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Nonlinearity effects in the kicked oscillator
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The quantum kicked oscillator is known to display a remarkable richness of dynamical behavior, from
ballistic spreading to dynamical localization. Here we investigate the effects of a Gross-Pitaevskii nonlinearity
on quantum motion, and provide evidence that the qualitative features depend strongly on the parameters of the
system.
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The dynamical behavior of quantized area-preservingn particular, theresonantcase T =27p/q) is characterized
maps has proven to be one of the most relevant fields in they the presence of a stochastic wébr arbitrarily small
discipline of quantum chaosee[1]); in particular, the dis- values ofK) supporting unbounded transpit2,13], while
covery of quantum dynamical localizatiof2], namely, the in the nonresonant case a threshdidE,) exists below
quantal suppression of classical deterministic diffusion, hasvhich unbounded transport is not sustainad].
provoked a vast amount of theoretical and experimental The kicked harmonic oscillator has been proposed as a
work. The paradigmatic example in this field is the quantummodel of different physical phenomena from electronic
kicked rotator(see[3]), obtained upon quantization of the transport in semiconductor superlatticglb] to ion traps
classical standard mdg]. From a classical point of view the [16]. In the latter case the harmonic potential is representa-
system is of Kolmogorov-Arnold-Mose&iKAM ) nature: for  tive of the ion trap, while the kicking term arises from a time
small values of the stochasticity parameter global transport iperiodic standing wave laser field. Obviously, such examples
inhibited by invariant curves: once the last invariant torus isrequire a proper quantum mechanical treatment of the
destroyed, transport properties abruptly change and, in typiHamiltonian(1), the corresponding Schimger equation be-
icnal rr?g;ae“riﬂfn E’A‘: ;]trovr\)ﬁig#izsa{rg:;;izisaa?lggustlr:/ee éggi?ggmg (once expressed in the dimensionless variablesot
motion for times shorter than the break tirhg where the andx=Mowo/#x)

guantum localization regime sets in and the momentum 9 12 1L

spreading is suppress¢€l]. We remark that this picture is i—~¢=( — = —+ X2+ o cod £X) 5T(”f)) )

valid for genericvalues of the effective Planck’s constant; ot 2 9x% 2

guantum resonant motion, characterized by ballistic spread-

ing, appears whef assumes rational valu¢g,8]. so that the quantum dynamics depends upon three param-

Another example of a quantum system originating from aeters,
two-dimensional area-preserving map is the kicked harmonic

oscillator (see[9—-11] and references therginthe classical € h
o= &=kq pe—— T=Tywy. (4)
oo

Hamiltonian is

Once again, the behavior is quite sensitive to number theo-
retic properties ofT: in particular, thecrystal caseq10] T
=2mx/q with qe{1,2,3,4,6 admit a one-parameter group of
where the time dependence is through the periédinction  commuting generalized translations commuting with the
Hamiltonian (exceptional parameter valu¢40] may also
- lead to two-parameter groupshe corresponding dynamical
5T0(t):m:2m o(t—Tom). behavior is diffusive(or ballistic in the exceptional cases
We remark that thej=4 case corresponds to tligymmet-
ric) kicked Harper mode[17]. Outside resonant parameter
values there are indications of a localization-delocalization
transition for resonant noncrystal ca$&s], while the simu-

_ L o Mo
H(p,x,t)—z—mop 5 wXte cogkox) o7, (1), (1)

By rescaling the variables=kox andt = wot we realize that
the dynamics is dependent only on the parameters

k2 lations reported if10] for nonresonant cases suggest dy-
K= —2 T=Towo. (2)  hamical localizatior{ 18] (however, we observed a delocal-
Mowq ization transition in the irrational case, oo

Recently, it has been suggestdd®] that the widespread
interest and experimental activity in Bose-Einstein conden-
*Email address: roberto.artuso@uninsubria.it sation[20] (see also recent experiments with condensates in
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FIG. 1. Classical transport along the stochastic web. FIG. 2. Quantum transportq&E4 one-parameter symmetry

group. See the text for details.
weakly chaotic setting21]) makes it natural to study the
effect on Gross-Pitaevskii nonlinearitigg2] in the kicked
oscillator (thus turning it into a model of a trapped conden- gx", x;t)=C exp{
sate under a laser field in the spirit pf6]). The Gross-
Pitaevskii nonlinear correction to the Sctioger equation is
of the formu||?y, where the coefficienti is of the same ><[(x2+x’2)cos(w0t)—2xx’]}, 8
sign as the scattering lengitB3] (we will deal mainly with a

positiveu in what follows. Using the same rescaling in di- 54 once the discretized positions= (i — N/2)A, are intro-

mensionless variables mentioned in the quantum case, thg ,.ed we have that the propagatbis unitary if we put
equation reads

imowo
27 SN wt)

inl 1/2
(Zq-rﬁsm( ot)) . ©

Ly=| =3 et o oot B si(D +ulul? | * N

I—=y=| —5 =; 1T 35X o COY &X v s Myw

it 2.gx2 2 T oo

(5) In the coordinate representation the action of kicks is multi-
plicative on the wave function.

