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Dynamic crossover to tricriticality and anomalous slowdown of critical fluctuations
by entanglements in polymer solutions
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We have performed accurate dynamic light-scattering measurements near critical demixing points of solu-
tions of polystyrene in cyclohexane with polymer molecular weight ranging from 200 000 tex 10°4 Two
dynamic modes have been observed, “slow” and “fast,” which result from a coupling between diffusive
relaxation of critical fluctuations of the concentration and viscoelastic relaxation associated with the entangle-
ment network of the polymer chains. The coupling with the viscoelastic mode causes an additional slowdown
of the critical mode on top of the uncoupled diffusion mode. By implementing crossover from the critical to the
#-point tricritical behavior for both static and dynamic properties, we are able to present a quantitative
description of the phenomenon and obtain a scaling of the viscoelastic parameters as a function of the mo-
lecular weight.
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Critical phenomena in high-molecular-weight polymer so-being trapped by the entanglements, may become an order
lutions (PSs differ from critical phenomena in simple fluids. slower as compared to uncoupled critical slowdown. More-
In polymer solutions, the thermodynamic properties and thever, the diffusivity, like static propertief2], exhibits a
static correlations near the critical point of mixing are deter-crossover from critical(lsing) to #-point tricritical (mean
mined by a competition of two mesoscale lengths, namelyfield) behavior, becoming almost “classical” at the highest
the correlation length of critical fluctuations of the concen-molecular weight. In fact, the coupling of two modes and the
tration (tuned by the distance to the critical poirgtnd the  crossover to tricriticality are just two sides of the same physi-
radius of gyration of the polymer molecul¢gined by the cal phenomenon, caused by an interaction of two order pa-
molecular weight [1,2]. In the asymptotic vicinity of the rameters resulting in the emergence of a tricritical point.
critical point, the correlation length becomes much larger Coupling between diffusion and entanglement has been
than the radius of gyration and the polymer solution exhibitdiscussed in the literature for a long time. It was predicted by
Ising critical behavior. With the increase of the polymer mo-Brochard and de Genn¢§] and was first detected with dy-
lecular weight and, hence, of the radius of gyration, the rang@amic light scattering in noncritical polymer solutions by
of asymptotic Ising critical behavior shrinks, ultimately Adam and Delsanfi7] and later by Jiaet al.[8] and Nicolai
yielding to 6-point tricritical behaviol{2]. This competition et al.[9]. Ritzl et al.[10] observed two dynamic modes near
of two mesoscales arises from a coupling between two difthe demixing critical temperature in a polystyrene-
ferent order parameters belonging to two different static unicyclohexane solution with a polystyrene molecular weight
versality classes, namely, one associated with phase sepaids;,=0.96x 10°. Most recently, Tanakat al. [5] observed
tion and the other with self-avoiding-walk singularities of two dynamic modes in near-critical solutions of high-
long polymer chain$3]. Such a competition of two mesos- molecular-weight nearly monodisperse polystyrene in diethyl
cales and, consequently, the crossover from critical to multimalonate(explicitly shown forM,,= 3.84x 10° with a poly-
critical behavior are expected to be a general feature of phaghispersity indexM,,/M,=1.04, where the subscripts and
transitions with coupled order parametgdd. Hence, it is n denote weight and number averagin@ur experiments
natural to expect that the dynamic critical behavior near theeveal how the coupled critical dynamics in polymer solu-
6 point will be affected by a coupling between two soft tions varies with increasing molecular weight. Moreover,
dynamic modes associated with the two order paramfiérs making use of theoretical predictions previously developed

In the present paper we report a study of dynamic correfor the static and dynamic crossover behavior from Ising to
lations in near-critical solutions of polystyrene in cyclohex- mean-field (tricritical) behavior, we are able to present a
ane at the critical volume fractios, as a function of tem- quantitative description of the phenomenon.
perature and of polymer molecular weight, ranging from The original light-scattering setup as well as measure-
200000 to 11.% 10°. Specifically, we have found that start- ments for a moderate-molecular-weight sample P$1, (
ing with a molecular weight of about $0two effective dy- =1.96x10°,M,,/M,=1.02¢4.=0.066T.=296.47 K) have
namic modes emerge, which result from a coupling betweeheen described in a previous publicat{di]. We have mea-
two soft critical modes, a diffusion mod@association with  sured the intensity of scattering and the dynamic correlation
the decay of critical fluctuatiopsand a viscoelastic mode function with a linear(PhotoCor-SP[12] and a logarithmic
(associated with entanglements of long polymer chains (ALV-5000/E) correlator. The reduced distance of the tem-
Very close to the critical point, as expected, the slow modeeratureT to the critical temperatur&d (T—T.)/T, varied
becomes critical. However, we have found that this moddrom 0.1 to 10°°. Four high-molecular-weight samples were
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FIG. 1. (8) Equal-area representation of the relaxation-time dis- FIG. 2. Same as Fig. 1, but for PS4vi(=3.9x10%6
tribution extracted from the intensity correlation function for the =150°).
critical polystyrene-cyclohexane solution PSBI(=11.4x 10%, 6
=30°) as a function of the reduced temperatufe-(T.)/T. (b)
Projection of the relaxation-time distribution plot. The solid curves
represent the relaxation times andr, of the effective modes as
calculated from Eq(2). The long-dashed curve represents the pur
critical diffusion time 74 as calculated from Eq(3). The short-
dashed curve represents the pure viscoelastic relaxationr{jme

