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Passive random walkers and riverlike networks on growing surfaces

Chen-Shan Chin
Department of Physics, University of Washington, P.O. Box 351560, Seattle, Washington 98195-1560

~Received 8 April 2002; published 12 August 2002!

Passive random walker dynamics is introduced on a growing surface. The walker is designed to drift upward
or downward and then follow specific topological features, such as hill tops or valley bottoms, of the fluctu-
ating surface. The passive random walker can thus be used to directly explore scaling properties of otherwise
somewhat hidden topological features. For example, the walker allows us to directly measure the dynamical
exponent of the underlying growth dynamics. We use the Kardar-Parisi-Zhang~KPZ! -type surface growth as
an example. The world lines of a set of merging passive walkers show nontrivial coalescence behaviors and
display the riverlike network structures of surface ridges in space-time. In other dynamics, such as Edwards-
Wilkinson growth, this does not happen.The passive random walkers in KPZ-type surface growth are closely
related to the shock waves in the noiseless Burgers equation. We also briefly discuss their relations to the
passive scalar dynamics in turbulence.

DOI: 10.1103/PhysRevE.66.021104 PACS number~s!: 05.40.2a, 02.50.Ey, 64.60.Cn, 89.75.Da
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I. INTRODUCTION

The research on fluctuations of surfaces during gro
has been one of the major areas of study in nonequilibr
statistical mechanics in recent decades. Most research i
cused on identifying universality classes and the scaling
havior of surface morphology, e.g., how the width of su
faces scales with the size of surfaces@1–6#. Recently, the
coupling between surface growth and other degrees of f
dom has been considered in the context of ordering phen
ena on growing and fluctuating surfaces. For example,
field coupled to the surface can be different species of
posited particles@5,7,8# or surface reconstruction order p
rameters@9#. Unlike equilibrium surfaces, where the co
pling between the surface height degrees of freedom and
additional field is irrelevant at large length scales@10#, we
found that the coupling between the surface and the rec
struction orders cannot be ignored@9#. The surface and the
additional field are usually coupled topologically. For e
ample, the domain walls of order parameters become trap
at the hilltops or in the valleys on surfaces in a (111)D
system @5,7,8# or on the ridge lines on surfaces in a (
11)D system@9#.

The fluctuations of the additional degrees of freedom~ex-
pressed by the dynamics of the ‘‘domain walls’’! thus be-
come slaved to the fluctuations of the surface. From the
face perspective, the additional field is usually irrelevant a
passive. Therefore, part of the dynamics of the surface
its topological features can be evaluated from the fluct
tions of such domain walls that are pinned or trapped
them. We can put probes on the surface to follow these
tures dynamically. In this paper, passive random walk
~PRWs! are designed to follow hilltops or valley bottoms o
the surface.

One of the first applications of the PRWs is to provide
direct way to measure the dynamical exponent of the sur
fluctuations. We will also present the phenomena of coa
cence of passive random walkers on Kardar-Parisi-Zh
~KPZ! @1,2# -type growth. The coalescence of passive ra
1063-651X/2002/66~2!/021104~9!/$20.00 66 0211
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dom walkers uncovers a riverlike network structure of t
surface in space-time.

Our passive random walkers are similar to the pass
scalars in turbulence. This is not surprising because the K
equation is equivalent to Burgers equation, which describ
fluid @1# with different random stirring forces from those i
related turbulence studies. It is instructive to study the
namics of the PRWs from both perspectives.

This paper is organized as follows. The passive rand
walkers model is defined in Sec. II. The application to
rectly measuring the dynamical exponent is presented in S
III. Then we discuss the coalescence of the PRWs in Sec
The sign of the coupling between the PRWs and the surf
is important for the coalescence phenomena as discusse
Sec. VI. In Sec. VII, we show the riverlike network in th
space-time structure of KPZ-type surfaces, and the rela
between the passive random walkers and the passive sc
in turbulence is briefly discussed. Other possible applicati
of the PRW model are pointed out, together with a summ
of the results in Sec. VIII.

II. PASSIVE RANDOM WALKERS ON A GROWING
SURFACE

We couple a PRW to the growth dynamics of a fluctuati
surface. The movement of the PRW is determined by
local slope of the growing surface. The well-known Kim
Kosterlitz ~KK ! model @2# for surface growth is used as a
example. In the KK model, a surface is specified by inte
height variables on a square lattice. A single particle is
posited at a randomly chosen sitei if the restricted solid-on-
solid condition (udhi j u5uhj2hi u<1 for all nearest-neighbo
pairs^ i j &) remains satisfied, otherwise the deposition of t
particle is rejected. The surface grows and the station
state is rough. The position of the PRW is updated a
Ns

2/vg Monte Carlo steps~with vg the growth velocity and
Ns the total number of site!, i.e., when on average one laye
of surface material is added, according to the following rul
Let i be the position of the walker. If there is any neighb
site j for which hj.hi , then we move the walker to sitej. If
©2002 The American Physical Society04-1
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there is more than one site higher than sitei, then we let the
PRW move to either one with equal probability. We app
periodic boundary conditions for both the surface and
PRW motion.

