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Comment on “Analysis of chaotic motion and its shape dependence in a generalized
piecewise linear map”
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Rajagopalan and SahjPhys. Rev. E63, 057201(2001)] recently discussed deterministic diffusion in a
piecewise linear map using an approach developed by Fujisakh We first show that they rederived the
random walk formula for the diffusion coefficient, which is known to be the exact result for maps of Bernoulli-
type since the work of Fujisaka and GrossmarinPhys. B: Condens. Mattdi8, 261 (1982]. However, this
correct solution is at variance to the diffusion coefficient curve presented in their paper. Referring to another
existing approach based on Markov partitions, we answer the question posed by the authors regarding solutions
for more general parameter values by recalling the finding of a fractal diffusion coefficient. We finally argue
that their model is not suitable for studying intermittent behavior, in contrast to what was suggested in their

paper.
DOI: 10.1103/PhysReVvE.66.018201 PACS nunier05.45.Ac, 05.60-k, 05.40-a

The study of deterministic diffusion in simple chaotic where the length of jumps squared is weighted with the prob-
maps on the line appears to have originated about twentgbility to perform such jumps$see Ref[7] and further ref-
years agdgsee, e.g., Ref.1l] and further references thergin erences therejn Evaluating this equation for the map under
Already in the seminal work by Fujisaka and Grossmi2in  consideration leads to
a variety of piecewise linear models was defined and ana-
lyzed by means of stochastic modeling. All these maps are of h
the formx,, ;=M(X,), whereh e N is a control parameter, P
andx, is the position of a point particle at discrete time D(h,r)=j21 j2a(,r) 2
Mp(x) is continued periodically beyond the intervd,1)
onto the real line by a lift of degree onevi(x+1)
=My(x)+1. The map defined in Reff3], which is sketched with he N,0<r<1, where 2(j,r) denotes the probability
again in Fig. 1, provides a straightforward generalization ofto jump over a distance gfsteps and is easily calculated to
the one introduced in Refl4], which is recovered ah
=1/2. For this type of maps, indeed a vast literature exists or
how to obtain exact analytical results at specific cases ol
parameter values; Refgl,5] summarize some of these meth-
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ods, with more complete lists of references therein. It is fur- ¥
thermore well known that the calculations are particularly 004 1 n
simple if the parameter is such that the map exhibits the \
Bernoulli property{6]. = 0.03 A

We first wish to present a considerable shortcut to the< \
diffusion coefficient calculations published in RE3]. Based 0.02 1

on a theory that appears to be a precursor of what was calle
“Fujisaka’s characteristic function method” in Ref3],
Fujisaka and Grossmann have shojh that the diffusion
coefficient formula
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provides the exact solution for types of maps as the one, " C: 1. Time-dependent probability densiy(x) for the map

L . . . Sketched in the figure as it evolves starting from a uniform density
StUd'?d n Ref[3], 1.€., if they .share .the Be_rnoulll property. in a box situated arounx=0. The results have been obtained from
Herej(x,?) is the jump velocity de_flned af(Xn) :=[Xn+1] iterating transition matrices as explained in the text. Included are
—[xn] with [x] being the largest integer less thanand G, ssian solutions from the ordinary diffusion equation corre-
(---) denotes the average over the invariant probability denéponding to the exact diffusion coefficieBt(h,r) of the map,

sity. This expression is just identical to the familiar randomyhereh=2r=0.5. These dashed lines are almost indistinguishable
walk formula for diffusion on a one-dimensional lattice, from the map densities; however, they are lacking the steplike fine
structure. From above to below, the time stepsrare20, 50, 200.
The quantities plotted in this and in the following figures are di-
*Electronic address: rklages@mpipks-dresden.mpg.de mensionless.

1063-651X/2002/6@.)/0182013)/$20.00 66 018201-1 ©2002 The American Physical Society



COMMENTS PHYSICAL REVIEW E 66, 018201 (2002

. .\ 5l
G T | Ak
................................. ' V

Q m )
5 ., !
E 6 | \‘h“\"“-»,‘m Q
T : 05 |
0 0 ' : I I I I
: : : . 0 0.5 1 1.5 2 * 3 ”
0 02 0.4 0.6 0.8 1

FIG. 3. Fractal diffusion coefficierd (h) for the mirrored zig-
zag map sketched in the figure as a function of the hdigBhown
are 13 376 data points. The data are from Riffs].

FIG. 2. The diffusion coefficienD (h,r) for the map shown in
Fig. 1 according to Eg92) and (3). Solutions are shown for the
values of the heighh=2,3,4,5 starting from below. The case

=2 corrects the erroneous resuilt in Fig. 3 of R&j pn Tepresents a column vector of the probability densities

defined on each part of the Markov partition at timeand
T(h,r) is a topological transition matrix that can be con-
structed from the Markov partition. This setup provides two
ways of solution: one way is to solve the eigenvalue problem

m; being the slopes of the map. Combining the above twdf T(h,r) and to relate the diffusion coefficient to its eigen-
equations yields Eq17) of Ref.[3]. We conclude that Ra- Vvalues. Asis shown in detail in Refs8], in special cases_all
jagopalan and Sabir have confirmed again @yof Fujisaka ~ Calculations can be performed analytically. For the simple
and Grossmann as applied to their specific map. We noihap defined in Ref.3] these calculations are straightforward

focus on the author’s special case of the map defined by thand confirm again Eqs2) and (3). For more general cases,
relation for the slopes the matrix equation can simply be iterafegd7] yielding nu-

merically exact solutions for the probability density vector
A(1—r" p, at any time stem, as well as for any other dynamical
my=3+ —— (4) quantity based on probability density averages. Both such
rh(1-r) methods were previously applied to various examples of
piecewise linear mapgl,7,8. Figure 1 presents analogous
with m; /m;_,=r. Solutions for Eqs(2) and (3) under this  results for the map studied in R¢8] ath=2 andr=0.5, cf.
constraint are shown in Fig. 2 for differeht This figure to Fig. 3.1 on p. 54 of Ref.1]. The probability density is a
corrects the erroneous result shown in Fig. 3 of R&f, Gaussian on a coarse scale, whereas the fine scale is deter-

which only includes a few data points and appears to indicatglned by the invariant density of the map on the unit inter-
a rather irregular curve for the diffusion coefficientret2. ~ val. These deviations from an exact Gaussian can gquantita-