have been extracted from the correlation functions with the
ALV-5000/E built-in regularization procedure.

We show in Fig. 1a), as an example, a three-dimensional
epIot of this distribution for the sample PS5 and the angle of
30° (qRy=0.65) as a function of the distance to the critical
temperature. All distributions are normalized by their inte-
grals, thus the narrower the distribution, the higher the peak.
One can clearly distinguish two modes that change signifi-
studied: PS2M,,=1.12x10° (M,,/M,,=1.064.=0.033T.  cantly upon approach to the critical temperature. Far away
=303.09 K); PS3, M,=1.95x10° (M,,/M,=1.04¢, from the critical temperature one can see a fast mode with a
=0.024T.=304.31 K); PS4, M,=3.9x 100 (M, /M, high peak and a slow mode with a low peak. Upon approach-
=1.054.=0.018T,=304.80 K); and PS5, M,,=11.4 ing the critical temperature, the intensity of the fast mode
x10° (M, /M ,=1.096.=0.011T.=305.95 K). The radii decreases and that of the slow mode rapidly increases. The
of gyration R, of the polymers are 12 nm for PSfrom a shape of t_h_e _corresponc_il_ng dyn_arr_nc cor_relatlon functl_on in

small-angle neutron scattering experimgtg]), 28 nm, 37 the near vicinity of the critical point is again clo_se to a single
nm, 52 nm, and 89 nm for PS2, PS3. PS4. and PS5, respe%>_<ponent|al and the characteristic correlation time exceeds 1

tively (extrapolated aR,~M%9). We used two scattering > Two other examples, PS4 at 15afR;=1.42) and PS5 at

les. 30° and 150° 9 hich d o th 150° (qRy=2.43), shown in Figs. @) and 3a), exhibit
angles, and - , Which correspond 1o the wave NUMg;.ii5r pehavior with a more pronounced saturation of the
bersq=(4mn/\)sir?(0/2) (n is the refractive index of the

. . , . intensity of the slow mode for largeyR;.
solution,\ is the wave length of light, and is the angle of We have interpreted these results quantitatively in terms

scattering equal to 7.2X10 nm™t and 273 o 5 coupling between two original soft modes, namely, a
X 1072 nm*, respectively. We have performed a Monte yiscoelastic mode associated with entanglements of polymer
Carlo simulation{14] of the intensity of the multiple scatter- chains and the diffusion mode associated with the relaxation
ing for our samples and found that aTT.)/T>10"°  of critical fluctuations. Neither of the two effective modes
double scattering accounts for almost the entire correction tactually observed is a pure viscoelastic or a diffusion mode.
static properties. The double-scattering correction to the dyinstead, the observed modes emerge as a result of the inter-
namic correlation function at scattering angles of 30° andaction of the original uncoupled modes. Following Tanaka
150° is expected to be relatively small5] and, therefore, al. [5], we use the theory of Brochard and de Genldso

has been neglected. The correlation function for PS1 waeepresent the two effective dynamic modes with correspond-
found to be a single exponential and no additional mode wasg characteristic times: slows_ and fast,7, . Then the
detected 11]. For this sample the values gR, for the two  normalized time-dependent intensity-correlation function
scattering angles of 30° and 150° are 0.086 and 0.32, respeg,(t) can be approximated as
tively. For all other samples with larger polymer molecules 2

we have found t.he dynarr_]ic .correlation function tq be not a go()=1+ f+exp< _ L + f_exp< _ L” 1)
single exponential. The distributioh$( ) of decay timesr T T
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FIG. 3. Same as Fig. 1, but for PSBM(,=11.4x10% 6
=150°).

