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Passive random walkers and riverlike networks on growing surfaces
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Passive random walker dynamics is introduced on a growing surface. The walker is designed to drift upward
or downward and then follow specific topological features, such as hill tops or valley bottoms, of the fluctu-
ating surface. The passive random walker can thus be used to directly explore scaling properties of otherwise
somewhat hidden topological features. For example, the walker allows us to directly measure the dynamical
exponent of the underlying growth dynamics. We use the Kardar-Parisi-ZKd&) -type surface growth as
an example. The world lines of a set of merging passive walkers show nontrivial coalescence behaviors and
display the riverlike network structures of surface ridges in space-time. In other dynamics, such as Edwards-
Wilkinson growth, this does not happen.The passive random walkers in KPZ-type surface growth are closely
related to the shock waves in the noiseless Burgers equation. We also briefly discuss their relations to the
passive scalar dynamics in turbulence.
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[. INTRODUCTION dom walkers uncovers a riverlike network structure of the
surface in space-time.

The research on fluctuations of surfaces during growth Our passive random walkers are similar to the passive
has been one of the major areas of study in nonequilibriunscalars in turbulence. This is not surprising because the KPZ
statistical mechanics in recent decades. Most research is f@guation is equivalent to Burgers equation, which describes a
cused on identifying universality classes and the scaling befluid [1] with different random stirring forces from those in
havior of surface morphology, e.g., how the width of sur- related turbulence studies. It is instructive to study the dy-
faces scales with the size of surfadds-6]. Recently, the namics of the PRWs from both perspectives.
coupling between surface growth and other degrees of free- -Irkhls papzr IIS' oag?_nlzgq as follows.hThe pzi\_ssn(e randdo_m
dom has been considered in the context of ordering phenon){‘—’a €rs model IS detfined in Sec. II. T e application to di-
ena on growing and fluctuating surfaces. For example, th ectly measuring the dynamical exponent is presen_ted in Sec.
field coupled to the surface can be different species of de.i_l' Thgn we discuss the coalescence of the PRWs in Sec. IV.

. . . he sign of the coupling between the PRWs and the surface
posited particle$5,7,8 or surface reconstruction order pa-

ters[9]. Unlik ilibri p h th is important for the coalescence phenomena as discussed in
rameters| 2], Unlike equiliorium surtaces, where th€ Cou- gq. 'y 1n sec. VII, we show the riverlike network in the

pling between the surface height degrees of freedom and the, e time structure of KPZ-type surfaces, and the relation
additional field is irrelevant at large length scalé®], we  penyeen the passive random walkers and the passive scalars
found that the coupling between the surface and the recony yrpulence is briefly discussed. Other possible applications

struction orders cannot be ignorgdl. The surface and the of the PRW model are pointed out, together with a summary
additional field are usually coupled topologically. For ex- of the results in Sec. VIII.

ample, the domain walls of order parameters become trapped
at the hilltops or in the valleys on surfaces in at{1)D
system[5,7,8] or on the ridge lines on surfaces in a (2
+1)D system9].

The fluctuations of the additional degrees of freedem We couple a PRW to the growth dynamics of a fluctuating
pressed by the dynamics of the “domain walishus be- surface. The movement of the PRW is determined by the
come slaved to the fluctuations of the surface. From the sutocal slope of the growing surface. The well-known Kim-
face perspective, the additional field is usually irrelevant and<osterlitz (KK) model[2] for surface growth is used as an
passive. Therefore, part of the dynamics of the surface angxample. In the KK model, a surface is specified by integer
its topological features can be evaluated from the fluctuaheight variables on a square lattice. A single particle is de-
tions of such domain walls that are pinned or trapped tdPosited at a randomly chosen sit# the restricted solid-on-
them. We can put probes on the surface to follow these feasolid condition (5h;;|=[h;—h;|<1 for all nearest-neighbor
tures dynamically. In this paper, passive random walker$airs(ij)) remains satisfied, otherwise the deposition of the
(PRWS are designed to follow hilltops or valley bottoms on particle is rejected. The surface grows and the stationary
the surface. state is rough. The position of the PRW is updated after

One of the first applications of the PRWs is to provide aN§/vg Monte Carlo stepswith vy the growth velocity and
direct way to measure the dynamical exponent of the surfachls the total number of sijei.e., when on average one layer
fluctuations. We will also present the phenomena of coalesaf surface material is added, according to the following rules.
cence of passive random walkers on Kardar-Parisi-Zhanget i be the position of the walker. If there is any neighbor
(KPZ) [1,2] -type growth. The coalescence of passive ransitej for which h;>h;, then we move the walker to sifelf

Il. PASSIVE RANDOM WALKERS ON A GROWING
SURFACE
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Ill. DYNAMICAL EXPONENT OF PASSIVE RANDOM
WALKERS

e e
!
W One important observation of the dynamics of an upwards
W moving PRW on KPZ-type surfaces is that the PRW not only
//_WM reaches a local maximum in a relatively short time, but also
m that in finite-size systems it ultimately ends up trapped at the
global maximum. We will discuss the detailed mechanism of
/\N-//TM\FW\/_A this phenomenon later in Sec. IV. Once the PRW is trapped
M\, on the global maximum, it performs a correlated random
m walk following the global surface fluctuations. The surface
/WMW fluctuates critically and is self-affine. Namely, the profile of
T NI N the surface is invariant under the following rescaling:

AN T x—b~'x, h—b=h, t—b~Yat, @
M whereb is a scaling factorg is the roughness exponent, and

z. is the dynamical exponent of the surface. The PRW is

FIG. 1. Passive walkers trapped on local hilltops and gIObaIslaved to the fluctuations of the interface, therefore we ex-

maximum in (1+1)D simulations. The dashed lines are the world t similar d ical lina for th Id li fthe PRW
lines of two PRWs and the solid lines are the surface profiles duriné)egl_hSImldar Iynamlca Scfa Iﬂhg O;R\?Vwor _me N eO '
growth. The passive walkers follow the local maximums initially e displacement of the Au(t) =u(t) —u(0),

and ultimately merge into each other. The walkers reach the gIobeﬁhOUId be _deﬁ”ed cgrefully to avoid qqnfusion in finite-size
maximum at a later time. systems with periodic boundary conditions, where the PRW

moves on a ring in 1D and on a torus in 2D. In such mani-

. o . folds, the winding number of the PRW should be taken into
there is more than one site higher than gjtden we let the account. The component of the displacemeni(t), in di-

PRW move to either one with equal probability. We apply S ) PR )
periodic boundary conditions for both the surface and thé€ction ¢ is defined asAug(t)=ng —n; , with the actual

PRW motion. _ N _ number of right movesn: , and the actual number of left
It is known that the continuum limit of the KK model is _ s
governed by the so-called KPZ equatid, moves,ng , In directione; .
In our numerical simulations, we let the system evolve
oh 9h oh\2 until both the surface and the PRW motion reach stationary
e Vﬁ +\ | T 7 (1)  states. Then the value of the displacemgun(t) is measured

as Au(t)=[2i(ng—n;)z]1’z. To accelerate the simulation,
I
we also adopt a rejection-free algorithm. Details of this al-

with uncorrelated noise, gorithm can be found in Ref9]. In this algorithm, time is
counted in terms of the numbers of layers of particles depos-
(ms(X,t) ps(X", "))y =D S(x,X") 8(t,t"). (2) ited instead of the conventional Monte Carlo time unit. We

established earlier that the unit of time in this rejection-free
algorithm is linearly proportional to the Monte Carlo time
unit [9] (see alsd8)).

If the PRW indeed is slaved to follow the global surface
au d fluctuations, which are invariant statistically under the trans-
ot th(x!t)|x=u(t)’ 3 formation Eq.(4), the average distance of the displacement,

Au(t), must obey the scaling form

In the same limit, the equation of motion of the PRW is

whereu(t) is the coordinate of the PRW at timeand « is t

the coupling strength between the PRW and the surface. In <Au(t))~LXg<—), (5)

our lattice model is of the same order as. The equations L%

of motion, Eqs(1)—(3), imply that the PRW moves upwards

for k>0. The PRW becomes trapped on a local maximum ofvhereG(7) is a universal scaling function. WhergL?, the

the surface profile as seen in Fig. 1 for positiveOnce the  hopping events of the PRW are correlated due to the surface
PRW is trapped on a hilltop, it follows the motion of the fluctuations, andAu(t)~t'?, wherez, is the dynamical
hilltop, which is subject to the surface fluctuations. When exponent for the PRW. At time scalés-L%, the surface

is negative, the PRW moves downwards instead of upwardgluctuations are limited by the finite size of the lattice and the
and the PRW becomes trapped in a valley bottom instead d?RW becomes like a free uncorrelated random walker. Thus,
a hilltop. The relative sign between and\ affects the dy- the scaling functionG(7) has the asymptotic formg(7)
namics of the PRWs. We will focus on positivefor now,  — 72 for 7<1 andG(7)— 72 for >1. The value of the
and discuss negative in Sec. VI. exponenty in Eq. (5) follows from the fact thati(t) must be
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=128. Although(Au) is relatively small in (2+1)D, the

10°e = » scaling behaviors are already clear. Small displacements re-
| e flect merely a small prefactor in the scaling form E§).
10 g - 2% This is analogous to a small diffusion constémhich slows
DY v 1+1D the diffusive process, but does not affect the scaling proper-
& 10 — loop) / //SZHD ties even at small spatial scaleMoreover, the asymptotic
%10-3 ------- %ﬂgg 72 region of interest is at smalt and at smallAu/L, so the
- 128(+1D) ~ scaling behaviors that we focus on are in the smailinter-
10°E 77 bseonn) val. By increasing system sizes, we can extend the scaling

region of the scaling variabléyu/L, about two decades.