It is known that the continuum limit of the KK model i
governed by the so-called KPZ equation@2#,

]h

]t
5n

]2h

]x2
1lS ]h

]xD 2

1hs , ~1!

with uncorrelated noise,

^hs~x,t !hs~x8,t8!&5Dd~x,x8!d~ t,t8!. ~2!

In the same limit, the equation of motion of the PRW is

]u

]t
5k

]

]x
h~x,t !ux5u(t) , ~3!

whereu(t) is the coordinate of the PRW at timet, andk is
the coupling strength between the PRW and the surface
our lattice model,k is of the same order asl. The equations
of motion, Eqs.~1!–~3!, imply that the PRW moves upward
for k.0. The PRW becomes trapped on a local maximum
the surface profile as seen in Fig. 1 for positivek. Once the
PRW is trapped on a hilltop, it follows the motion of th
hilltop, which is subject to the surface fluctuations. Whenk
is negative, the PRW moves downwards instead of upwa
and the PRW becomes trapped in a valley bottom instea
a hilltop. The relative sign betweenk andl affects the dy-
namics of the PRWs. We will focus on positivek for now,
and discuss negativek in Sec. VI.

FIG. 1. Passive walkers trapped on local hilltops and glo
maximum in (111)D simulations. The dashed lines are the wo
lines of two PRWs and the solid lines are the surface profiles du
growth. The passive walkers follow the local maximums initia
and ultimately merge into each other. The walkers reach the gl
maximum at a later time.
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III. DYNAMICAL EXPONENT OF PASSIVE RANDOM
WALKERS

One important observation of the dynamics of an upwa
moving PRW on KPZ-type surfaces is that the PRW not o
reaches a local maximum in a relatively short time, but a
that in finite-size systems it ultimately ends up trapped at
global maximum. We will discuss the detailed mechanism
this phenomenon later in Sec. IV. Once the PRW is trap
on the global maximum, it performs a correlated rando
walk following the global surface fluctuations. The surfa
fluctuates critically and is self-affine. Namely, the profile
the surface is invariant under the following rescaling:

x→b21x, h→b2ah, t→b21/zst, ~4!

whereb is a scaling factor,a is the roughness exponent, an
zs is the dynamical exponent of the surface. The PRW
slaved to the fluctuations of the interface, therefore we
pect similar dynamical scaling for the world line of the PRW

The displacement of the PRW,Du(t)5u(t)2u(0),
should be defined carefully to avoid confusion in finite-si
systems with periodic boundary conditions, where the PR
moves on a ring in 1D and on a torus in 2D. In such ma
folds, the winding number of the PRW should be taken in
account. The component of the displacement,Du(t), in di-
rection êi is defined asDuêi

(t)5nêi

1
2nêi

2 , with the actual

number of right moves,nêi

1 , and the actual number of lef

moves,nêi

2 , in directionêi .

In our numerical simulations, we let the system evol
until both the surface and the PRW motion reach station
states. Then the value of the displacementDu(t) is measured
as Du(t)5@( i(nêi

1
2nêi

2)2#1/2. To accelerate the simulation

we also adopt a rejection-free algorithm. Details of this
gorithm can be found in Ref.@9#. In this algorithm, time is
counted in terms of the numbers of layers of particles dep
ited instead of the conventional Monte Carlo time unit. W
established earlier that the unit of time in this rejection-fr
algorithm is linearly proportional to the Monte Carlo tim
unit @9# ~see also@8#!.

If the PRW indeed is slaved to follow the global surfa
fluctuations, which are invariant statistically under the tra
formation Eq.~4!, the average distance of the displaceme
Du(t), must obey the scaling form

^Du~ t !&;LxGS t

Lzs
D , ~5!

whereG(t) is a universal scaling function. Whent!Lzs, the
hopping events of the PRW are correlated due to the sur
fluctuations, andDu(t);t1/zw, where zw is the dynamical
exponent for the PRW. At time scalest@Lzs, the surface
fluctuations are limited by the finite size of the lattice and t
PRW becomes like a free uncorrelated random walker. Th
the scaling functionG(t) has the asymptotic formsG(t)
→t1/zw for t!1 andG(t)→t1/2 for t@1. The value of the
exponentx in Eq. ~5! follows from the fact thatu(t) must be
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independent ofL in the thermal dynamics limit. Conse
quently, x, zw , and zs are not independent and satisfy th
relationx5zs /zw .

The dynamical exponent of the walker is not necessa
the same as the dynamical exponent of the surface. The
no a priori reason forx51, i.e., forzw5zs . The numerical
results~Fig. 2! indicate thatzw5zs , but why?x51 reflects
that there is no length scale other than the system sizL
involved in the dynamics of the PRW. This is in contrast
free uncorrelated random walks, in which case anot
length scale proportional tot1/2 will emerge. The absence o
a new independent length scale is consistent with our pic
that the PRW is typically trapped on a global maximu
hence the fluctuations of the PRW follow the dynamical sc
ing of the surface.

