PHYSICAL REVIEW E 66, 017205 (2002
Microextensive chaos of a spatially extended system

Shigeyuki Tajim& and Henry S. Greensidlé
Department of Physics, Duke University, Durham, North Carolina 27708-0305
(Received 3 June 2001; revised manuscript received 26 April 2002; published 22 Ju)y 2002

By analyzing chaotic states of the one-dimensional Kuramoto-Sivashinsky equation for systeimirsitres
range 79=L <93, we show that the Lyapunov fractal dimensDrscalesmicroextensivelyincreasing linearly
with L even for incrementa L that are small compared to the average cell size of 9 and to various correlation
lengths. This suggests that a spatially homogeneous chaotic system does not have to increase its size by some
characteristic amount to increase its dynamical complexity.
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An important phenomenon associated with sustained norcrease with increasing system volume in the extensive re-
equilibrium systems is spatiotemporal chaos, a chaotic dygime. One possibility is that the cun2(V) may be linear
namical state that is spatially disordeffdql]. An open ques- only on average and has a staircase-like structure, with the
tion is how best to characterize spatiotemporal chaos so thateps corresponding to new degrees of freedom that appear
theory can be quantitatively compared with experiment angnce the system volume has increased sufficiently to include
experiment with simulation. Presently, there is no fundamena new subsystem. The widthsV of the steps would then
tal theory of nonequilibrium systems to indicate the appro-define a length scaleA(V)® (whered is the spatial dimen-
priate quantities to measure and so researchers have baionality of the systepnthat would be interesting to compare
rowed ideas from condensed matter physics, fluid dynamicsyith the lengths mentioned abové,( &5, etc). Possible
nonlinear dynamics, and statistics. Commonly used ways teteplike features in thB (V) curve might also be associated
characterize spatiotemporal chaos include critical exponentsith the appearance of new linearly unstable modes of some
[3], the two-point correlation timer, [4], the largest nonlinear state, since the number of such modes can increase
Lyapunov exponenk, [2], the Lyapunov fractal dimension linearly on average with increasing volunj&4]. Another
D, the two-point correlation length, [5], the dimension possibility is that the curv® (V) is extensive only on aver-
length &5 [2,6] and other length§2,7,8). However, calcula- age but its deviation from linearity is too irregular to char-
tions have shown that these quantities do not always lead tacterize by a single length scale. A fourth possibility is that
the same conclusions, e.g., there are systems for which tibere are no length scales associated with libwcreases
length&, diverges while the lengtki; remains finite as some with V and the curveD (V) is exactly linear for arbitrarily
parameter is variefi7]. Further research is therefore neededsmall increases iV, a situation that one could cathicroex-
to understand the particular features of spatiotemporal chadensive chaasln this case, it would be interesting to under-
that are measured by any one of these quantities and hostand how the geometric structure of the chaotic attractor in
these quantities are related to one another. phase space changes withso as to produce such an exact

In the following, we report results that provide an insight linear behavior.
about how the dynamical complexity of a nonequiliborium In this paper, we numerically integrate the one-
system depends on the volume of the system, and about tltémensional ~Kuramoto-Sivashinsky(KS) equation—a
interpretation of the dimension length;. In 1982, Ruelle widely studied continuum model of spatiotemporal chaos
conjectured 9], and numerical calculations later confirmed [2]—to investigate how the Lyapunov fractal dimension
[7,10-17 that the dimensioD of a sufficiently largespa- D(L) of a homogeneous chaotic system varies with the sys-
tially homogeneoushaotic system should increase exten-tem sizel for incrementsAL that are small compared to the
sively, i.e., linearly with its volumeV. Using an argument lengths mentioned above&{, &5, etg. With one exception
similar to that used by Landau and Lifshitz to explain the[11], all prior numerical studies used incrememt& that
extensivity of additive quantities in thermodynamick3],  were large compared to these lengths and the detailed form
this extensivity ofD can be understood heuristically as a of D(L) was not determined. We show below that, in fact,
consequence of spatiotemporal disorder. If two subsystenthe Lyapunov fractal dimensioD increases linearly witt.
of a spatiotemporal chaotic system are sufficiently far aparteven for system incremenfsL that are tiny compared to the
their coupling is weak because of the disorder and so theiaverage cell size and to various correlation lengths. The spa-
dynamics contribute independently and additively to thetiotemporal dynamics of the one-dimensional KS equation

overall fractal dimension. therefore provides an example of microextensive chaos. We
This picture of weakly interacting subsystems raises theonjecture that this will be a general property of chaotic ho-
question of how precisely does the fractal dimendibin-  mogeneous nonequilibria media in a sufficiently large do-
main.