10 We check the scaling form E¢5) by collapsing the data
(see Fig. 2 with z;=1.5 in (1+1)D and z;=1.6 in (2
ool il """0 +1)D. The predictiony=1, gives excellent data collapse,

-4 -3 -2 -1
10 10 IA?]/L 10 10 except for the nonuniversal part aroundu=<10 in

(1+1)D andAu=<4 in (2+1)D. This nonuniversal behav-
FIG. 2. Collapses of vs Au. We usez;=1.5 for (1+1)D, z;  ior is likely caused by the discrete lattice spacing. A more
=1.6 for (2+1)D, andy=1 for both cases. detailed fit of the dynamical exponer§, must avoid this
small Au region while keeping\u/L small. In Figs. 8) and

independent ofL in the thermal dynamics limit. Conse- 4(b), we fit z, by omitting the data fromAu=<10 in (1
quently, x, z,, andzg are not independent and satisfy the +1)D andAu=4 in (2+1)D. It might appear that by ig-
relation y =z/z, . noring data from these regions, a large fraction of informa-
The dynamical exponent of the walker is not necessarilyion in the data is lost. In fac_t, only less than a quarter of the
the same as the dynamical exponent of the surface. There §&ta points fall in these regions. The crossover from uncor-
no a priori reason fory=1, i.e., forz,=z,. The numerical related random walker behavioe<2, at largeAu/L) to
results(Fig. 2) indicate thatz,, = z5, but why?y=1 reflects correlated behaviorz 2, at smallAu/L) is visible in Figs.
that there is no length scale other than the system Iisize 3(b) and 4b), where the exponent decreases from 2{as
involved in the dynamics of the PRW. This is in contrast tothe system size increases. We conclude #at1.50(1) in
free uncorrelated random walks, in which case anothefhe (1+1)D andz,=1.60(1) in the (2-1)D KK model.
length scale proportional t9/2 will emerge. The absence of ~ Our measurement of,, provides one of the very few
a new independent length scale is consistent with our picturdidependentind direct measurements of the dynamical ex-
that the PRW is typically trapped on a global maximum,Ponentzs on stationary-stateKPZ-type surfaces. Conven-

hence the fluctuations of the PRW follow the dynamical scalfional approaches determine the dynamical exponent indi-
ing of the surface. rectly, through the measurement of the scaling behaviors of

The main numerical results are shown in Figs. 2—4. Theyhe width of surfaces in the transient states, starting with a
are obtained by averaging over about5l§amp|es in ﬂat_lnltlal condition. The surface width defined H\‘t=<(h
(1+1)D and 4<10° samples in (21)D. The displace- —h)?)Y2 scales asN~t# for t<L%. Then the dynamical
ments of the PRW are determined uptte256 in (1+1)D  exponent is found by using the scaling relatmr o/ 8. The
andt=128in (2+1)D. In (1+1)D, (Au) is in the order of other method is to measure the correlation funcigr,t)

10 lattice units att=256. In (2+1)D, (Au)~10 att =([h(xo+AX,to+At)—h(Xg,tg)1?)~(At)%#  for At

3— T T T T T 17T T T T T T T 19 2.0
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FIG. 3. (a) The log-log plot oft vs Au in the (1+1)D KK model. For reference, we plot the solid line with a slope of 1%.Fitting
of z,, for different system sizes in (£1)D. It shows the crossover from free uncorrelated random walker beha#d?)(to a KPZ-type
PRW behavior £=1.5). The dotted line is a convenience to guide the eyes.
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FIG. 4. (a) The log-log plot oft vs Au in the (2+1)D KK model. For reference, we plot the solid line with a slope of 1%.Fitting
of z,, for different system sizes in (£1)D. It shows the crossover from free uncorrelated random walker beha#d?)(to a KPZ-type
PRW behavior £=1.6). The dotted line is a convenience to guide the eyes.

<(Ax)> at stationary states. Both methods obtain the dy- O(r 1)~ t27%F (r %) )
namical exponent indirectly through the growth exponent ' ’

By tracing the path of the PRW, we are able to provide anyjth F(y) a scaling function. Since a path of the PRW is
independent and direct measurement of the dynamical expefetermined by the surface fluctuations, averaging over differ-
nent without knoWledge about the glObal width of the Sur'ent paths can be approximated by averaging over different
face. realizations of the surfacéike different Monte Carlo runs
Compared to the conventional methods of measuring th’?b(r) is approximately equal to the value di(rt) atr
dynamical exponent, we only need to acquire information Of=Au(t)~t1’Zw Thus,d(7) scales as '
the local slopes around the PRW. Thus, it is instructive to ' '
understand the connection between the slope-slope correla-
tions along the path of the PRW and the global roughening
dynamics of the surface. - ; :
The displacement of the PRW and the correlation of thq:(fl_xx? Nli:?g;’inlgtfzt(';;ig)_’,xfhﬁhfsﬁlélgp:gggggg :ig?w\;?jn?s

slopes are connected by the fluctuation-dissipation theor)f.or 7—». Hence the correlation function scales @g¢7)
The scaling of the dispersion in the PRW displacement can’ 227l 'Il'ogether with Eq(6), we obtain 2+ 27/z,=2/z
. ’ ST w -

be evaluated from the slope-slope correlation function along‘_his relation allows us to determing, which is the scaling

the world line of the PRW11], i.e., dimension of the slope operator, from the measurement of
t z,,. Furthermore, ify=1, thenyp=a—1, provided that the
{(u(t)— u(O))2>~tf drd(7)~tY2w, (6)  KPZ scaling relationx+ z,=2 holds. This resulty=a—1,
0 is consistent with [ssig’s operator production expansion
schemd4] and our previous work6] for KPZ-type surfaces.

