces the problem to diagonalizing a 333 matrix.
Section IV discusses some examples that illustrate the w
ing of the theory. The connection between our results
those obtained by the geometric method is discussed in
V. Finally, Sec. VI contains the concluding remarks.

II. THEORY

The theory we present in this section can, in principle,
applied to any smooth Hamiltonian system. For simplic
and for the sake of comparisons with the geometric meth
we restrict ourselves to the ‘‘natural’’ Hamiltonians

H5(
i 51

N pi
2

2m
1V~q1 , . . . ,qN!, ~1!

whereqi and pi are conjugate position-momentum coord
nates. Other Hamiltonians can be considered but they
require modifications of the theory.

The Hamilton equations can be written in the comp
form

ẋ5J
]H
]x

, ~2!

where we have introduced the 2N-dimensional column vec
tor x, x5(q1 , . . . ,qN ,p1 , . . . ,pN)T, the superscript mean
ing ‘‘transposed,’’ and the symplectic matrixJ being

J5S 0 1

21 0D ~3!

with 1 being theN3N identity matrix. Differentiating the
Hamilton equations, one obtains the evolution equations
tangent vectorsj5(dq1 , . . . ,dqN ,dp1 , . . . ,dpN)T,

j̇5A~ t !j. ~4!
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-
-

to

al

d
ins
e
n
e

e-
st
ts

-

k-
d

ec.

e
,
d,

ay

t

r

For a Hamiltonian of the special form~1!, and settingm
51, the operatorA has the simple structure

A~ t !5S 0 1

2V~ t ! 0D . ~5!

HereV is the Hessian matrix of the potentialV, namely,

Vi j 5
]2V

]qi]qj
. ~6!

Once initial conditionsx0 and j0 have been specified, Eqs
~2! and ~4! allow one to find the Lyapunov exponentl by
calculating the limit@8#

l5 lim
t→`

1

2t
lnuj~ t;x0 ,j0!u2. ~7!

We will assume that for any initial conditionx0, the
phase-space trajectoryx(t;x0) is ergodic on its energy shell
This implies thatl is independent of initial conditionsx0,
which can then be chosen randomly according to the mic
canonical distribution. There will also be no dependence
initial tangent vectors, because ifj0 is also chosen randomly
it will have a nonzero component along the most expand
direction.

If the corrections to the exponential law in Eq.~7! go to
zero fast enough ast→`, one can also write

^uj~ t;x0 ,j0!u2&}e2lt, ~8!

where the brackets mean microcanonical averages ovex0.
We will prefer the estimate of Eq.~8! because the averagin
procedure is crucial for finding an analytical expression
the Lyapunov exponent. In case of doubt, the equality of
exponents defined by Eqs.~7! and ~8! can be tested numeri
cally, e.g., using the data generated by Benettin’s algorith

By letting x0 be a random variable, a stochastic proce
V(t;x0) is defined, and Eq.~4! can be thought as a stochast
differential equation. However, the quantity we are interes
in is the square of the norm ofj, which can be written as the
trace of the ‘‘density matrix’’jjT. Thus, we must focus on
the equation for the evolution ofjjT:

d

dt
~jjT!5AjjT1jjTAT[ÂjjT, ~9!

the rightmost identity defining the linear superoperatorÂ.
Except for the fact that we must deal now with a supero
erator, Eq.~9! is not different from Eq.~4!, and can be
handled with the same techniques. For the purpose of
perturbative approximations that will follow, the operatorÂ
is split into two parts:

Â5Â01Â1~ t !, ~10!

where Â0 corresponds to the evolution in the absence
interactions. In our case,Â0 and Â1 are associated with
0-2
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A05S 0 1

0 0D and A15S 0 0

2V~ t ! 0D , ~11!

respectively. WheneverA1(t) is small~in a sense that will be
discussed below!, it is possible to manipulate Eq.~9! to de-
rive an explicit expression for the evolution of theaverageof
jjT. A clear exposition of this derivation, together with
very detailed discussion of its domain of validity has be
given by van Kampen@16#. We just outline the basic steps
~a! Rewrite Eq.~9! in the interaction representation asso
ated with Â0. ~b! Write the propagator as a time ordere
exponential.~c! Expand its average in a series of cumulan
~d! Go back to the original representation. The final resul

^jjT&~ t !5etL̂j0j0
T , ~12!

where L̂ is a time-independent superoperator given by
perturbative expansion

L̂[Â01^Â1&1E
0

`

dt^dÂ1~ t !etÂ0dÂ1~ t2t!e2tÂ0&1•••

~13!

with

dÂ1~ t !5Â1~ t !2^Â1&. ~14!