where now . . L .
Simulation of quantum evolution is considerably more
u [mp complicated once we introduce a nonzero nonlinearity: to
"IN hon (6) propagate the wave function between kicks we separate the
0

time independent part of the Hamiltonian into the oscillator

Even if the cubic nonlinearity acts like an effectisapulsive ~ @nd the nonlinear part, and use the lowest order split method
potential, the main observation [19], as regards the dy- [26] (this typically requires using ten time steps between
namical effect of the Gross-PitaevskiBP) nonlinearity in ~ consecutive kicks in order to get stable resuls an initial

the crystalq=6 case, was its tendency to oppose quantun$tatée we consider the ground state of the GP equatiath-
spreading; it was suggested that this is due to a breakup &ut kicks shifted into the chaotlc region nearest to t_he ori-
guantum symmetries for nonzero nonlinearity. Before pre9in- The ground states for different yalues of_the nonlinearity
senting the results of our simulations we have to mentiorP@rameter are obtained by evolving an eigenstate of the
that nonlinearity effects were also considered a few years

ago for the kicked rotatdr24,25 (for a cubic nonlinearity of P*(t)
opposite sigh Here the scenario is quite different. When the 35}
nonlinearity is absent the system exhibits quantum dynami-
cal localization: a sufficiently strong nonlinearity may then
induce chaotic transitions between localized modes, leading 25}
to (subdiffusive delocalization.

30

To investigate the effect of the nonlinearity, we studied 20¢
Eqg. (5) in two different regimes: a crystag&4) case, and 15t
an irrational casg T=7/(y5+1)]. The evolution of the
kicked oscillator is conveniently studied by using a dis- 10
cretized propagatdriO] 5

L o 0 20 40 t6'0 80 100
Y(x' )= | dxG(x’,x;t")(x,0) (7)
FIG. 3. P2(t), for u=+0.5 andu= —0.5, and the same condi-

where tions as in Fig. 2.
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FIG. 4. Quantum transportq&E4 two-parameter symmetry
group, €=0.7. The configuration space has been discretized with 4 u=0 ]
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FIG. 5. Quantum transport irrational case. Discretization is over

Gr(_?_shse-l?il:gtezzlgl(le 3;??:&'2%0 account izstal q=4 ex- 2_14 pointls,. The inset shows the kicked oscillator case on a longer

ample. In Fig. 1 we show the classical phase picture, exhibt—Ime scale.

iting unbounded transport along the stochastic web. We put

T=/2 (and w, fixed in such a way that generalized trans-

lations form a one-parameter group of symmeijriasd e If this view is correct, the effect must equally appear in

=0.7 (all other linear quantum parameters are fixed by takthe resonant crystal case, where a group of two-parameter

ing =1 and £=,2; we will adopt this choice for other Symmetries leads to ballistic transppt0]. Such an effect is

examples, top indeed evident even for short timésee Fig. 4; after a char-
This case is characterized by a one-parameter group @fcteristic time scale, which shrinks as the nonlinearity in-

symmetries(generalized phase space translaticasd thus creases, the deviation from the kicked oscillator case is more

the quantum case is expectdd] to exhibit a diffusive mo- and more marked as increases.

mentum spreadingthe evolution corresponds to the upper A priori, the situation is different when we consider the

line in Fig. 2. The effect of nonlinearity is considered by oscillator outside therystalregime; to this end we analyzed

takingu=0.5, 1, 2.5, and 5; the corresponding curves arghe case in whicke=1.4 andT=/(/5+1). In this case the

shown in Fig. 2. Such simulations are performed by using aRjcked oscillator displays dynamical localization: the striking

N=2" discretization of the position variablevhich has  opservation is that here the nonlinearity acts in an opposite

been checked t_o provide a rellable choice up tp the ‘?0ns'qivay, enhancing the quantum delocalizatisee Fig. 5. So,

ered evolution time, by comparing the results with a simulaspen symmetries are not present in the quantum case, non-

tion with twice the number of pointsTo smooth out oscil-  jinearity seems to play a completely different role. This is at
lations in the evolving patterns we plot the integrated secongbast in qualitative agreement with what happens to the
moment kicked rotator evolving under a nonlinear Sttfirmer equa-

tion, or even when noise is superimposed on the quantum
t—1

1 evolution[29]. We have checked that the same happens even
P(t)= T >, ((Pk—po)?). (10 for higher values of, when the oscillator undergoes a delo-
o K=o _ calization transition.
The qualitative features confirm the observatior{ 18], In conclusion, we have analyzed how nonlinearity influ-

namely, that the most striking effect of the nonlinearity is tognces g complex and physically relevant quantum’ system,
oppose quantum delocalization. This has been claimed to hge kicked harmonic oscillator. We provide evidence that, at
due to symmetry breaking effects of the nonlinearity, inhib-j055t at moderate times, it opposes quantum diffusion when
iting transport along delocalized Floquet states. We rema”ﬁ’ansport is linked to symmetry properties of the linear

that at a classical level also related features have been obrymiltonian. while it may lead to diffusion enhancement
served, if noise is added to the kicked Harper map, transpoflhen no symmetry breaking occurs.

along the stochastic web is slowed do{@8].

In principle, a positive nonlinearity acts like a repulsive  This work was partially supported by the PRIN-2000
potential, but here the symmetry breaking effect is not reproject “Chaos and Localization in Classical and Quantum
lated to the sign of the effective potential, as we see fronBystems and the EU contract QTRANS networlQuantum
Fig. 3, where it is shown that the sign of the nonlinearity hasTransport on an Atomic Scalé/Ne thank E. Arimondo and J.
a tiny effect on momentum spreading. H. Muller for bringing Ref.[19] to our attention.
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