(1)~ D (7How, 1)~ 72 WEF (717X, (10)

with &(7), Namely, all slope-slope correlations can be obtained by the
o) <0,,u(7) au(0)> ggl)\(/(xe_?ower counting, and the slope operattw,ox, scales
T)= '
gt ot Our numerical results suggest thats indeed equal to 1

P P for upwards moving PRWSs. In (£1)D, renormalization-
~<&h(u(7),r)&h(u(0),0)>. (1) group(RG) calculations gave(r,t)~t~YsF(r/t) [12], so

our results imply the value of is fixed asz,=z,=3 in
(1+1)D. In (2+1)D KPZ-type surface growth, RG calcu-
lations indicated that the fixed point is at strong coupling
such that analytical results cannot be obtained perturbatively
[1]. To the author’s knowledge, no analytic results for the
scaling from of®(r,t) have been obtained for (21)D. Our
numerical results suppori=«a—1 for KPZ-type surfaces.

This correlation functionb (7) is different from the conven-
tional slope-slope correlation®(r,t)=(a,h(r,t)dh(0,0)),
where the correlations are calculated at specific fixelh-
stead, we need to evaluate the correlatipfr,t) along the
correlated path, the world line of the PRW& u(t).

The most general scaling form fdr(r,t) is
~ 2% 11—y IV. COALESCENCE OF PASSIVE RANDOM WALKERS
d(r,t)=b“"d(b™"r,b~%t), (8)

Why does an upwards moving PRW typically end up on
where 7 is an exponent yet to be determined. This scalingthe global maximum? To further understand the mechanism
form is equivalent to of this phenomenon, we study the dynamics of multiple
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equivalent to shrinking of flat top plateaus. For example, at
A larger length scales, the shallow valley between two nearby
/\ £ hilltops and the hilltops themselves as a whole act like a
plateau on the surfad&ig. 5). Before the coalescence of the
hilltops, the size of the flat top of the plateau is the distance
between these two hilltops. While these two hilltops are
FIG. 5. A close look at the coalescence of two hilltops driven bymoving towards each other by surface fluctuations, the size
the noiseless KPZ equation. The curves in this figure have beeff the flat plateau top effectively shrinks, which is an indi-
shifted for clarity. The two hilltops have a common contact point atcation of a negativa.. In the KK model,\ is negative and
the bottom of the valley between them. the origin of negative\ is due to the restricted solid-on-solid
condition|Ah;;| <1, which reduces the growth rate to zero at
PRWs on KPZ-type surfaces. If all upward moving PRWsthe regions where the density Ah=1 (or Ah=—1) steps
eventually reach the global maximum on the finite-sizedis 1. With negativex for the KK model, which belongs to the
KPZ-type surface, then all of them will converge to the sameKPZ universality class, both the hilltops and the PRWs coa-
hilltop even though they start at different positions. This islesce.
true only if the PRWs have the property of coalescence,
namely two PRWs close to each other merge into each othery. COALESCENCE OF HILLTOPS IN THE NOISELESS
and move together afterward during the process of moving KPZ EQUATION
up to the global maximum. o
Although, in the definition of the dynamics of the PRws, ~We can gain insights about the coalescence of the PRWs
the PRWs always move upward, this simple coupling beon KPZ-type surface_s by investigating the solu_tlo_n for the
tween the PRW and the surface only guarantees that tHediseless KPZ equation in the limit—0. In that limit, the
PRW reaches #ocal maximum, not the global one. How- evolution of surfaces with given initial conditions has an
ever, we find that in KPZ dynamics with negative the analytical solution, which allows us to study the details of

upwards moving PRWs coalesce. Two PRWs separated ov&i€ dynamics of the hilltops. _ _
a distance at timet=0 merge into each other after a typical A detailed derivation of the solution for the noiseless KPZ

time periodt~r2 as shown in Fig. Isee also Fig. @]. On equation can bg found [li3]. We only present a brief revigw
the contrary, downwards moving PRWs do not coalesce i®f the derivation. With the Hopf-Cole transformation,
AN<0 KPZ-type dynamics and PRWs do not coalesce in?(X;t)=expixh(x,t)/v), we can transform the noiseless
Edwards-Wilkinson(EW) -type growth(the A\=0 point of ~KPZ €equation into a simple linear diffusion equation for

KPZ equation. d(x,1),

Consider the PRWs sitting on two nearby hilltops that
have similar heights. The region between the two hilltops is ip ¢ 11
a small and shallow valley. If both the hilltops and the valley g2 (11)

are relatively higher than the other parts of the surface, the

valley is likely to be filled up and vanish in a short time. The solution is a superposition of Gaussian functions
These two hilltops merge and the merging event causes thgeighted by the initial conditions,

PRWs to coalesce afterward as shown in Fig. 1. The coales-

cence of the PRWs is likely caused by merging of two “1p (x—y)?
nearby hilltops by filling the valley in between. ¢(x,t)=(2mvt) f dy ¢(y,00exp — ——/,
This trivial argument seems to imply that PRWs will coa- (12)

lesce for any type of growing surface as long as the PRWs
are trapped on hilltops. This is not true. We found that thewhere ¢(y,0)=exp(\h(y,0)/v) is the initial condition, de-
PRWSs on EW-type surfaces do not coalesce, although KPZermined by the initial height profila(y,0). In the limit v
type surfaces and the EW-type surfaces have the same sta-0, we can simplify the solution by introducing the veloc-
tionary state and roughness exponest3 in (1+1)D. The ity, v=2a,h, as an auxiliary variable,
following discussion and the detail analysis in Sec. V show
how the nonlinear termy (9,h)?, in the KPZ equatioriEq. vdlnd
(1)] affects the phenomenon of coalescence. TN T ax
The nonlinear term) (d4h)?, in the KPZ equation con-
trols how the growth rate depends on local slopes. Consider 2(x=y) 1((x=y)?
a plateau on a surface. For positivethe growth rate on the f dy At e~ t +Ah(y.0)

slope parts of the plateau is larger than the flat top. The flat = 1/ (x—y)?

top of the plateau expands by lateral growth on the slopes. In f dyexr{ — _( +)\h(y,0)) )

general, hilltops become flatter than valleys for positive v t

Negative A has an opposite effect, the slope parts grow (13
slower than the flat tops, hence the flat tops become sharper.