Let Lmax be the eigenvalue ofL̂ which has the largest rea
part. We find that the largest Lyapunov exponentl is related
to the real part ofLmax:

l5 1
2 Re~Lmax!. ~15!

In Eq. ~13! we give explicitly only the first two cumu-
lants, the dots stand for third cumulants and higher-or
ones. The perturbative parameter can be understood a
product of two quantities. The first one, let us call its,
characterizes the amplitude of the fluctuations ofdÂ1(t).
The second,tc , is a typical~the largest relevant! correlation
time of dÂ1(t). Thus, the second cumulant is of the order
s2tc , the third one is of the order ofs3tc

2 , and so on. If all
cumulants were summed up, Eq.~12! would be exact in the
long-time regimet@tc @16#.

From now on, we restrict our analysis to the propagatoL̂
truncated at the second order, i.e., Eq.~13! without the dots.
This approximation will be better for smaller values ofstc .
However, if Â1(t) is not far from a Gaussian process, t
validity of the second-order approximation may extend o
side the perturbative regionstc!1. In the exceptional cas
that Â1(t) is a Gaussian process, cumulants higher than
second one will be strictly zero and the truncation will intr
duce no error.

To proceed further, one needs the matrix ofL̂ in some
basis. So, let us calculateL̂M , M being a symmetric matrix
~it is easy to see that the truncation has not spoiled the s
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metry of the density matrix!. First, notice that the exponen
tials of Â0 represent no problem as they are finite polynom
als,

etÂ0Q5@11tA0#Q@11tA0
T# ~16!

for any matrixQ. Inserting this expression into Eq.~13!, we
arrive at

L̂M5~A01^A1&!M1E
0

`

dt^dA1~ t !@dÃ1~ t2t!M

1MdÃ1
T~ t2t!#&1~••• !T, ~17!

where (•••)T means ‘‘the previous terms transposed,’’ an

dÃ1~ t2t!5@11tA0#dA1~ t2t!@12tA0#. ~18!

Substituting Eq.~11! into Eq. ~17!, we arrive at the final
result of the second-order perturbative approach,

L̂M5S 0 1

2^V& 0DM1E
0

`

dtS 0 0

t 2t2D
3S ^dVdV8& 0

0 ^dVdV8&
DM

1E
0

`

dtK S 0 0

dV 0DM S dV8 0

0 dV8
D L S t 1

2t2 2t D
1~••• !T. ~19!

To abbreviate the notation, we have writtentn instead of
tn1; dV and dV8 substitutedV(t) and dV(t2t), respec-
tively.

The largest Lyapunov exponent is buried into Eq.~19!. To
get an explicit expression, one must diagonalize the ma
of L̂. The outcome will bel as a function of the first two
cumulants of the stochastic processV(t), i.e., averages and
~integrated! two-time correlation functions:

^Vi j &;E
0

`

dt tn^dVi j ~0!dVkl~t!&, n50,1,2. ~20!

At first sight it may be thought that asL̂ is a superoperator
the matrix one should diagonalize is of the order
N23N2, then straightforward diagonalization would be o
of the question for largeN. Notwithstanding,L̂ is an aver-
aged object, and as such, it possesses some symmetrie
can be exploited to reduce the dimensionality of the probl
to tractable levels, sayN3N. This will be illustrated with an
example in Sec. IV. So, if desired, the largest Lyapunov
ponent could be found by numerical diagonalization, at le
for systems withN'1000 degrees of freedom~provided one
can estimate the correlation functions!.