Below we will explain why all the curves shown in Fig. 2 tively be evaluated, e.g., by calculating the curtosis of the
must indeed be simple functions of respective map density; for a more detailed discussion of
However, first we would like to recall a second methodsuch aspects we refer to Chap. 3 of Rafl. This interplay
that is not restricted to special cases of parameters such 8§tween fine and coarse structure of the probability densities
integer heights, in contrast to the one outlined in Rg#s3].  Was furthermore discussed in terms of the spectrum of eigen-

The basic idea of this method is to directly solve themodes of the Frobenius-Perron operator, see Réfs].

Frobenius-Perron equation of the dynamical system, These known results appear to be recovered in [B¢by a
respective analysis of the fluctuation spectrum, which pro-

vides an alternative way to look at the probability density of
pra(0= [ Ay puy) S0-Myy), (5 the map.
In their outlook to further work, the authors of R¢8]

) - ) ) raised the question of how to compute the diffusion coeffi-
v_vherepn(x) is the probability density for points on th_e real cient for maps with fractional heights and how it may look
line. There exists a dense set of parameter vetifes which  |ixe. The application of the arsenal of methods outlined
one can construct Markov partitions of the map, and for eachpove has already given a full answer to this problem. As a
of these parameter values this equation can be written as &@ntral result, it was found that the diffusion coefficient for
matrix equatior{1,8], these maps is a fractal function of the parameterTo

present an example, Fig. 3 depicts the result for a mirrored
Pni1=T(h,r)p,. (6) zigzag map with uniform slope, which has some similarities
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with the one studied in Ref3]; for details see Refd1,7].  tutorial about their resulis Particularly, we wish to distin-
Knowing these results, it is straightforward to conclude thatguish it from the denotation “intermittencylike” in the sense
for arbitrary heighth, the map studied in Ref3] will just  of Grossmann and Thomae. Extensive studies of diffusion in
yield another fractal diffusion coefficient; further evidence one-dimensional intermittent maps led to the conclusion that,
for that statement is provided by the numerical and analyticajenerally, in this case a diffusion coefficient does not exist
data presented in Re9)]. [11]. Furthermore, all maps studied in these references are

So why can the diffusion coefficient of the map in R@  inherently nonlinear. For piecewise linear expanding maps
not be fractal as a function of at integer values of the that are uniquely ergodic if restricted to compact spaces,
height? One way to look at this problem is to inquire how thesuch as the one of Ref3,4], there is no evidence for inter-
topology of the map is affected by parameter variation. Amittency nor for anomalous diffusidii]. Applying the con-
fundamental tool providing detailed information about thecept of conjugacy enables to transform piecewise linear maps
topology of a dynamical system are Markov partitions. Vary-onto nonlinear ones. However, the diffusive dynamics is in-
ing r at integer heights does not change the Markov partitionyariant under conjugaci4], thus the corresponding nonlin-
thus the topology of the map does not change, and any quaear map is again nonintermittent and normal diffusive. To
tity resulting from an average over the invariant density is aour knowledge the only piecewise linear map exhibiting in-
simple function of the paramet¢f0]. However, changing termittency was introduced in Rgf12], and it belongs to a
the height changes the Markov partition in a complicatedvery different class than the one of Reff3,4].
way and reflects the topological instability of the map under In summary, by relating the piecewise linear map studied
this type of parameter variation. This topological instability in Ref. [3] to intermittent behavior the authors confuse the
results in fractal transport coefficients. meaning of intermittency, in the sense of Pomeau and Man-

Finally, we comment on the conclusion of Rajagopalanneville, with the existence of intermittentlike behavior, in the
and Sabir that the map studied in their paper is “suited insense of persistence in the diffusive motion. Intermittency
describing diffusion systems showing intermittency.” In this generally leads to anomalous diffusion, whereas persistence
aspect the authors appear to follow Ref], where the map in piecewise linear maps shows up in form of local extrema
shown in Fig. 1 ah=1/2 was introduced for the purpose of of the fractal diffusion coefficient at integer and half-integer
modeling “strong correlations between successivesstep  heights, see Fig. 3. We conclude that the analysis of chaotic
as realized in Brownian motion with directional persistence.”motion and its shape dependence as performed in [B&f.
Indeed, Grossmann and Thomae revealed a persistent dyas nothing to do with intermittency, but instead recovers
namics that they characterized as “intermittentlike” behav-features of the parameter-dependent normal diffusion coeffi-
ior. They linked these correlations to deviations from a purecient as studied in Ref$1,2,4—1Q.
Gaussian probability density such as the ones discussed
above.

In the following we use the term “intermittency” in the The author thanks N. Korabel and J.R. Dorfman for help-
sense of Pomeau and Mannevileee, e.g., Refl6] for a  ful remarks.
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