Shrinking of plateau flat tops is an indication of a negaive By the method of steepest descent in the limit:0, this
in the KPZ equation. The merging event of two hilltops is yields
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—2[X— Ymin(X,1)]

v(Xx,t)= X

(14

wherey i, is a function of bothx andt, and it is determined
by takingy, where[ (x—y)?/t]—Xh(y,0) is a minimum for
fixed x and fixedt. Namely,

_ 2
ymin(xat):arg mir( x ty) _)\h(yao) . (15)
y

Theymin(Xt) are usually only piecewise continuous functions ~ FIG. 6. The parabolic shape probe tip scans through paints
of x, particularly for random initial conditions generated by Xo: andx, from left to right. Curveda), (b), and(C) are parabola
random walkers. Shock waves of the velocity field arewhich are centered a, x,, andx, respectively. Curvéa) [(b)]
formed wherey,i,(xt) is discontinuous. only contacts \{Vlth thg |p!t|al random surface aF pain(B). Curye
Assumingy (xt) is constant betweexandy,;,,, we can (b) contacts with the initial surface at both poMsand_C. While
further integrangg)(x t): the probe is scanning through, the first contact point jumps from
e Ato C. Thus,ymin(X) is discontinued at point, and the path of the
—[x—ymm(x,t)]z tip creates a cusp at poift The dashed curve is the surface gen-

h(x,t)= X +cp, (16) erated by the path of the probe tip.

] ) ) . the new surface usually consists of a collection of parabola

wherec,, is the integration con;ta_nt. The solution fafx,t) shaped segmentthe dashed curves shown in Fig. 6
is reduced to the problem of findingy, andc,. With this geometrical interpretation of the exact solution

Determiningy i, for A<<0 is equivalent to finding for o the noiseless KPZ equation, we are able to visualize how
which the vertical distance is the shortest between the initigjp e singular hilltops are formed and to discuss the dynamics
height configurationh(y,0), and the Dafab0|6_1XEY)2/)\t7 of coalescence of the hill tops. If the local average curvature
centered ak, while the parabola is approaching the surfacegyer 4 region such as betwearandC in Fig. 6 is larger than
from below.y, is the first contact point betwee_n the_ WO the curvature of the tip of the probe at timethen the tip
curvesh(y,0) and W (y;x,t)=[(x—y)?/At]+c, while cis  cannot reach the surface everywhere between goandC.
adjusted tac(X,t) =h(Ymin,0)— [ (X— Ymin)/At] (Fig. 6. The  when the probe scans through this region, at pdaits Fig.
contact pointy, is whereh(y,0)—[(x—y)*\t] is a mini- ¢ there are two first contact points for the parabola, and
mum. Onceypiy is found,h(x,t) follows from Eq.(16) with v . (x) is discontinued at this point. At points where the
Ch=h(Ymin.t). Thus, we haveh(x,t)=¥(x;x,t)=c(x,t),  functiony,,(X) is not continuous, the path of the tip forms
which is the top of the parabola. The surface betweand  cysps, which are hilltops of the new surface. The position of

Ymin(Xt) is also parabolic in shape at timdt is possible that  the hilltop in Fig. 6 is determined by the positions of the two
there exists more than one first contact point for certand  contact pointsA, C and the curvature of the probe tip.

t. If this happensyyi,(xt) as a function ok will be discon- We can also write the solution df(x,t) as a functional
tinuous at that specifig. transformatiorZ defined as
This solution has an intuitive graphical interpretation,
which is useful for understanding the coalescence phenom- Ti(h(X,t0))=h(X,t+to)
ena. The evolution of the surfaces is generated by a sequence
of geometry transformations on the surfaces at an earlier i (x—y)?
=min| h(y,tg) — 17

time. For negativé,, the new surface at timgs obtained by
scanning the original surface from below with a probe that
has a parabolic shaped tip¥(y;x,t)=[(x—y)?/rt]
+c(x,t) (Fig. 6) for negative\. (For positive\, the probe
scans the surface from above instedde probe is centered
at positionx, andc(x,t) (the vertical position of the top of Ty +1,(N(X,10)) = T, T, (N(X, o)) (18

the tip) is adjusted by moving the probe up and down. When

the probe approaches the surface from below, it stops whenTthe geometrical interpretation of the solution in this form is
starts to come into contact with the surface. The horizontasimilar to the Huygens principle growth algorithih4], ex-
position of the first contact point between the probe and theept that parabola shaped wave fronts instead of circular or
surface isyn,n(X,t). Since the probe stops moving upward spherical wave fronts are used. The transformation(Eg.
once it comes in contact with the surface, we might think ofcan be applied iteratively and is suitable for evaluating the
the vertical position of the tip of the probe(x,t), as the evolution of surfaces numerically.

height of the new surface seen by the probe at timet. We evaluate the evolution of a random initial surface with
The probe scans through the surface and plots a new surfa&gy. (17). The coalescence of the hilltops is shown clearly in
that gives the surface evolved by the noiseless KPZ equatioRig. 7(a). Why do those hilltops coalesce and how do they
at a later time. Because of the parabolic shape of the probenove? Will hilltopB in Fig. 6 move towards poir or point

v At

This transformation has the following property:
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(a) h the nonlinear term is responsible for the coalescence in the
stochastic dynamics, we apply our upwards moving PRW
model to EW-type surfaces. The upwards moving PRWs for
EW-type surface do not coalesce, although the density of the
PRWs is slightly higher on the hilltops.