An alternative to exact diagonalization is the approxim
diagonalization, i.e., the diagonalization of the restriction
L̂ to some small-dimension subspace. Notice that the pr
lem we are dealing with is not very different from finding th
0-3
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ground-state energy of a quantum system. However, in
quantum problem, the operator one must diagonalize is H
mitian, and it is well known that diagonalization in a tru
cated basis produces an upper bound to the exact gro
state energy. It frequently happens that this bound is clos
the exact result, even if the ground-state wave function
not. In spite of the operatorL̂ not being Hermitian~see Sec.
III !, we still expect that diagonalization in a small basis w
give a lower bound for the Lyapunov exponent. If the basi
suitably chosen, this estimate may be close to the resu
the exact diagonalization.

To proceed with the construction of a basis forL̂, we take
advantage of the fact thatl is independent ofj0, and sim-
plify Eq. ~12! further by averaging over an orthonormal s
of initial tangent vectors, obtaining

^^jjT&&~ t !5
1

2N
etL̂1. ~21!

This second averaging allows us to consider, instead oL̂

itself, the restriction ofL̂ to the subspace spanned by t
matricesL̂k1, k50,1,2, . . . . A look at the first terms of this
sequence gives a hint for constructing an appropriate ba
The first term is the identity, the second one is

L̂15S 0 12^V&

12^V& 0 D
12E

0

`

dtS 0 t^dVdV8&

t^dVdV8& ~12t2!^dVdV8&
D , ~22!

and so on.

III. THE ISOTROPIC APPROXIMATION

Typically, the diagonal elements ofV(t) will be larger
than the off-diagonal ones. This is evident in the case
translational invariance, where one has the property

Vii 52(
j Þ i

Vi j . ~23!

Introducing a matrixY having all entries equal to one, i.e.

Y i j 51, ; i , j ~24!

we can rewrite Eq.~23! as

YV5VY50. ~25!

Then it is clear that Eq.~23! is also satisfied bŷ V&,
^dVdV8&, and by the higher moments ofV that will appear
in the blocks ofL̂k1 for k.1. So, in a first~crude! approxi-
mation one may be tempted to discard the off-diagonal
ments of the moments ofV. If we also assume that all coo
dinatesqi are statistically equivalent, and remind that t
matricesL̂k1 are symmetric, we arrive at the simplest a
proximation for diagonalizingL̂. We call this approximation
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‘‘isotropic,’’ and it consists in restrictingL̂ to the subspace
spanned by the following three matrices:

I15S 1 0

0 0D , I25S 0 0

0 1 D , I35S 0 1

1 0D . ~26!

These matrices are mutually orthogonal with respect to
standard Euclidean scalar product, i.e.,

Tr~ I i I j
T!}d i j . ~27!

Then the matrix elements ofL̂ with respect to the basis
$I1 ,I2 ,I3% are

L i j
I I 5

Tr~@L̂I j #I i
T!

Tr~ I i I i
T!

. ~28!

Using Eq.~19! and skipping some simple algebra, we arri
at the 333 matrix

LII 5S 0 0 2

2s2tc
(1) 22s2tc

(3) 22m

2m12s2tc
(2) 1 22s2tc

(3)D
~29!

with the definitions

m5
1

N
Tr^V&, ~30!

s25
1

N
Tr^~dV!2&, ~31!

tc
(k11)5E

0

`

dttkf ~t!, ~32!

where we have introduced the normalized correlation fu
tion f (t)

f ~t!5
1

Ns2
Tr^dV~0!dV~t!&

5
1

Ns2 (
i , j 51

N

^dVi j ~0!dVi j ~t!&. ~33!

It is evident from Eq.~29! that the operatorL̂ is not Hermit-
ian. Normalization of the basisI j will not makeLII symmet-
ric.