The main numerical results are shown in Figs. 2–4. Th
are obtained by averaging over about 105 samples in
(111)D and 43105 samples in (211)D. The displace-
ments of the PRW are determined up tot5256 in (111)D
andt5128 in (211)D. In (111)D, ^Du& is in the order of
102 lattice units at t5256. In (211)D, ^Du&;10 at t

FIG. 2. Collapses oft vs Du. We usezs51.5 for (111)D, zs

51.6 for (211)D, andx51 for both cases.
02110
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5128. Although^Du& is relatively small in (211)D, the
scaling behaviors are already clear. Small displacements
flect merely a small prefactor in the scaling form Eq.~5!.
This is analogous to a small diffusion constant~which slows
the diffusive process, but does not affect the scaling prop
ties even at small spatial scales!. Moreover, the asymptotic
region of interest is at smallt and at smallDu/L, so the
scaling behaviors that we focus on are in the smallDu inter-
val. By increasing system sizes, we can extend the sca
region of the scaling variable,Du/L, about two decades.

We check the scaling form Eq.~5! by collapsing the data
~see Fig. 2! with zs51.5 in (111)D and zs51.6 in (2
11)D. The prediction,x51, gives excellent data collapse
except for the nonuniversal part aroundDu&10 in
(111)D andDu&4 in (211)D. This nonuniversal behav
ior is likely caused by the discrete lattice spacing. A mo
detailed fit of the dynamical exponentzw must avoid this
smallDu region while keepingDu/L small. In Figs. 3~b! and
4~b!, we fit zw by omitting the data fromDu&10 in (1
11)D andDu&4 in (211)D. It might appear that by ig-
noring data from these regions, a large fraction of inform
tion in the data is lost. In fact, only less than a quarter of
data points fall in these regions. The crossover from unc
related random walker behavior (z52, at largeDu/L) to
correlated behavior (zÞ2, at smallDu/L) is visible in Figs.
3~b! and 4~b!, where the exponent decreases from 2 tozs as
the system size increases. We conclude thatzw51.50(1) in
the (111)D andzw51.60(1) in the (211)D KK model.

Our measurement ofzw provides one of the very few
independentand direct measurements of the dynamical e
ponent zs on stationary-stateKPZ-type surfaces. Conven
tional approaches determine the dynamical exponent i
rectly, through the measurement of the scaling behavior
the width of surfaces in the transient states, starting wit
flat initial condition. The surface width defined asW5^(h
2h̄)2&1/2 scales asW;tb for t!Lzs. Then the dynamical
exponent is found by using the scaling relationzs5a/b. The
other method is to measure the correlation functiong(x,t)
5^@h(x01Dx,t01Dt)2h(x0 ,t0)#2&;(Dt)2b for Dt
FIG. 3. ~a! The log-log plot oft vs Du in the (111)D KK model. For reference, we plot the solid line with a slope of 1.5.~b! Fitting
of zw for different system sizes in (111)D. It shows the crossover from free uncorrelated random walker behavior (z52) to a KPZ-type
PRW behavior (z51.5). The dotted line is a convenience to guide the eyes.
4-3
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FIG. 4. ~a! The log-log plot oft vs Du in the (211)D KK model. For reference, we plot the solid line with a slope of 1.6.~b! Fitting
of zw for different system sizes in (111)D. It shows the crossover from free uncorrelated random walker behavior (z52) to a KPZ-type
PRW behavior (z51.6). The dotted line is a convenience to guide the eyes.
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,(Dx)zs at stationary states. Both methods obtain the
namical exponent indirectly through the growth exponentb.
By tracing the path of the PRW, we are able to provide
independent and direct measurement of the dynamical e
nent without knowledge about the global width of the s
face.

Compared to the conventional methods of measuring
dynamical exponent, we only need to acquire information
the local slopes around the PRW. Thus, it is instructive
understand the connection between the slope-slope cor
tions along the path of the PRW and the global roughen
dynamics of the surface.

The displacement of the PRW and the correlation of
slopes are connected by the fluctuation-dissipation the
The scaling of the dispersion in the PRW displacement
be evaluated from the slope-slope correlation function al
the world line of the PRW@11#, i.e.,

^~u~ t !2u~0!!2&;tE
0

t

dt F~t!;t1/zw, ~6!

with F(t),

F~t!5 K ]u~t!

]t

]u~0!

]t L
; K ]

]x
h„u~t!,t…

]

]x
h„u~0!,0…L . ~7!

This correlation functionF(t) is different from the conven-
tional slope-slope correlations,F̃(r ,t)5^]xh(r ,t)]xh(0,0)&,
where the correlations are calculated at specific fixedr. In-
stead, we need to evaluate the correlationF̃(r ,t) along the
correlated path, the world line of the PRW,r 5u(t).