VI. DOWNWARDS MOVING PASSIVE RANDOM
WALKERS

So far we have focused only on the case in whiciindA
have opposite signs, i.e., when the PRWs move upward
(k>0) in the KK model { <0). The discussion in the pre-
ceding section suggests that the shape of the surface has very
FIG. 7. (a) The evolution of the surface under transformation different characteristics between a hilltop and a valley bot-
Eq. (17). Hilllops coalesce and form treelike structurés) The  tom on the surface with noiseless KPZ dynamics. Namely,

coalescence of shock waves in the velocity field. The velocity ishilltops are sharp with discontinued slopes while valley bot-
defined aw = dh/dx. toms are rounded and with continuous slopes. The symmetry

is broken by the nonlinear term. We also found that valley
C? Answers to these questions can be addressed with thttoms vanish by themselves, instead of coalescing with
equation of motion of the hilltops. others valleys.

The curvature of the probe at timtels equal to 1/kt). If k is negative, the PRWs move toward the valley bot-
The probe becomes broader and broader with time. As longPms. It is interesting to see how the PRWs respond to such
as the absolute value of the local curvature around the corfiualitative aspects of the surface in the presence of stochastic
tact points,A or C, is much larger than the absolute value of noise. In the deterministic case, the hilltops and valley bot-
the curvature of the probe, the positions of these two contad@ms intertwine, and the number of valley bottoms and the
points do not change. In this case, the height differencéumber of hilltops both decrease. This is not true for the
h(xa,t)—h(xc,t), wherex, andx¢ are the horizontal coor- Stochastic case. New microscopic hilltops and valley bottoms

dinates of pointsA and C, respectively, is also a constant. It are being formed constantly by the noisy depositions of par-

can be written as ticles. Is the coalescence of the PRWs stable under such per-
turbations? Of upwards moving PRWs in the KK model,
h(Xa,t) —h(xc,t) coalescences are stable against the noise. As we will see
next, the coalescence of the downwards moving PRWs is not
=[h(xa,t) —h(xg,t) ] =[h(Xc,t) —h(xg, 1) ]. stable against random depositions.

Consider the upwards moving PRWs. Suppose noise splits
The curve betweeA andB and the curve betweeB andC e hilitops by creating a small valley between them. This
of the new surfacze are two parabolas. With{xa,t)  small valley is unstable against the dynamics as we have
—h(xg,t)=(xa—xg)/(At) and h(xc,t)—h(xg.,t)=(Xc  seen in the preceding section. These two hilltops will merge
—xg)?/(\t), we obtain the equation of motion of the hilltop, again soon as a resuit of the nonlinear term in the KPZ equa-
tion. The nonlinear KPZ dynamics stabilizes the coalescence
(19) of the upwards moving PRWs. _ _
Next, imagine several downward moving PRWs moving
into the same valley. The aggregation of the PRWSs is not
This equation implies that the hilltops always move towardstable against the noisy perturbation. Depositions of particles
the closest of the two contact points. Moreover, the closestn the valley split the valley. A PRW on the original valley
contact point is also the higher one. If two neighboring hill- bottom can go to either one of those two valleys with equal
tops share the same contact point, and that contact point frobability, so both valleys will be occupied by PRWs. Do
the highest one for both hilltops, then these two hilltops willthe new created subvalleys always merge back into each
merge into one around the position of the shared contaasther? A valley bottom does not move in the noiseless case;
point as illustrated in Fig. 5. A sequence of coalescencehey will remain separated by the hilltop. The hilltop does
events of the hilltops forms a treelike structure of world linesnot vanish unless it is driven away to merge with other hill-
as in Fig. 7a). tops, which is a much less likely process than the splitting.
The dynamics of the coalescence of the hilltops in theTherefore, dynamics like this does not stabilize the aggrega-
noiseless KPZ equation is totally deterministic and only detion of downwards moving PRWSs. They tend to be separated
pends on initial surfaces. In the noisy case, the dynamicander the growth dynamics and we expect that the dynamics
becomes stochastic, however the qualitative behavior of thef downwards moving PRWSs, trapped in valley bottoms, is
coalescence of the hilltops is still sustained even when theominated by the perturbation of random deposition rather
surface is perturbed with randomly depositions. The nonlinthan the deterministic nonlinear term in the dynamics. In Fig.
ear term causes the coalescence of the hilltops and remaisgc), we show a typical simulation for downwards moving
essential even when the dynamics is stochastic. To check thBRWs. Instead of coalescence, we find that the aggregation

IXg

XA+XC
at

-1
t™ 7| Xg >
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of shock waves in the Burgers equation with noise. Our
analysis on coalescences of PRWs on a growing surface pre-
sented here not only provides further intuitive and detailed
understanding of the mechanism of these coalescence phe-
nomena, but also explains, in both deterministic and stochas-
tic dynamics, the different behaviors between hilltops and
valleys, which are distinct types of zeros in the velocity field

in the Burgers turbulences.