with decay times
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—relT )"t

In Eq. (2), 7 is theg-independent viscoelastic relaxation
time determined by entanglements of polymer chaigsis

the g-dependent diffusion relaxation time of critical concen-

tration fluctuations, whilef,. is a mesoscopic viscoelastic

length scalg¢ 16]. We have calculated the temperature depen
dence of the critical diffusion mode with the help of the

dynamic scaling theoryf17,18 accounting for a “back-
ground” (classical contributionD,g? to the diffusion coef-
ficient and for a crossover behavior of the “criticaBcaling
term

21z,/2

ke T
Ti=2 Q(pé) + D0

- 6mné

Ta T6n
In Eqg. (3) K(x) is Kawasaki’s function[17] K(x)=3/
(4x3)[1+x2+ (x3*—x Harctank) ], Q(qpé) is a dynamic
crossover function approximated afl9,20 Q(gpé)
=2/ arctan@pé); and Dy is the classical diffusion coeffi-
cient Do=kgT[ 1+ X?](6 7 7,0pé?) 1, wherekg is Boltz-
mann’s constanty is the viscosity of the solutiorny, is the
regular part(background of the viscosity;x=qé& with & be-
ing the static correlation length measured independéaity
z,=0.065 is a universal dynamic scaling exponegy;is a

K(x) 5

1+ (3
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FIG. 4. Viscoelastic characteristic length, (crossed circles,
left axis), the background viscosity coefficient normalized by the
solvent viscosityz (open circles, left axis; the square is from the
measurements of Laet al. [21]), and the relaxation time, (solid
circles, right axi$ as functions of the molecular weigM,,. The
dashed lines show the slopes of 0.51, 0.64, and 1.3, respectively.

Asymptotically close to the critical temperature the clas-
sical term is negligible, the crossover functifr{qpé)—1,
and 7, is described by the standard theory developed for
simple fluids[17]. Incidentally, the static correlation length
obeys the Ising asymptotic power lad:- (T—T.) ~%3[2].
Further away from the critical temperature or with increase
in the molecular weight, i.e., whelRy/¢ increases()(qpé)
vanishes and is described by the classical diffusion term
with the classical correlation lengtf~(T—T.) %5 We
have found that accounting for crossover to tricriticality in
Eq. (3) is necessary to obtain a quantitative description of the
critical dynamics near th@ point. The shear viscosity is
expected to behave ag= 7,[(T—To)/T] %%[17,18. The
coefficienty(T) is proportional ton,(T) for which we as-
sumed the same Arhenius-type temperature dependence as
that of the solvent, while treatingy,(T=T,.) as an adjustable
constant for each sample. With the crossover critical diffu-
sion mode calculated from E@3), we have obtained two
g-independent parameters, namely, the viscoelastic tigpe
and the viscoelastic length,., by fitting two (experimen-
tally obtained dynamic modes to Ed2) simultaneously for
both scattering angles.

The resulting temperature dependences of the characteris-
tic times are shown in the projections of Figga)t-3(a) [de-
noted as Figs. (b)—3(b)]. As the viscoelastic time is propor-
tional to s/ T (7 is the solvent viscosiby 22], it exhibits a
slight temperature dependence. It is seen that neither the ob-
served slow mode nor the observed fast mode can be asso-
ciated with a pure critical diffusion mode or a pure viscoelas-
tic mode. The assumption of a single relaxation time for the
entanglements could be an oversimplificatjéh Indeed, in
the range of strong coupling the observed modes are broad-
ened. Nevertheless, it is clearly seen that far above the criti-

characteristic cutoff wave number expected to be inverselyal temperature the fast mode is closely associated with the
proportional to the radius of gyration. It turned out that adiffusion, and the slow mode with the entanglements, but
good description of the experimental data is obtained if wethat near the critical point, the amplitude of the fast mode

adoptap= &', which indeed scales approximatelyRs" .

vanishes and the slow mode becomes critical. However, the
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position of the slow mode is shifted to larger times with  The phenomenon of coupling of soft modes has also been
respect to the uncoupled critical diffusion as = 74(1 observed in polymer blend23] and in sheared polymer
+q2§\2,9, whereas the position of the fast mode is shifted tosolutions[24]. In near-critical gas-liquid binary fluids, cou-
shorter times with respect to the uncoupled viscoelastic tim@ling of two diffusion relaxation modes associated with mass
as7t, =r7,(1+q%2) L. diffusivity and thermal diffusivity produce two effective dy-

In Fig. 4, we have plotted the viscoelastic timg, the  namic modes, one of them becoming a critical mQ2§).
viscoelastic lengtlg,., and the viscosity amplitudgy (nor-  The difference with polymer solutions is that in simple fluid
malized by the solvent viscositys) as functions of the mo- mixtures the two original uncoupled modes belong to the
lecular weight. We have found that these parameters appagame dynamic universality class. A more straightforward
ently diverge along the critical line in the limit of infinite analog of the dynamic coupling in polymer solutions near the
molecular weight ¢-point limit) as approximatelyMy®, ¢ point is expected to appear in thele-*He mixture near its
M2, andMQ°, respectively. We note that,. scales with tricritical point.