The most general scaling form forF̃(r ,t) is

F̃~r ,t !5b2hF̃~b21r ,b2zst !, ~8!

whereh is an exponent yet to be determined. This scal
form is equivalent to
02110
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F̃~r ,t !;t2h/zsF~r 2zst !, ~9!

with F(y) a scaling function. Since a path of the PRW
determined by the surface fluctuations, averaging over dif
ent paths can be approximated by averaging over diffe
realizations of the surface~like different Monte Carlo runs!.
F(t) is approximately equal to the value ofF̃(r ,t) at r
5Du(t);t1/zw. Thus,F(t) scales as

F~t!;F̃~t1/zw,t!;t2h/zsF~t12x!. ~10!

If x>1, asymptotically, the scaling function behaves
F(t12x);F(0)1F8(0)t12x, which approaches a constan
for t→`. Hence the correlation function scales asF(t)
;t2h/zs. Together with Eq.~6!, we obtain 212h/zs52/zw .
This relation allows us to determineh, which is the scaling
dimension of the slope operator, from the measuremen
zw . Furthermore, ifx51, thenh5a21, provided that the
KPZ scaling relationa1zs52 holds. This result,h5a21,
is consistent with La¨ssig’s operator production expansio
scheme@4# and our previous work@6# for KPZ-type surfaces.
Namely, all slope-slope correlations can be obtained by
naive power counting, and the slope operator,]h/]x, scales
asxa21.

Our numerical results suggest thatx is indeed equal to 1
for upwards moving PRWs. In (111)D, renormalization-
group~RG! calculations gaveF̃(r ,t);t21/zsF(r z/t) @12#, so
our results imply the value ofz is fixed aszw5zs5

3
2 in

(111)D. In (211)D KPZ-type surface growth, RG calcu
lations indicated that the fixed point is at strong coupli
such that analytical results cannot be obtained perturbati
@1#. To the author’s knowledge, no analytic results for t
scaling from ofF̃(r ,t) have been obtained for (211)D. Our
numerical results supporth5a21 for KPZ-type surfaces.

IV. COALESCENCE OF PASSIVE RANDOM WALKERS

Why does an upwards moving PRW typically end up
the global maximum? To further understand the mechan
of this phenomenon, we study the dynamics of multip
4-4
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PRWs on KPZ-type surfaces. If all upward moving PRW
eventually reach the global maximum on the finite-siz
KPZ-type surface, then all of them will converge to the sa
hilltop even though they start at different positions. This
true only if the PRWs have the property of coalescen
namely two PRWs close to each other merge into each o
and move together afterward during the process of mov
up to the global maximum.

Although, in the definition of the dynamics of the PRW
the PRWs always move upward, this simple coupling
tween the PRW and the surface only guarantees that
PRW reaches alocal maximum,not the global one. How-
ever, we find that in KPZ dynamics with negativel the
upwards moving PRWs coalesce. Two PRWs separated
a distancer at timet50 merge into each other after a typic
time periodt;r zw as shown in Fig. 1@see also Fig. 8~a!#. On
the contrary, downwards moving PRWs do not coalesce
l,0 KPZ-type dynamics and PRWs do not coalesce
Edwards-Wilkinson~EW! -type growth~the l50 point of
KPZ equation!.

Consider the PRWs sitting on two nearby hilltops th
have similar heights. The region between the two hilltops
a small and shallow valley. If both the hilltops and the vall
are relatively higher than the other parts of the surface,
valley is likely to be filled up and vanish in a short tim
These two hilltops merge and the merging event causes
PRWs to coalesce afterward as shown in Fig. 1. The coa
cence of the PRWs is likely caused by merging of tw
nearby hilltops by filling the valley in between.

This trivial argument seems to imply that PRWs will co
lesce for any type of growing surface as long as the PR
are trapped on hilltops. This is not true. We found that
PRWs on EW-type surfaces do not coalesce, although K
type surfaces and the EW-type surfaces have the same
tionary state and roughness exponenta5 1

2 in (111)D. The
following discussion and the detail analysis in Sec. V sh
how the nonlinear term,l(]xh)2, in the KPZ equation@Eq.
~1!# affects the phenomenon of coalescence.

The nonlinear term,l(]xh)2, in the KPZ equation con-
trols how the growth rate depends on local slopes. Cons
a plateau on a surface. For positivel, the growth rate on the
slope parts of the plateau is larger than the flat top. The
top of the plateau expands by lateral growth on the slopes
general, hilltops become flatter than valleys for positivel.
Negative l has an opposite effect, the slope parts gr
slower than the flat tops, hence the flat tops become sha
Shrinking of plateau flat tops is an indication of a negativel
in the KPZ equation. The merging event of two hilltops

FIG. 5. A close look at the coalescence of two hilltops driven
the noiseless KPZ equation. The curves in this figure have b
shifted for clarity. The two hilltops have a common contact point
the bottom of the valley between them.
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equivalent to shrinking of flat top plateaus. For example,
larger length scales, the shallow valley between two nea
hilltops and the hilltops themselves as a whole act like
plateau on the surface~Fig. 5!. Before the coalescence of th
hilltops, the size of the flat top of the plateau is the distan
between these two hilltops. While these two hilltops a
moving towards each other by surface fluctuations, the s
of the flat plateau top effectively shrinks, which is an ind
cation of a negativel. In the KK model,l is negative and
the origin of negativel is due to the restricted solid-on-soli
conditionuDhi j u<1, which reduces the growth rate to zero
the regions where the density ofDh51 ~or Dh521) steps
is 1. With negativel for the KK model, which belongs to the
KPZ universality class, both the hilltops and the PRWs c
lesce.