VII. RIVERLIKE NETWORK AND PASSIVE SCALARS

To further understand the stability of the aggregations of
PRWs, we study how random forces, in addition to the driv-
ing forces from surface slopes, are applied to the PRWs di-
rectly and change the treelike structure of the PRW world
lines in Fig. &a). Is the treelike structure stable? Random
noise modifies the equation of motion of the PRW as

au 1%

. . . E:Ka_h(xit”)(:u(t)—’_nw(xat)l (21)
FIG. 8. World lines of passive walkers for different parameters. X
The lines are the paths of 128 PRW on a system of kizel28.

The darkness is proportional to the number of PRWs for each sitewith  7,, the uncorrelated noise,{7y(X,t) 7,(0,0))

In (a), the system is simulated in the linfit= (D, /K)**"2—-0 =D, 8(x)8(t). D,, is the diffusion constant of the PRW if
for upward moving PRWSs. Ifb), we choosé.~L, the system size. ,=0.
(c) is the result of downwards moving PRWs in the lirhit-0. First consider a single PRW on a surface. The second term

Even without a diffusion term in E¢21), the downwards moving  on the right-hand side of Eq21) introduces the ordinary
PRWs do not coalesce. The dynamics of the downwards movingjiffsive behavior i.e.Au(t)~(D t)1’2. The scaling behav-
PRWs on KK-type surface is dominated by the uncorrelated randonpbr due to the first termAu(t) ~ (ﬁv t)l/zw (K,, is a constant
o w w
depositions. determined byk and\), still dominates the large-scale be-
havior since 14,>2. However, the PRW appears as diffu-

clusters of PRWs are not stable and split constantly. g6 instead of superdiffusive at length scales smaller than
Coalescence of the upwards moving PRWs for negative | ~(Dy,/K,,) Y22
w W. .

. . C
is an important feature of KPZ-type surfaces. Not only does The diffusive noise also affects the coalescence of mul-

it ensure that the PRWs end up trapped on the global max, e prws. For small perturbations, the aggregation is stable
mum, it also reveals the space-time structure of KPZ-typgyo 5 ,se the PRWs cannot escape from the hilltop by diffu-
surfaces in detail, i.e., hilltop&valley bottoms coalesce as  gjon if the hilltop is high and large enough. The net effect of
time evolves for negativepositive) A. _ diffusion simply broadens the coalescence cluster. However,
Our analysis on the KPZ equation applies to the phenomg e increase the strength of the random noise, the PRWs
ena of coalescence of the shock waves in the inviseid ( can escape from the hilltop and be caught by other hilltops
—0) noiseless Burgers equation. The velocity in the Burgers,earhy with finite probability. In this case, the cluster of coa-

equation is the slope on the KPZ-type surfaces, ».€:9n.  |egcence PRWs splits and the world lines of the PRWSs form
By differentiation of Eq.(1), it becomes a braidlike network instead of a tree structure. A typical con-
figuration of such a braidlike network is shown in FigbB
v v P Both the treelike and the braidlike network resemble river-
it a2 t e (200 |ike networks of different length scales in Naturs).

The crossover scale between treelike networks and braid-
like networks is given by.. We observe diffusive behaviors
,f_)cally at scales less thdp. The braidlike networks emerge

t the crossover scalk,, and the treelike structures are re-

The noise term satisfigsyg(X,t) nB(O,0)>~ﬁ§5(x) 4(t). Be-
cause the slopes of the surface are discontinuous at the hi
tops, the hilltops on KPZ-type surfaces correspond to th
shock waves in the Burgers equation. The coalescence of “%)vered at scales much Iarge_r than .

hilltops of the surface indicates that the shock waves coa- _F_urth_ermore_, we can consider the _evqlutlon of f[he prob-
lesce, as illustrated in Fig.(B). Coalescences of shock ability distribution function,P(x,t), of finding a particle at

waves described by the noiseless Burgers equation have beBRStionx aF timet. Note that the tofal number of PRWS is
reported in a numerical study of inelastic collisions of par_conserved in our model. Therefor(x,t) has the standard
ticles in (1+1) dimensiong15]. Bohr and Pikovsky also conserved form

