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Clustering dynamics of Lagrangian tracers in free-surface flows
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We study the formation of clusters of passive Lagrangian tracers in a nonsmooth turbulent flow in a flat
free-slip surface as a model for particle dynamics on free surfaces. Single particle and pair dispersion show
different behavior for short and large times: on short times particles cluster exponentially rapidly until patches
of the size of the divergence correlation length are depleted; on larger times the pair dispersion is dominated by
almost ballistic hopping between clusters. We also find that the distribution of particle density is close to
algebraic and can trace this back to the exponential distribution of the divergence field of the surface flow.
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The Lagrangian evolution of passive tracers in turbulensimulations of the Navier-Stokes flow are based on grids
flows has attracted considerable attention recently. Particlwith 256X 256X 65 nodes, with a forcing that maintains a
tracking techniques have been developed that allow for fixed energy injection rate [15]. A Taylor-Reynolds number
detailed observation of their motion even in high-ReynoIdsRA=u)z(,rmsl[v(&xux),ms]=145 was achieved and the Kol-
number turbulencgl—3]. The statistics of few particle clus- mogorov lengthy=(v°/€)Y* is 0.8 grid spacings. The Kol-
ters has been used to obtain information on the Lagrangiamogorov time i57,7=(v/e)1’2.
statistics of the flow field4]. Simplified models of passive A typical particle distribution that emerges from a uni-
scalars evolution, e.g., the Kraichnan model with its deltaform initial distribution is shown in Fig. Lupper pangl The
correlated random velocity fields, have provided importantparticle dynamics shows two time regimes, a quick cluster-
insights into the origin of intermittency corrections to scalinging into elongated structures, followed by a slower exchange
laws [5]. The advection of particles that are not neutrally of particles between structures. Superimposed on the particle
buoyant gives rise to clustering and this process has bedtistribution we show the surface flow that can be considered
suggested to be essential for the formation of f&ip Simi-  as a superposition of an irrotational and a gradient part by the
lar clustering phenomena should appear for bubbles or ineHHelmholtz decomposition theorem,
tial particles in turbulent flowg7]. The problem we consider
here is the advection of Lagrangian particles in a flat free V=VstV,=VXo(Xy)e,+Vi(Xy), (1)
surface above a turbulent volume flow. Previous approaches
to the particle advection in su¢bompressiblgflows include  with scalar potentialg(x,y) and(x,y). It suggests that the
random mapg8] and Kraichnan models with prescribed aggregate of particles is dominated by the gradient field, with
smooth[9] and nonsmooth10] spatial variations. Realistic the particles clustering in the minima of the potential
flows have some finite time correlations, but, as we willsimilar to compressible Kraichnan floW}§]. When the ve-
demonstrate here, they show further differences: the distribdecity field is projected onto the solenoidal pattthe par-
tion of values for the divergence of the flow field is expo- ticle distribution remains essentially uniform and there is no
nential (and not GaussiafB]), the distribution of density is clustering(lower panel of Fig. 1
algebraic(and not lognorma[9]) and the two-particle dis- The dynamics in this initial period is dominated by the
persion shows an almost ballistic regime for large separaexponential contraction i, . This follows, e.g., from the
tions. Furthermore, this behavior is outside the range otdvection-diffusion equation for a smooth dengitwith dif-
Kraichnan type models since the ratio between divergencéusivity D,
and velocity gradient fluctuations is such that the surface

flow belongs to a marginal situation where the Kraichnan dp=—(V-V)p—(v-V)p+DAp, (2
models predict neither clustering nor exponential separation
of particles[5,11,12. where the divergence patches cause an exponential variation

The experimental realization, the dynamics and the propthat typically is faster than the variations of the other terms
erties of the flat free surface flows that we consider havé¢l2]. The natural time scale=((V-v)2>*1’2~3.57-,] is ap-
been discussed in detail befdrEl,12. What is needed here proximately the lifetime of a divergence patch which comes
is the presence ofi@’® scaling in the inertial subrange due to out to be about 5, (half-width at half maximum of the
connection to bulk turbulence in the volume below, i.e., atemporal divergence correlation functjos expected, the
nonsmooth flow with finite time correlations which goes be-divergence-free advection contributes little to the clustering.
yond all previous analytical approaches. On the numericaFor the discrete particles we measure the density by coarse
side we integrate particle trajectories using a bicubic splingraining, i.e., dividing the plane into 256256 grid cells and
interpolation which was checked by comparison with ana-count the particles inside the cells. The maximal number
lytical exampleg13] and with a direct spectral evaluation of n,,,/N with total particle numbenN, increases initially ex-
the velocity between the grid mesfist]. The pseudospectral ponentially, as demonstrated in Fig. 2. Eorr the exponen-
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FIG. 3. Probability densityp(n) for different times during the
cluster evolution. Straight lines indicate fits with an algebraic law.
The inset shows the exponernisof p(n)~n~¢ as a function of
time t/7. The dotted line follows from Eq4).