V. COALESCENCE OF HILLTOPS IN THE NOISELESS
KPZ EQUATION

We can gain insights about the coalescence of the PR
on KPZ-type surfaces by investigating the solution for t
noiseless KPZ equation in the limitn→0. In that limit, the
evolution of surfaces with given initial conditions has a
analytical solution, which allows us to study the details
the dynamics of the hilltops.

A detailed derivation of the solution for the noiseless KP
equation can be found in@13#. We only present a brief review
of the derivation. With the Hopf-Cole transformatio
f(x,t)5exp„lh(x,t)/n…, we can transform the noiseles
KPZ equation into a simple linear diffusion equation f
f(x,t),

]f

]t
5n

]2f

]x2
. ~11!

The solution is a superposition of Gaussian functio
weighted by the initial conditions,

f~x,t !5~2pnt !21/2E dy f~y,0!expS 2
~x2y!2

nt D ,

~12!

wheref(y,0)5exp„lh(y,0)/n… is the initial condition, de-
termined by the initial height profileh(y,0). In the limit n
→0, we can simplify the solution by introducing the velo
ity, v5]xh, as an auxiliary variable,

v5
n

l

] ln F

]x

5

E dy
2~x2y!

lt
expS 2

1

n S ~x2y!2

t
1lh~y,0! D D

E dy expS 2
1

n S ~x2y!2

t
1lh~y,0! D D .

~13!

By the method of steepest descent in the limitn→0, this
yields

en
t

4-5
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v~x,t !5
22@x2ymin~x,t !#

lt
, ~14!

whereymin is a function of bothx andt, and it is determined
by takingy, where@(x2y)2/t#2lh(y,0) is a minimum for
fixed x and fixedt. Namely,

ymin~x,t !5arg min
y

S ~x2y!2

t
2lh~y,0! D . ~15!

Theymin(x,t) are usually only piecewise continuous functio
of x, particularly for random initial conditions generated b
random walkers. Shock waves of the velocity field a
formed whereymin(x,t) is discontinuous.

Assumingymin(x,t) is constant betweenx andymin , we can
further integratev(x,t):

h~x,t !5
2@x2ymin~x,t !#2

lt
1ch , ~16!

wherech is the integration constant. The solution forh(x,t)
is reduced to the problem of findingymin andch .

Determiningymin for l,0 is equivalent to findingy for
which the vertical distance is the shortest between the in
height configuration,h(y,0), and the parabola, (x2y)2/lt,
centered atx, while the parabola is approaching the surfa
from below. ymin is the first contact point between the tw
curvesh(y,0) andC(y;x,t)5@(x2y)2/lt#1c, while c is
adjusted toc(x,t)5h(ymin,0)2@(x2ymin)

2/lt# ~Fig. 6!. The
contact pointymin is whereh(y,0)2@(x2y)2/lt# is a mini-
mum. Onceymin is found,h(x,t) follows from Eq.~16! with
ch5h(ymin ,t). Thus, we haveh(x,t)5C(x;x,t)5c(x,t),
which is the top of the parabola. The surface betweenx and
ymin(x,t) is also parabolic in shape at timet. It is possible that
there exists more than one first contact point for certainx and
t. If this happens,ymin(x,t) as a function ofx will be discon-
tinuous at that specificx.

This solution has an intuitive graphical interpretatio
which is useful for understanding the coalescence phen
ena. The evolution of the surfaces is generated by a sequ
of geometry transformations on the surfaces at an ea
time. For negativel, the new surface at timet is obtained by
scanning the original surface from below with a probe t
has a parabolic shaped tip,C(y;x,t)5@(x2y)2/lt#
1c(x,t) ~Fig. 6! for negativel. ~For positivel, the probe
scans the surface from above instead.! The probe is centered
at positionx, andc(x,t) ~the vertical position of the top o
the tip! is adjusted by moving the probe up and down. Wh
the probe approaches the surface from below, it stops wh
starts to come into contact with the surface. The horizon
position of the first contact point between the probe and
surface isymin(x,t). Since the probe stops moving upwa
once it comes in contact with the surface, we might think
the vertical position of the tip of the probe,c(x,t), as the
height of the new surface seen by the probe atx at time t.
The probe scans through the surface and plots a new su
that gives the surface evolved by the noiseless KPZ equa
at a later time. Because of the parabolic shape of the pr
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the new surface usually consists of a collection of parab
shaped segments~the dashed curves shown in Fig. 6!.