In the isotropic approximation, the Lyapunov exponent
expressed in terms of the set of four parameters,m and
s2tc

(k11) , k50,1,2. The parametersm and s are, respec-
tively, the mean and variance of the stochastic processV(t),
and can in principle be obtained analytically by calculati
the corresponding microcanonical averages.~In practice, the
calculations can be done in the canonical ensemble, and
0-4
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connected with the microcanonical results by the formula
Lebowitz, Percus and Verlet@20#.!

The characteristic timetc
(1) is naturally interpreted as th

correlation time of the processV(t). Its calculation requires
the knowledge of the autocorrelation functions ofVi j (t),
which are system dependent. Moreover, the correlation fu
tions of a given system will, in general, depend on ener
However, if the functional form of the correlation functio
f (t) is known ~or conjectured!, its parameters can also b
calculated as thermal averages. For instance, iff (t) is ap-
proximately Gaussian,

f ~t!'e2gt2
, ~34!

the expansion of̂V(0)V(t)& aroundt50 gives an explicit
formula for the correlation time, namely,

1

tc
(1)

5F 2

ps2N
TrK S dV

dt D
2L G 1/2

. ~35!

In this casetc
(2) andtc

(3) are trivially related totc
(1) :

tc
(2)5

2

p
@tc

(1)#2, ~36!

tc
(3)5

2

p
@tc

(1)#3. ~37!

A purely numerical calculation oftc
(k) may be very diffi-

cult, if not impossible, because correlation functions e
mated from finite-length time series usually fail to damp
expected@21#. Perhaps, a more sensible approach to the
timation of tc

(k) should start with a numerical study of th
correlation functions; then a functional form forf (t) could
be proposed, based on the short-time behavior of the num
cal correlation functions; finally, the parameters defini
f (t) would be calculated as suitable thermal averages.
alternative, more powerful approach involves the use
‘‘memory functions’’ @22#. They are related in a one-to-on
way to correlation functions and seem to be more amen
to simple approximations~see, e.g., Ref.@23#!.

IV. EXAMPLES

In this section, we analyze the application of the pert
bative theory of Sec. II to some simple models. We rem
that, in principle, the theory is expected to be successful o
in regimes where the Lyapunov exponent is very small.
the systems considered below exhibit regimes with van
ingly small Lyapunov exponents. It is understood that o
discussion will be restricted to such regimes.

A. Mean field XY Hamiltonian

Let us begin by analyzing one special case in which
isotropic approximation of Sec. III is exact. Consider t
one-dimensional Hamiltonian@24–26#
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H15
1

2 (
i 51

N

Li
21

1

2N (
i , j 51

N

@12cos~u i2u j !#. ~38!

This is the so-called mean-fieldXY Hamiltonian. It repre-
sents a lattice of classical spins with infinite-range inter
tions. Each rotator is restricted to the unit circle and it
therefore described by an angle 0,u i<2p and its conjugate
angular momentumLi , with i 51, . . . ,N. At the critical en-
ergyEc53N/4, there is a second-order phase transition se
rating a disordered regime (E.Ec) from an ordered one
(E,Ec).

In both limits E→0,̀ , the Lyapunov exponent goes t
zero. For a fixed energyE.Ec , l also goes to zero when
N→`. This behavior has also been observed in a metast
disordered phase withE,Ec . The perturbative approac
should be a good approximation in these regimes. Moreo
we argue that the infinite-range interactions justify the is
tropic approximation.

All single-particle averages are equal, and, given that
forces are independent of the distances between spins
two-particle averages must also be equal. So, one has

^Vii &5c1 , ; i , ~39!

^Vi j &5c2 , ; iÞ j . ~40!

Notice that translational symmetry, Eq.~23!, implies that

c252
c1

N21
. ~41!

This is the reason why the isotropic approximation will wo
in this case, i.e., off-diagonal matrix elements are inde
smaller than diagonal ones@18#. But let us keep the discus
sion quantitative, and rewrite Eq.~39! as

^V&5c111c2~Y21! ~42!

with Y defined in Eq.~24!. Using the time-reversal symme
try of the stochastic processV(t), one can also show that

^dV~0!dV~t!&5c1811c28~Y21!. ~43!