The divergence also determines the particle distribution
p(n), as shown in Fig. 3. In Kraichnan type models this
distribution comes out to be lognormal for smooth flows
[9,5] and delta-like for nonsmooth casgk)]. Although we
were limited to moderate resolutions and particle numbers,
our data in Fig. 4 are closer to an algebraic distribution
which is consistent with the exponential distribution of the
divergence(see Fig. 3. Neglecting the diffusion term in Eq.
(2), the density increases exponentially in the Lagrangian
frame, y(t)=p(t)/p(0)=exp(— [5(V -v)dt’). Fort<1 we

FIG. 1. Distribution of 36000 tracers and the instantaneous vecan simplify the exponent tat whereA=V -v (in units of
locity field. Upper panel: full flowv. Lower panel: solenoidal flow 7~ 1). If we assume that the density variations are faster than
vs. The snapshots for both cases were taket! gf=21 after the the changes in the velocity field, we have local fluctuations
start. In order to highlight the tracer patterns the underlying flowin the divergence that give rise to locally varying density
fields are shown in one half of the box. fluctuations. If P(\) is the probability density function
e(PDF) for the divergence, then the PDF fgorbecomes

0 T 21

tially fast formation crosses over to a slower regime. Th
accumulation of more particles into larger clusters continues: ~ 1
the inset of Fig. 2 shows the integrated probability to find P(y)=f drS(y—er)P(N) = —tP(In vit). (3)
cells with no fewer than Ng particles, s(t,Ng) Y

=3q_n, P(t,n), for different values oNo with 1<No<N.  Hence, if the divergence fluctuations are Gaussian, as in
The probabilities continue to vary even when the maximasmooth Kraichnan flowg9], the PDF of the density fluctua-
remain essentially constant. tions is lognormal. However, in the case of the surface flow
the divergence fluctuations have a filamentary small-scale
structurg[12] (referred to as a shocklétegative divergenge

in compressible supersonic turbulerjdéé]). The small scale
structures appear in the PDF as exponential {ade Fig. 4.

If we let P(\)=1/(2s)e 'S, wheres~0.95 from Fig. 4,
then

P(y)~[y| 7+ Y0, (4)

As shown in the inset of Fig. 3, the slopea in the tails of

‘ ‘ the distribution increases with time, from about3.0 att

0 5 10 15 20 =0.5to—2.3 att=1, in good agreement with the prediction

from Eq. (4). For much longer times the discreteness of the
FIG. 2. Maximum particle number per ceil,, /N vs t/7 for ~ Particles shows up and the distribution ceases to change, for

particle numbers 36 000, 18 000, 9000, 4500, and 22%0n bot-  t=21 we gete=1.5.

tom to top. Dashed line is fow, and solid lines are fov. The inset The change in behavior for times larger than ab(_)l(Iitn3
shows the temporal evolution of the integrated probab{tyNo) units of the divergence timéas connected with the discret-
with values ofN, to the right. ness of the particles. The exponential contraction near the
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FIG. 4. PDF of the divergence of the surface flewrhe dotted 10>
line is an exponential fitp(\)=0.68 exp{|A[/0.95) with A=(V
-v) 7. The inset shows the spatial and temporal correlation functions
of the divergence fieldC(x) overx/», C(y) overy/n, andC(7) £ 10" |
over7/7,. =
©
minima in the potential leads to a depletion of particles in the 100 |
neighborhood, so that the density cannot increase further by
accumulation once all particles that initially were in a region
with negative divergence are collected in a cell. Estimates of

the size of the cells can be based on the spatial correlations 107"

of the divergence field,C(r;)=(V-v(rio+r;)V-v(rio)) 10

with r;=X,y. The typical extension of the patches, identified

from the first zero of the correlations, is about72(nset of

Fig. 4). Based on this decor_relatl_on lendir~ 2277 tzhe typi- tion of time. Solid curve is for advection by the full surface flow

cal maximal number of particles is abautN~1g/L“~0.01,  yhile the dotted one is for advection by the solenoidal paunly.