showed that the zeros in the velocity field of the Burgers

equation coalescfll]. The above analysis for the coales- IP(X) i'(x 0 (22)
cence of KPZ hilltops translates directly into the coalescence at axJ e
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wherej(x,t) is the PRW current. The current is the sum of logical but also robust against perturbations. For KPZ-type
the advected part and the diffusive contribution, ijéx,t) growth, the g.h)? term breaks the symmetry between hill-
= kv P(x,t)+D,d,P(x,t). Hence, we have tops and valley bottoms during growth and introduces non-
trivial dynamics of the hilltops for negative and the valley
bottoms for positivex. The singularities on KPZ-type sur-
faces generated by the nonlinear terms stabilize the aggrega-
tions of the PRWSs against other perturbations. The coales-
This is simply the equation of motion of passive scalarscence of PRWs reveals one of the important features of the
P(x,t), in a fluid. In the limitD,,—O0, the passive scalars complicated space-time structure of the surface. An interest-
will be concentrated at a globe hilltop as we have seen in thghg extension of this study is to see how to generalize this to
previous sections ik and\ have opposite sign for a finite different universality classes of surface dynamics. We al-
system. ready point out that in EW growth, because of the particle-
hole symmetry, PRWs do not coalesce. For other nonlinear
models, in which the nonlinear terms break up-down sym-
Motivated by the domain-wall dynamics on nonequilib- ;nuﬁgﬁepri\;\;ssrﬂﬁzv?ﬁtg:le\g%én;ggséﬂi%grxﬁj;ﬁrfsand the
rium fluctuating surfaces, we study t_he dynamics of passive Depending on the strength of the noise applied to the
rﬁndonl"nhwalkr:ari on KPI_Z-typel gLowmg surfaces. Wz ShoWPRWS, the world lines of PRWs form treelike or braidlike
%agg izt d;:ijr?e dtlc?cgl?;arl\ggPr;V?/ t;pt)\ilxzﬁ; ;;E\é\g ?r?e r%;)zfﬁetworks in space-time. The treelike or the braidlike net-

’ . : . , works resemble river-type networks in nature. The braidlike
mum“of th? surface over a distanken a time scald ~x* networks are the result of two competing mechanisms,
and “feels” the fluctuations of the surface over the samenamely the coalescence between PRWs caused by the fluc-
length ;scale. Two PRWs separated by coalesce afteAl  y,aiiong of surfaces and the diffusion of PRWs caused by
~(Ax)*. The fluctuatlops of thg positions of such PI?Wsdirectly applied noise. These two mechanisms define a cross-
follow the same dynam'cal SC‘?‘"”Q as th'e KPZ qucFuatlonsover length scalé;, and give rise to the braidlike networks
We verify this scaling behavior numencally: Tracing th_e at this scale. One might expect to see similar crossover phe-
paths of the PRWs on KPZ-type surfaces is an eﬁ_eCt'VPnomenain the study of passive scalars in Burgers turbulence.
met_hod to measure the dynamical exponent directly in the Previous studies on fluctuating nonequilibrium surfaces
stationary state. . . . were focused on the scaling behavior. This study shows that,

In addition to the spallng, th? _dynamlcs .Of passive randonTJeyond global scaling laws, such as the scaling of the global
walkers reveals detailed spgcnﬁc 'space-tlme structgres of fiterface width, nonlinear surface growth dynamics leads to
KPZ-type growing su_rface, l.e., hilltops coalesce W'th eaCl]ntriguing detailed aspects of their space-time structures. We
other and the world lines of the PRWSs form self-affine tree-hope studying these different perspectives of nonequilibrium

Iik_e structures. We provide an analytical argument eXpIamianynamics can lead to a better understanding of these com-
this phenomenon based on the noiseless Burgers-KPZ equ ex systems

tion. We show how the nonlinear term,f)? is responsible
for this nontrivial coalescence phenomenon in both the
noiseless and noisy case. The noiseless KPZ equation also
allows us to understand why downwards moving PRWs do
not coalesce, due to the asymmetry between hilltops and val- This research is supported by the National Science Foun-
ley bottoms. dation under Grant No. DMR-9985806. The author thanks

We want to emphasize that the effectively attractive inter-Marcel den Nijs for many useful discussions and a critical
actions which makes the PRWs coalesce are not only topageading of the manuscript.

IP(x,1) J 92
= K& WP(x,t))+ Dy, W P(x,t).

p (23

VIll. CONCLUDING REMARKS

ACKNOWLEDGMENTS

[1] M. Kardar, G. Parisi, and Y.-C. Zhang, Phys. Rev. L&&.889 [10] M. den Nijs, J. Phys. A8, L549 (1985.

(1986. [11] T. Bohr and A. Pikovsky, Phys. Rev. Left0, 2892(1993.
[2] .M. Kim and J.M. Kosterlitz, Phys. Rev. Let62, 2289 [12] D. Forster, D.R. Nelson, and M.J. Stephen, Phys. Ret6A
(1989. 732(1977).
[3] T. Halpin-Healy and Y.-C. Zhang, Phys. R&}h4, 215(1995. [13] W. A. Woyczyrski, Burgers-KPZ TurbulencéSpringer, New
[4] M. Lassig, Phys. Rev. LetB0, 2366(1998. York, 1998.
[5] M. Kotrla, F. Slanina, and M. ledota, Phys. Rev. B8, 10003  [14] C. Tang, S. Alexander, and R. Bruinsma, Phys. Rev. l6t.
(1998. 772(1990.

[6] C.S. Chin and M. den Nijs, Phys. Rev.39, 2633(1999.
[7] M. Kotrla and M. Predota, Europhys. Le89, 251 (1997.
[8] B. Drossel and M. Kardar, Phys. Rev. L&, 614 (2000.
[9] C.S. Chin and M. den Nijs, Phys. Rev.6, 031606(2001).

[15] E. Ben-Naim, S.Y. Chen, G.D. Doolen, and S. Redner, Phys.
Rev. Lett.83, 4069(1999.

[16] I. Rodrguez-lturbe and A. RinaldoFractal River Basins
(Cambridge University Press, Cambridge, 2001

021104-9