Our calculations oD versusL yield an additional insight,
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FIG. 2. Periods of numerical solutions to E{) versus the
system lengti.. Each integration was started from small-amplitude
random initial conditions and then integrated 500 000 time units.
There is a complex sequence of windows corresponding to chaotic,
constant, intermittent, and periodic dynamics. Chaotic and intermit-
tent solutions have been assigned an arbitrary period 200 and
—100, respectively, so that all the data could be compared on
one plot.

FIG. 1. Space-time evolution of the fieldt,x) for two states of
the Kuramoto-Sivashinsky equatiét) with rigid boundary condi-
tions. The space-time resolution was=0.025 andAx=0.166 and
the peak-to-peak amplitude is about(d). Chaotic state fot. =50.
Spatial curves are plotted eveyT=1 time units starting at time
t=50000. (b) A periodic state forL=54 with period 7=127.6.
Spatial curves are plotted evelyT=5 time units starting at time
t=280000.

mittent, and chaotic dynamic$5uch a|ternating windows became Comparable to the fluctuations in the dimension
have been noted before for the KS equatjdsl—and in  curveD(T) as a function of integration time. The exponents
other systemf16]—but have not been studied with such fine i and dimensiorD (L) were also sensitive to the values of
resolution inL as we do herg.These results suggest the the spatial resolutiohx and temporal resolutiodt, to the
possibility that windows of nonchaotic behavior may persistrenormalization timeT o, for the Lyapunov vectors, and to
to arbitrarily large values of but become too narrow to be the total integration time. For nearly all runs reported below,
detected. If true, the dimensidh(L) may not be a continu- We used values afx=0.167,At=0.025, andr o= 10 and
ous curve and extensive behavior occurs only between theonfirmed the correctness of the corresponding results by
narrow windows of nonchaotic dynamics. comparing the values with spatial and temporal resolutions
Our results were obtained by numerical integrations of the!p to four times larger and for integration times as long as
one-dimensional Kuramoto-Sivashinsky equation in the formil®® time units.
We now turn to our results. Our starting point was the
du(t,x)=— ﬁfu— ﬁ‘x‘u— udu, xel[0.L], (1) pioneering calculation of Manneville.0], who used numeri-
cal integrations of Eq(1) with rigid boundary conditions to
on an interval of |engt|1_, with r|g|d boundary conditions demonstrate for the first time that the fractal dimensidn
u=a,u=0 atx=0 and atx=L. (Figure 1 shows a chaotic scaled extensively with the system sike For L=50, he
and periodic state for =50 and 54, respective)y]’he spa- found that D=0.230.—2.70, which implies a dimension
tial derivatives were approximated by second-order-accurat@ngth [6] of &,=(dD/dL)™'=1/0.230~4.4 [22]. This
finite differences on a uniform spatial mesh, and a standartength is somewhat smaller than the average cellularsize
operator-splitting method was used for the time integration= 27/ Qmax=2+/277~8.8 corresponding to the fastest grow-
[17]. For given initial conditions and interval length we ing linear mode qmalel\/i. Based on these results,
used the Kaplan-Yorke formuld18] to calculate the we chose to calculate the fractal dimensiDigL) in con-
Lyapunov fractal dimensioB (L) in terms of all of the posi- stant incrementsAL=1.0 that were much smaller than
tive and some of the negative Lyapunov exponantsThese these lengths. In contrast, the smallest increment used by
exponents were obtained using a standard algorithm that ifManneville wasAL=50 for which the fractal dimension
volves integrating many copies of the linearized KS equatiorchanges by about 12.
along a given orbit of the KS equatidf9]. Manneville’s linear dependence Bf on L suggested that
The demonstration of microextensive scaling by thefor L=50, only spatiotemporal chaos exists. In contrast, we
above numerical methods was delicate since the Lyapunofind that there is a complicated sequence of different dynami-
exponents\; and soD converge noisily and slowly20]  cal states over the range $Q <75 and then only chaotic
toward their infinite time limits. As the incrememtL in states for 75:L <93 [23]. Figure 2 summarizes our results
system size became smaller, the corresponding increment for the range 5& L <75 by plotting the period of each state
dimensionAD was more difficult to determine sinc&D as a function ofL. We observe four kinds of states: fixed
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points, time-periodic states, chaos, and intermittent states in '
which one kind of time dependence alternates irregularly
with a different kind of time dependence. To combine all the
results on a single plot, chaotic states were arbitrarily as-
signed a period of-200, intermittent states a period of
—100, fixed points a period of 0, and periodic states a direct
estimate of their period based on repeating features of the
time series.