in good agreement with the data in Fig. 2. The Lagrangian integral time scales for both fields are indicated by
As a second set of characteristics we consider the singlegyrows. Lower panel: Two-particle pair dispersiaift), as a func-

particle dispersiong(t), and the two-particle paifor rela-  tion of time. Line styles are as above. The dashed horizontal lines

tive) dispersion,d(t). The first one is defined as the root indicate half the box size.

mean square of the absolute particle displacemetft)

= ([X(t;X0,0)— %012 %2, where(- ) . denotes an average over

the single Lagrangian particles. The second uses the diffe

enceRy(t) =x;(t;X1,00)—X(t;X2,0,0) between Lagrangian

particle tracks that start & o andx, o and is defined as the structureg 17] affects the value of.

root mean square ll\galue for all particles pairs(t) Results ons(t) andd(t) for the full surface flow and the
=([Ry2(t) — Ry(0)]*)%>. In order to fix the dependence on solenoidal part alone are shown in Fig. 5. The integral length
initial separation we take it to be aboutylwith random scales areT_ /7,=9.1 for v and slightly shorter,T /7,
orientation in space. The single-particle dispersion reflects=7.8, forv,. In all cases we do observe the initial ballistic
the influence of flow structures at different scales on theegime up toT, . The single-particle dispersion crosses over
particle motion and the relative dispersion can detect theo the Brownian regimeg(t)~t*? for t>T, in both flow
clustering, an interparticle property. In two-dimensional in-fields as indicated in the upper panel of Fig. 5. We connect
compressible flows, the limiting cases for both quantities arghis behavior to the fastly varying divergence patcht3]

well known[17]. Both quantities have a ballistic regimef,  that cause a kind of stochastic sweeping of the tracers.

for short times when particle distances lie within the viscous For intermediate times pairs separate superdiffusively like
subrange. For times much larger than the Lagrangian integral(t) ~t# with an exponent of about 1.6, a value that is close
time scale,T,, correlations can be expected to have de-to the Richardson predictiomiz(t)~t¥% Small differences
cayed, and the relative or single particle motion becomesnay also be attributed to the additional fact that the surface
statistically independent and both dispersions increase diffulow was found to have larger intermittency corrections than
sively as in an uncorrelated Brownian motion, i:et2 For  the associated three-dimensional volume turbulefis.
intermediate times, anomalous scalingt? with 1/2<p Similar scaling behavior is observed for the pair advection in
<1 has been observed. For an inverse Kolmogorov cascadthe solenoidal part onlysee the lower panel of Fig. 5 for
pair dispersion scaling exponents were found to be close thoth).
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FIG. 5. Upper panel: Single-particle dispersiorfft), as a func-

the classical Richardson value of 3/28] in numerical simu-
F\tions[lg,zq as well as experimen{®1], but, e.g., sensi-

ive to initial pair separation. In the case of single particle
dispersion transient trapping of tracers in coherent vortex
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While this anomalous scaling continues for advection indensity matched with the fluid in which they move. The re-
Vs to even larger times, we find a change of the pair dispertations by Maxey and Rile§23] for their motion implies that
sion to an almost ballistic behavior a(t)~t%° for t the velocity field of the particles is not divergence free. The
=50r,, that does not seem to cross over into a Browniarparticles will then cluster exponentially, as in E§). With a
regime. Microscopically, this means that while one particleview towards the formation of raif6] there is a uniform
follows its partner within a pair, pair correlations decay morecondensation of droplets from thermodynamic nucleation
slowly andd(t) grows more rapidly than in the Brownian and then an exponential clustering to form larger drops,
case. Such almost ballistic scaling was also found for thgyhich then fall to the ground as rain drops. The sizes of
single-particle dispersion in the strongly compressible onegsters thus range from the small scale droplets to the size

dimensional Kuramoto-Sivashinsky equati#?]. The dif-  f rain drops and their size distribution thus reflects the dis-
ference to our case might be caused due to the dimensionglipytion of divergence fluctuations by E).

ity of the problem and the specific character of our surface
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were found to be competing processes that cause anomalodsimboldt Foundation for support within the Feodor-Lynen
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