With this geometrical interpretation of the exact soluti
of the noiseless KPZ equation, we are able to visualize h
the singular hilltops are formed and to discuss the dynam
of coalescence of the hill tops. If the local average curvat
over a region such as betweenA andC in Fig. 6 is larger than
the curvature of the tip of the probe at timet, then the tip
cannot reach the surface everywhere between pointA andC.
When the probe scans through this region, at pointsB in Fig.
6, there are two first contact points for the parabola, a
ymin(x) is discontinued at this point. At points where th
function ymin(x) is not continuous, the path of the tip form
cusps, which are hilltops of the new surface. The position
the hilltop in Fig. 6 is determined by the positions of the tw
contact pointsA, C and the curvature of the probe tip.

We can also write the solution ofh(x,t) as a functional
transformationT defined as

Tt„h~x,t0!…[h~x,t1t0!

5min
y

S h~y,t0!2
~x2y!2

lt D . ~17!

This transformation has the following property:

Tt11t2
„h~x,t0!…5Tt2

Tt1
„h~x,t0!…. ~18!

The geometrical interpretation of the solution in this form
similar to the Huygens principle growth algorithm@14#, ex-
cept that parabola shaped wave fronts instead of circula
spherical wave fronts are used. The transformation Eq.~17!
can be applied iteratively and is suitable for evaluating
evolution of surfaces numerically.

We evaluate the evolution of a random initial surface w
Eq. ~17!. The coalescence of the hilltops is shown clearly
Fig. 7~a!. Why do those hilltops coalesce and how do th
move? Will hilltopB in Fig. 6 move towards pointA or point

FIG. 6. The parabolic shape probe tip scans through pointsxa ,
xb , andxc from left to right. Curves~a!, ~b!, and~c! are parabola
which are centered atxa , xb , andxc , respectively. Curve~a! @~b!#
only contacts with the initial random surface at pointA (B). Curve
~b! contacts with the initial surface at both pointsA andC. While
the probe is scanning throughxb , the first contact point jumps from
A to C. Thus,ymin(x) is discontinued at pointxb and the path of the
tip creates a cusp at pointC. The dashed curve is the surface ge
erated by the path of the probe tip.
4-6
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C? Answers to these questions can be addressed with
equation of motion of the hilltops.

The curvature of the probe at timet is equal to 1/(lt).
The probe becomes broader and broader with time. As l
as the absolute value of the local curvature around the c
tact points,A or C, is much larger than the absolute value
the curvature of the probe, the positions of these two con
points do not change. In this case, the height differe
h(xA ,t)2h(xC ,t), wherexA andxC are the horizontal coor
dinates of pointsA andC, respectively, is also a constant.
can be written as

h~xA ,t !2h~xC ,t !

5@h~xA ,t !2h~xB ,t !#2@h~xC ,t !2h~xB ,t !#.

The curve betweenA andB and the curve betweenB andC
of the new surface are two parabolas. Withh(xA ,t)
2h(xB ,t)5(xA2xB)2/(lt) and h(xC ,t)2h(xB ,t)5(xC
2xB)2/(lt), we obtain the equation of motion of the hilltop

]xB

]t
5t21S xB2

xA1xC

2 D . ~19!

This equation implies that the hilltops always move towa
the closest of the two contact points. Moreover, the clos
contact point is also the higher one. If two neighboring h
tops share the same contact point, and that contact poi
the highest one for both hilltops, then these two hilltops w
merge into one around the position of the shared con
point as illustrated in Fig. 5. A sequence of coalesce
events of the hilltops forms a treelike structure of world lin
as in Fig. 7~a!.

The dynamics of the coalescence of the hilltops in
noiseless KPZ equation is totally deterministic and only
pends on initial surfaces. In the noisy case, the dynam
becomes stochastic, however the qualitative behavior of
coalescence of the hilltops is still sustained even when
surface is perturbed with randomly depositions. The non
ear term causes the coalescence of the hilltops and rem
essential even when the dynamics is stochastic. To check

FIG. 7. ~a! The evolution of the surface under transformati
Eq. ~17!. Hilltops coalesce and form treelike structures.~b! The
coalescence of shock waves in the velocity field. The velocity
defined asv5]h/]x.
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the nonlinear term is responsible for the coalescence in
stochastic dynamics, we apply our upwards moving PR
model to EW-type surfaces. The upwards moving PRWs
EW-type surface do not coalesce, although the density of
PRWs is slightly higher on the hilltops.

VI. DOWNWARDS MOVING PASSIVE RANDOM
WALKERS

So far we have focused only on the case in whichk andl
have opposite signs, i.e., when the PRWs move upw
(k.0) in the KK model (l,0). The discussion in the pre
ceding section suggests that the shape of the surface has
different characteristics between a hilltop and a valley b
tom on the surface with noiseless KPZ dynamics. Nam
hilltops are sharp with discontinued slopes while valley b
toms are rounded and with continuous slopes. The symm
is broken by the nonlinear term. We also found that val
bottoms vanish by themselves, instead of coalescing w
others valleys.