M,, weaker than the theoretical predictiomfv"‘, for the

“disentanglement time” ind solvents at overlap concentra-  We are indebted to I. K. Yudin for his help in setting up
tions [6], while &, scales as the radius of gyratidR,  the light-scattering instrumentation. We acknowledge valu-
~M?25[3,13]. Experimental viscosity data are available only able discussions with H. Z. Cummins, J. F. Douglas, and R.
for M,,=1.96x 10° [21]. The value ofy,(T,) obtained from W. Gammon. The research was supported by the Division of
our treatment of the light-scattering data is lower than thatChemical Sciences, Geosciences, and Biosciences, Office of
implied by the viscosity data. This fact, also reported in Ref.Basic Energy Sciences, Department of Energy under Grant
[11], requires further investigation. No. DE-FG02-95ER-14509.

[1] Y.B. Melnichenko, M.A. Anisimov, A.A. Povodyrev, G.D. [13] Yu.B. Melnichenko and G.D. Wignall, Phys. Rev. Lét8, 686
Wignall, J.V. Sengers, and W.A. Van Hook, Phys. Rev. Lett. (1997).

79, 5266(1997. [14] J.M. Schraler, S. Wiegand, L.B. Aberle, M. Kleemeier, and W.
[2] M.A. Anisimov, A.F. Kostko, and J.V. Sengers, Phys. Rev. E Schr@r, Phys. Chem. Chem. Phyk.3287(1999.

65 051805(2002. [15] R.A. Ferrell, Phys. Rev169, 199 (1968.
[3] P.G. de Gennescaling Concepts in Polymer Physicornell [16] M. Doi and A. Onuki, J. Phys. IR, 1631(1992.

University, Ithaca, NY, 1979 N 3 [17] K. Kawasaki, inPhase Transitions and Critical Phenomena
[4] 1.D. Lawrie and S. Sarbach, iRhase Transitions and Critical edited by C. Domb and M.S. Gredicademic, New York

Phenomenaedited by C. Domb and J. L. Lebowit#ca- 1976, Vol. 5a, p. 165

demic, New York, 1984 \ol. 9, p. 1.

[5] H. Tanaka, Y. Nakanishi, and N. Takubo, Phys. Rev6%
021802(2002.

[6] F. Brochard and P.G. de Gennes, Macromolecdl@s1157
(1977; F. Brochard, J. PhygFrance 44, 39 (1983.

[7] M. Adam and M. Delsanti, Macromoleculds, 1760(1985.

[8] T. Jian, D. Vlassopoulos, G. Fytas, T. Pakula, and W. Brown,

[18] H.C. Burstyn, J.V. Sengers, J.K. Bhattacharjee, and R.A. Fer-
rell, Phys. Rev. A28, 1567(1983.

[19] S.B. Kiselev and V.D. Kulikov, Int. J. Thermophy&5, 283
(1994).

[20] J. Luettmer-Strathmann and J.V. Sengers, J. Chem. Rbys.
3026(1996; 106, 438(1997).

Colloid Polym. Sci.274 1033(1996. [21] Q.H. Lao, B. Chu, and N. Kuwahara, J. Chem. Pt§%.2039
[9] T. Nicolai, W. Brown, R. Johnsen, and P. Stepanek, Macromol- (1975.

ecules23, 1165(1990. [22] F. Brochard and P.G. de Gennes, PCH, PhysicoChem. Hydro-
[10] A. Ritzl, L. Belkoura, and D. Woermann, Phys. Chem. Chem. ~ dyn. 4, 313(1983.

Phys.1, 1947(1999. [23] H. Yajima, D.W. Hair, A.l. Nakatani, J.F. Douglas, and C.C.
[11] J. Jacob, M.A. Anisimov, J.V. Sengers, V. Dechabo, I.K. Yudin, Han, Phys. Rev. B7, 12 268(1993.

and R.W. Gammon, Appl. Op#0, 4160(2001). [24] P.K. Dixon, D.J. Pine, and X.-l. Wu, Phys. Rev. L&8, 2239
[12] I.K. Yudin, G.L. Nikolaenko, V.I. Kosov, V.A. Agayan, M.A. (1992.

Anisimov, and J.V. Sengers, Int. J. Thermophys8, 1237  [25] M.A. Anisimov, V.A. Agayan, A.A. Povodyrev, J.V. Sengers,

(1997). and E.E. Gorodetskii, Phys. Rev.5, 1946(1998.

020803-4