Then all blocks ofL̂1 @Eq. ~22!# belong to the subspac
spanned by1 andY. Taking into account Eq.~25! and

Y25NY, ~44!

we conclude that the blocks of all the sequenceL̂k1 belong
to the subspace$1,Y%. Thus, the relevant subspace for diag
nalizing L̂ is six dimensional. It is spanned byI1 ,I2 ,I3 @Eq.
~26!# andY1 ,Y2 ,Y3, with the definitions

Y15S Y 0

0 0D , Y25S 0 0

0 YD , Y35S 0 Y

Y 0 D . ~45!

However, it can be shown~see the Appendix! that the largest
eigenvalue of the corresponding 636 matrix coincides with
that of the isotropic 333 matrix up to corrections of orde
0-5
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1/N. In this way we have proven the validity of the isotrop
333 approximation for one-dimensional systems w
infinite-range forces.

B. Dilute gases

Consider now a one-dimensional gas with Hamiltonian

H25
1

2 (
i 51

N

pi
21 (

i , j 51

N

n~qi2qj !, ~46!

whereq andp are linear coordinates, and we assume that
potentialn is bounded. For large enough energies, this s
tem is disordered and weakly chaotic. All particles, and
pairs of particles, are statistically equivalent. Then this pro
lem is formally equivalent to the infinite-rangeXY Hamil-
tonian: The isotropic 333 approximation becomes exact.

Of course, the statistical equivalence also holds for a
lute three-dimensional gas with short-range interactions
this case, Barnettet al.have shown that the largest Lyapuno
exponent is found by diagonalizing a 434 matrix @7#.

C. aXY Hamiltonian

There are cases in which no strong reasons exist to
lieve that the isotropic approximation will work satisfact
rily. Consider, for instance, the arbitrary-range analog of
XY Hamiltonian@27,28#:

H35
1

2 (
i 51

N

Li
21

1

2Ñ
(

i , j 51 (iÞ j )

N
12cos~u i2u j !

r i j
a

. ~47!

The parametera sets the range of the interactions:a50
recovers the mean-field case anda5` corresponds to first-
neighbor couplings. The prefactorÑ ~a function ofN anda)
is included to make the system ‘‘pseudoextensive’’@29#. Pe-
riodic boundary conditions are assumed, andr i j is the mini-
mum betweenu i 2 j u and N2u i 2 j u. For any value ofa,
there exist~i! a low-energy regime of harmonic oscillato
weakly coupled by nonlinear forces and~ii ! a high-energy
disordered phase where the spins rotate almost freely.
expect our theory to produce good estimates for the lar
Lyapunov exponent in both low- and high-energy regime

If the forces are not of infinite range but just long-range
the isotropic approximation will still give good estimates
weakly chaotic regimes. Evidence supporting this statem
can be found in Refs.@30# ~geometric method! and@31# ~ran-
dom matrix approach!, where some kind of ‘‘isotropic’’ ap-
proximations were used to derive scaling laws forl in the
high-energy regime, in good agreement with numerical sim
lations @27,32#.

For a not too small, it may be necessary to improve t
isotropic approximation by diagonalizingL̂ in a larger basis.
In this case, the statistical equivalence holds for all pairs
particles separated by the same distance. This means tha
blocks of L̂k1 are symmetric and cyclical, i.e., the matr
elements only depend on the distancer i j . A basis can be
constructed starting from theN3N matrix S of a cyclical
shift:
02111
e
-

ll
-

i-
In

e-

e

e
st

,

nt

-

f
the

Si j 5d i , j 11 , ~48!

where it is understood thatj 11 must be taken moduloN.
Then the set of symmetrical matrices,

Sk[Sk1S2k, 0<k<N/2 ~49!

is a basis for the blocks ofL̂m1. A suitable basis for diago-
nalizing L̂ is the set

S Si 0

0 0D ,S 0 0

0 Sj
D ,S 0 Sk

Sk 0 D ~50!

with 0< i , j , k<N/2. The length of this basis is 3N/2. Not-
withstanding, we expect that a small subset of this basis
be enough to get a satisfactory convergence to the lar
eigenvalue ofL̂. Even in the worst case of no truncation
all, numerical diagonalization is possible for relatively lar
systems.