If k is negative, the PRWs move toward the valley b
toms. It is interesting to see how the PRWs respond to s
qualitative aspects of the surface in the presence of stoch
noise. In the deterministic case, the hilltops and valley b
toms intertwine, and the number of valley bottoms and
number of hilltops both decrease. This is not true for t
stochastic case. New microscopic hilltops and valley botto
are being formed constantly by the noisy depositions of p
ticles. Is the coalescence of the PRWs stable under such
turbations? Of upwards moving PRWs in the KK mod
coalescences are stable against the noise. As we will
next, the coalescence of the downwards moving PRWs is
stable against random depositions.

Consider the upwards moving PRWs. Suppose noise s
the hilltops by creating a small valley between them. T
small valley is unstable against the dynamics as we h
seen in the preceding section. These two hilltops will me
again soon as a result of the nonlinear term in the KPZ eq
tion. The nonlinear KPZ dynamics stabilizes the coalesce
of the upwards moving PRWs.

Next, imagine several downward moving PRWs movi
into the same valley. The aggregation of the PRWs is
stable against the noisy perturbation. Depositions of partic
on the valley split the valley. A PRW on the original valle
bottom can go to either one of those two valleys with eq
probability, so both valleys will be occupied by PRWs. D
the new created subvalleys always merge back into e
other? A valley bottom does not move in the noiseless ca
they will remain separated by the hilltop. The hilltop do
not vanish unless it is driven away to merge with other h
tops, which is a much less likely process than the splitti
Therefore, dynamics like this does not stabilize the aggre
tion of downwards moving PRWs. They tend to be separa
under the growth dynamics and we expect that the dynam
of downwards moving PRWs, trapped in valley bottoms,
dominated by the perturbation of random deposition rat
than the deterministic nonlinear term in the dynamics. In F
8~c!, we show a typical simulation for downwards movin
PRWs. Instead of coalescence, we find that the aggrega

s
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clusters of PRWs are not stable and split constantly.
Coalescence of the upwards moving PRWs for negativl

is an important feature of KPZ-type surfaces. Not only do
it ensure that the PRWs end up trapped on the global m
mum, it also reveals the space-time structure of KPZ-ty
surfaces in detail, i.e., hilltops~valley bottoms! coalesce as
time evolves for negative~positive! l.

Our analysis on the KPZ equation applies to the pheno
ena of coalescence of the shock waves in the inviscidn
→0) noiseless Burgers equation. The velocity in the Burg
equation is the slope on the KPZ-type surfaces, i.e.,v5]xh.
By differentiation of Eq.~1!, it becomes

]v
]t

5lv
]v
]x

1
]2v

]x2
1hB . ~20!

The noise term satisfies^hB(x,t)hB(0,0)&;]x
2d(x)d(t). Be-

cause the slopes of the surface are discontinuous at the
tops, the hilltops on KPZ-type surfaces correspond to
shock waves in the Burgers equation. The coalescence o
hilltops of the surface indicates that the shock waves c
lesce, as illustrated in Fig. 7~b!. Coalescences of shoc
waves described by the noiseless Burgers equation have
reported in a numerical study of inelastic collisions of p
ticles in (111) dimensions@15#. Bohr and Pikovsky also
showed that the zeros in the velocity field of the Burg
equation coalesce@11#. The above analysis for the coale
cence of KPZ hilltops translates directly into the coalesce

FIG. 8. World lines of passive walkers for different paramete
The lines are the paths of 128 PRW on a system of sizeL5128.
The darkness is proportional to the number of PRWs for each
In ~a!, the system is simulated in the limitl c5(Dpw /K)1/(22z)→0
for upward moving PRWs. In~b!, we choosel c;L, the system size
~c! is the result of downwards moving PRWs in the limitl c→0.
Even without a diffusion term in Eq.~21!, the downwards moving
PRWs do not coalesce. The dynamics of the downwards mo
PRWs on KK-type surface is dominated by the uncorrelated rand
depositions.
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of shock waves in the Burgers equation with noise. O
analysis on coalescences of PRWs on a growing surface
sented here not only provides further intuitive and detai
understanding of the mechanism of these coalescence
nomena, but also explains, in both deterministic and stoch
tic dynamics, the different behaviors between hilltops a
valleys, which are distinct types of zeros in the velocity fie
in the Burgers turbulences.

VII. RIVERLIKE NETWORK AND PASSIVE SCALARS

To further understand the stability of the aggregations
PRWs, we study how random forces, in addition to the dr
ing forces from surface slopes, are applied to the PRWs
rectly and change the treelike structure of the PRW wo
lines in Fig. 8~a!. Is the treelike structure stable? Rando
noise modifies the equation of motion of the PRW as

]u

]t
5k

]

]x
h~x,t !ux5u(t)1hw~x,t !, ~21!

with hw the uncorrelated noise,^hw(x,t)hw(0,0)&
5Dwd(x)d(t). Dw is the diffusion constant of the PRW i
k50.

First consider a single PRW on a surface. The second t
on the right-hand side of Eq.~21! introduces the ordinary
diffusive behavior, i.e.,Du(t);(Dwt)1/2. The scaling behav-
ior due to the first term,Du(t);(Kwt)1/zw (Kw is a constant
determined byk and l), still dominates the large-scale be
havior since 1/zw.2. However, the PRW appears as diff
sive instead of superdiffusive at length scales smaller t
l c;(Dw /Kw)1/(22zw).