There are two interesting features of the dynamical states
of Fig. 2 in addition to the occurrence of many windows of
alternating dynamics for this range bf First, we found that
for a given system size, numerical integrations using up to
seven different random initial conditiorieach consisting of 15,5 3 38 93
uniformly distributed numbers in the interva0.1,0.1) L
led to only one state. Thus empirically there seems to be only
one basin of attraction for each system size and we do not FIG. 3. The Lyapunov fractal dimensidn of chaotic solutions
expect hysteresis in the range<sD< 75. Second, we found to Eg. (1) versus system size for 79<L<93.The dimension val-

rather remarkably that the fractal dimensibrof each cha-  Y€S accurately fall on a straight line, demonstrating the occurrence
otic state in Fig. 2 lay on Manneville’s extensive curve of microextensive scaling.The straight lile=0.2271 —2.85 was

_ . _ btained by a least-squares fit to the points and agrees well with
D(L)=0.23@ —2.70 withD=D(50)=8.8 (a least-squares 0 I ~ -
fit of our chaotic states gave the almost identical curve'\/l"’mnevIIIeS resul{10] of D =0.230. —2.70 over the much larger

. range 56<L<400. The error bar for each point corresponds to a
0.221.—2.85). Thus the states jump abruptly irom low- relative error of at most 0.05% iD. The error bar was determined

dlmensmnaIDz 1 penodp states t_o hlgh—_dlmensmnal Ch"?" by the peak-to-peak fluctuations Bf versus integration tim@&.
otic states that are scaling extensively with the system size.
We did not try to characterize the intermittent states, e.9., bjyashinsky equation with rigid boundary conditions. This
their fractal dimension or by the scaling properties of theg,ggests that a spatially extended nonequilibrium dynamical
fractional duration of a particular phaf2l]. system does not have to increase its volume by some mini-
Over the range 8L <93, only chaotic states were ob- a1 amount for the fractal dimension to increase. Corre-
served. Fig. 3 shows that the corresponding values of thgpondingly, the dimension lengt, does not have some di-
Lyapunov fractal dimen_si_oD lie on a straight line that has ¢t physical meaning as the characteristic size of a
the same slopéo two digit and intercept as that found by gynamical subsystem, it is simply determined by the linear
Manneville over the much larger range $0<400. Thus  growth of D with L. Our calculations suggest two questions
the fractal dimension shows microextensive scaling: a lineakg, fyrther exploration. One is whether there is a cutoff sys-
dependence on L for system incremeAits that are much e sizel . above which only chaotic solutions are found for
smaller than any characteristic length scale such as the avine ks equation. Second is to understand mathematically
erage cell size or various correlation length&iven the  pow the geometry in phase space of a strange attractor

similar result obtained by Xet al.[11] for a different math-  changes with system sizesuch that the fractal dimensid@
ematical model of spatiotemporal chaos, we conjecture thgfsries exactly linearly with..

microextensive scaling will be a general feature of spa-
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