V. CONNECTION WITH THE GEOMETRIC METHOD

In Sec. III, we motivated the isotropic approximation b
arguing that, in the first approach, one can neglect the
diagonal matrix elements of the blocks ofL̂k1. Then in Sec.
IV we proved that this approximation is indeed justified
various cases. Looking back to the results of Secs. II and
we realize that the isotropic approximation is equivalent
postulating an ‘‘effective’’ system of equations,

j̇ i5S 0 1

2K~ t ! 0D j i , ~51!

wherej i5(dqi ,dpi) is the projection of the tangent vectorj
on the subspace of thei th degree of freedom. The equation
above represent the evolution of a typical component ofj. In
this sense they could alternatively be called ‘‘mean-field’’
‘‘single-particle’’ equations. The scalar objectK(t) is an ef-
fective random process that substitutes the HessianV(t), and
is in principle unknown. However, its first two cumulants c
be identified in the following way. First solve Eq.~51! for the
average ofj i

2 by using second-order perturbation theory,
done in Sec. II@just changeV by K, and setN51 in Eq.
~19!#. Notice that, asK(t) is a real number, the blocks of th
effective L̂ are also real numbers, and the ‘‘isotropic a
proximation’’ is exact now. Then the matrix one must dia
onalize to obtain the Lyapunov exponent is exactly that
Eq. ~29!, provided one makes the identifications:

^K&5
1

N
Tr^V&, ~52!

^dK~0!dK~t!&5
1

N
Tr^dV~0!dV~t!& ~53!

with dK5K2^K&. From this point of view, the isotropic
basis$I1 ,I2 ,I3% is a single-particle basis. It is the most nat
ral one in the sense that it treats all degrees of freedom on
same footing.
0-6
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The perturbative-isotropic approximation, as presen
above, is very similar to the geometric approach. In fact
the geometric method@15# an effective equation like Eq.~51!
is proposed, containing the unknown processK8(t). Then, it
is argued that the first two cumulants ofK8 are related to the
Laplacian of the potentialDV(t):

^K8&5
1

N
^DV&, ~54!

^dK8~0!dK8~t!&5
1

N
^~dDV!2&t̄d~t!, ~55!

wheredDV5DV2^DV&, andt̄ is the correlation time of the
processK8(t), which is assumed to bed correlated.

It is obvious that the averages of both processesK andK8
coincide because TrV5DV. So, the differences between th
geometric method and the perturbative-isotropic appro
appear only in the fluctuations. The similarity between b
theories could be enhanced by relaxing thed-correlation as-
sumption of the geometric method, and substituting Eq.~55!
by

^dK8~0!dK8~t!&5
1

N
^dDV~0!dDV~t!&. ~56!

But even so, we have not been able to find any analyt
relationship between the correlation functions ofK and K8.
In principle, the difference between both is non-negligib
and both the effective theories will lead to different estima
for the Lyapunov exponent. We expect that numerical sim
lations will decide which estimate is better.

One comment about the correlation timet̄ of Eq. ~55! is
in order; Geometric arguments lead to the estimate@15#

t̄5
pAm̄

2Am̄~m̄1s̄ !1ps̄
~57!

with m̄[^K8& and s̄2[^(dK8)2&. Some slightly different
expressions have also been proposed@4,5,14#. The criterion
for testing the accuracy of these estimates has been
agreement between the geometric estimate forl and numeri-
cal simulations, i.e., the goodness of fit~which is indeed
excellent in some cases!. To our knowledge, there is noin-
dependenttest of the expression~57!, or others, in the litera-
ture. Accordingly, a precise definition oft̄ seems to be lack
ing. @Is t̄ equal to the integral of the normalize
autocorrelation function ofDV(t)?# This is a point that af-
fects the consistency of the geometric method. Unless a d
nition is given, to some extent,t̄ will have the status of a
fitting parameter. Comparisons of the geometric method w
other theories will have to take this fact into account.