The diffusive noise also affects the coalescence of m
tiple PRWs. For small perturbations, the aggregation is sta
because the PRWs cannot escape from the hilltop by di
sion if the hilltop is high and large enough. The net effect
diffusion simply broadens the coalescence cluster. Howe
if we increase the strength of the random noise, the PR
can escape from the hilltop and be caught by other hillto
nearby with finite probability. In this case, the cluster of co
lescence PRWs splits and the world lines of the PRWs fo
a braidlike network instead of a tree structure. A typical co
figuration of such a braidlike network is shown in Fig. 8~b!.
Both the treelike and the braidlike network resemble riv
like networks of different length scales in Nature@16#.

The crossover scale between treelike networks and br
like networks is given byl c . We observe diffusive behavior
locally at scales less thanl c . The braidlike networks emerg
at the crossover scale,l c , and the treelike structures are r
covered at scales much larger thanl c .

Furthermore, we can consider the evolution of the pro
ability distribution function,P(x,t), of finding a particle at
position x at time t. Note that the total number of PRWs
conserved in our model. Therefore,P(x,t) has the standard
conserved form

]P~x,t !

]t
5

]

]x
j ~x,t !, ~22!
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where j (x,t) is the PRW current. The current is the sum
the advected part and the diffusive contribution, i.e.,j (x,t)
5kvP(x,t)1Dw]xP(x,t). Hence, we have

]P~x,t !

]t
5k

]

]x
„vP~x,t !…1Dw

]2

]x2 P~x,t !. ~23!

This is simply the equation of motion of passive scala
P(x,t), in a fluid. In the limit Dw→0, the passive scalar
will be concentrated at a globe hilltop as we have seen in
previous sections ifk andl have opposite sign for a finite
system.

VIII. CONCLUDING REMARKS

Motivated by the domain-wall dynamics on nonequili
rium fluctuating surfaces, we study the dynamics of pass
random walkers on KPZ-type growing surfaces. We sh
that, although the coupling rule between a PRW and a
face is defined locally, the PRW typically reaches the ma
mum of the surface over a distancex in a time scalet;xzs

and ‘‘feels’’ the fluctuations of the surface over the sam
length scale. Two PRWs separated byDx coalesce afterDt
;(Dx)zs. The fluctuations of the positions of such PRW
follow the same dynamical scaling as the KPZ fluctuatio
We verify this scaling behavior numerically. Tracing th
paths of the PRWs on KPZ-type surfaces is an effec
method to measure the dynamical exponent directly in
stationary state.

In addition to the scaling, the dynamics of passive rand
walkers reveals detailed specific space-time structures
KPZ-type growing surface, i.e., hilltops coalesce with ea
other and the world lines of the PRWs form self-affine tre
like structures. We provide an analytical argument explain
this phenomenon based on the noiseless Burgers-KPZ e
tion. We show how the nonlinear term (]xh)2 is responsible
for this nontrivial coalescence phenomenon in both
noiseless and noisy case. The noiseless KPZ equation
allows us to understand why downwards moving PRWs
not coalesce, due to the asymmetry between hilltops and
ley bottoms.

We want to emphasize that the effectively attractive int
actions which makes the PRWs coalesce are not only to
02110
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logical but also robust against perturbations. For KPZ-ty
growth, the (]xh)2 term breaks the symmetry between hi
tops and valley bottoms during growth and introduces n
trivial dynamics of the hilltops for negativel and the valley
bottoms for positivel. The singularities on KPZ-type sur
faces generated by the nonlinear terms stabilize the aggr
tions of the PRWs against other perturbations. The coa
cence of PRWs reveals one of the important features of
complicated space-time structure of the surface. An inter
ing extension of this study is to see how to generalize this
different universality classes of surface dynamics. We
ready point out that in EW growth, because of the partic
hole symmetry, PRWs do not coalesce. For other nonlin
models, in which the nonlinear terms break up-down sy
metry, PRWs may be driven in other nontrivial ways and t
surface may show interesting space-time structures.

Depending on the strength of the noise applied to
PRWs, the world lines of PRWs form treelike or braidlik
networks in space-time. The treelike or the braidlike n
works resemble river-type networks in nature. The braidl
networks are the result of two competing mechanism
namely the coalescence between PRWs caused by the
tuations of surfaces and the diffusion of PRWs caused
directly applied noise. These two mechanisms define a cr
over length scalel c , and give rise to the braidlike network
at this scale. One might expect to see similar crossover p
nomena in the study of passive scalars in Burgers turbule

Previous studies on fluctuating nonequilibrium surfac
were focused on the scaling behavior. This study shows t
beyond global scaling laws, such as the scaling of the glo
interface width, nonlinear surface growth dynamics leads
intriguing detailed aspects of their space-time structures.
hope studying these different perspectives of nonequilibri
dynamics can lead to a better understanding of these c
plex systems.
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