VI. SUMMARY

We showed that the evolution equation in tangent sp
can be thought of as a stochastic differential equation w
02111
d
n

h
h

al

,
s
-

he

fi-

h

e
h

multiplicative noise. Then, an analytical estimate for t
largest Lyapunov exponent of a many-particle system
equilibrium was derived by using standard perturbative te
niques. Our analysis has been focused on the second-o
approximation. In this case the Lyapunov exponent can
obtained by diagonalizing a matrix whose entries are ca
lated from the first two cumulants of the Hessian of the p
tential energy, i.e., the averages^Vi j & and the correlation
functions^dVi j (0)dVkl(t)&. The dimension of this matrix is
in principle, of the order ofN3N, but we have proposed th
conjecture, based on an analogy with the Hermitian probl
that diagonalization in a truncated basis may be enoug
obtain satisfactory results.

In the crudest approximation, which consists in choos
the three-dimensional isotropic basis of Eq.~26!, the
Lyapunov exponent is extracted from a 333 matrix. We
argued that this ‘‘isotropic approximation’’ is equivalent
modeling the tangent dynamics of the many-particle sys
by an ‘‘effective’’ processK(t) for a single degree of free
dom. In this way we established a connection with the
called geometric method, the alternative effective theory
estimating the Lyapunov exponent. Both theories are v
similar, but differ at the point of the definition of the corre
lation function ofK(t). The difference is nontrivial and is
expected to lead to different predictions.

In special cases, e.g., one-dimensional lattice syst
with infinite-range interactions, we have been able to pro
that the isotropic approximation is exact. However, in t
general case, it may be necessary to consider larger b
We have given examples where these bases are constr
by following the symmetries of the moments ofV(t).

The theory we have presented is perturbative. Loos
speaking, we expect to obtain good estimates of Lyapu
exponents in weakly chaotic regimes. More quantitative
the domain of validity of the theory is controlled by th
‘‘Kubo number’’ stc that quantifies the strength of the fluc
tuationsdV(t). For a given system, it is difficult to saya
priori in which regimes the theory will work satisfactorily
This question and others, like the validity of the isotrop
approximation and its comparison with the geomet
method, will be decided with the aid of forthcoming nume
cal simulations.
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APPENDIX: THE INFINITE-RANGE CASE

We have seen in Sec. IV that in the case of a o
dimensional system with infinite-range interactions, the s
space spanned by the matricesL̂k1 is six dimensional. An
orthogonal basis for this subspace is the
$I1 ,I2 ,I3 ,Z1 ,Z2 ,Z3%, where
0-7
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Zk5Yk2I k . ~A1!

The 636 matrix of L̂ can be naturally split into four block
of size 333. The blockII has already been calculated@Eq.
~29!#. Let us now calculate the blockIZ, i.e.,

L i j
IZ5

Tr~L̂Z j !I i

Tr I i
2

. ~A2!

By settingV50 in Eq.~19! we obtain the operatorL̂0 (L̂ in
the absence of interactions!. It has the following properties:

L̂Y j5L̂0Y j , ~A3!

Tr~L̂0Y j !I i5Tr~L̂0I j !I i . ~A4!

Using these two properties together with Eq.~A1!, one ar-
rives at

L i j
IZ5L0,i j

I I 2L i j
I I . ~A5!

Analogously one obtains
E

li-
in

e

.

s
9

02111
L i j
ZI'

1

N
L i j

IZ , ~A6!

L i j
ZZ'L0,i j

I I 1
1

N
L i j

I I , ~A7!

where the symbol' means that terms of relative size 1/N
have been discarded. The 636 matrix reads

L'S LII 2L1
II

2
1

N
L1

II L0
II 1

1

N
L1

II D ~A8!

with the definitionL0
II 1L1

II 5LII . Then it can be checked
that the matrix above has three zero eigenvalues while
remaining three are the eigenvalues of the matrix

L0
II 1

N11

N
L1

II 'LII . ~A9!

Thus the isotropic approximation is essentially exact for
infinite-rangeXY Hamiltonian.
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