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Collapse of the metastable state in an attractive Bose-Einstein condensate
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The characteristic features of the collapse of the ground state in trapped one-component attractive Bose-
Einstein condensates are studied by applying the catastrophe theory. From numerically obtained stable and
unstable solutions of the Gross-Pitaevskii equation, we derive the catastrophe function defining the stability of
the stationary points on the Gross-Pitaevskii energy functional. The bifurcation diagram and the universal
scaling laws stemming from the catastrophe function show quantitative agreement with the numerical results.
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The experimental observation of Bose-Einstein condensawvhereg is a pseudopotential between the trapped atoms de-
tion (BEC) in ultracold atomic gasefl,2] has stimulated fined by 4mas/l, as andl o= J#/mw being theswave scat-
immense interests in the study of the macroscopic quantufigring length and the harmonic oscillator length, respectively.
phenomena. One of the central issues in the field of BEC igve scaled the length and the energy with respedt, tand
to understand how the interparticle interaction influences thg , respectively. The stationary solutions of Eg). has been
ground state of BEC. In this respect, recent realization ot culated by solving the GPE~ V2/2+r2/2+gN|4(2)] ¢
BEC in'Li atomic gaseq3] has invoked special interests = i, where the Lagrange multipligr is introduced to pre-
since it is expected to show the collapse behavior when thgerve the number of particd. In previous workg9,10,11
number of particledN in the condensate exceeds a critical o X P
valueN, [4]. The collapse of trapped BEC stands in contrastthe stability of the ground state of the condensate has been

to the well-known homogeneous system in which the con-swdled by computing the excitation frequencies of the

densate is always unstable for the attractive interadtn Hartree-Bogoliubov equation.'Here we examine the stability

First qualitative insight into the collapse behaviors was ob-o_f the condensate by calculatlng_ the e_lgenvalues of the Hes-
tained by the variational approach based on the Gaussigf" Matrix of the GPEF. The bifurcation pattern stemming

approximation[6]. It shows that the condensate is in the fom the critical point can be obtained by investigating how

metastable state belol,, corresponding to a minimum of the stability of the stationary solutions Bf /;g,N] changes

the Gross-Pitaevskii energy functior@PER. AboveN,,, @S afunction of the control parametegrandN [11]. .
the minimum disappears and corresponding Gross-Pitaevskii BY Settingy(r)=¢(r)/r and dividing the space into grids
equation(GPBE has no solution. by approximatings(r) by ¢, for 16<r<(1+1)4, whereé

More advanced description for the collapse of BEC wads the mesh length in a radial direction, the GPEF becomes
presented by Huepet al. [7]. They computed the branches
of the stable and unstable solutions of the GPE, and found
that these meet at a critical particle number through the
Hamiltonian saddle nodéHSN) bifurcation. Within suffi-
ciently narrow range around the critical point, the HSN bi-
furcation describes the essential features of the collapse be-
havior. For the system following the HSN bifurcation, the
bifurcation function must be symmetric with respect t0 ayhere A, = —27/5, A,=2m8°, and Az=2mg/ 5. The dis-
proper control parameter. However, in a present system, thgete form of the GPE is also given by
eigenvalues of the Hessian matrix of the GPEF shows strong
asymmetric behavior with respect to the control parameter, _ 2 3712
x=1-N/N,,. Also, the critical amplitude, which was de- Arlbrea=2¢1t ¢1-1) + Aol i+ 2NAHTTI "=y )
fined as the one related to the radius of the conden3ate

dpes not show symmetric behavior predicted by the HS'\bomprehensive explanations on numerical techniques con-
bifurcation. To maintain the symmetry, the catastrophe func-Structing the solution of the GPE can be found in Ré2]

tion governing the bifurcation has to retain the odd symmetr herefore, only a brief explanation is presented. We first de-

with respect to the critical gmpl.ltuc{és]. Our StUdY. shows termine a trial solutionp, for an arbitraryN and . from the
that the catastrophe function indeed has additional evell . rsion relation E (3). Next, we scaled, and N with e
terms, which is essential to describe the asymmetric nature F P , q-3)- , ' »

the bifurcation. =3¢ asN'=eN and ¢/ = ¢, /e, respectively. Then we

The condensate in a radially symmetric trap is describe@pPtain & true solutiog/” for N" and . In Fig. 1(a) we plot
by the GPEF, the energies for the stabl&{) and unstable solutions=(")

as functions o, respectively.
The stabilities of the stationary solutions are determined
. — *[_ 2 2 2
E[‘/”g’N]_f dr [ = V24 12+ gNI2[y ]y, (1) from the eigenvalues of the Hessian of the GPEF. Consider-

E[¢.]=A12 ¢|<¢|+1—2¢|+¢|+1>+A22 127

+NA32I N2, 2
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1.2 L L form of the catastrophe function from the GPEF, and deter-
. stable mine the scaling parameters by numerical fitting. The Taylor
119 | (a) s, unstable ———] expansion of the GPEF aroudel, andN,,, where®, is the
S solution of the GPE at the bifurcation poilNt,,, gives
o 118 b 4
(¢| )
E[®,x]=Eo[ @6,0] ~XNgAs Y, ——
1147 | . !
1200 12|1o 12|20 12|30 12|4o 12|50 1260 (¢0)3
N +Ng,| —x4A5>, Spy+ 6@ THP™I 5@’
[
(¢| D)2 (#7)
—XBA32 S+ (1-X)4A 2, — 5= 047
(]
g 5¢4
g . +H1-XAY — (@)
proj o |
2 )\f 2 7
s T where 8®=P4&®’, andx is the control parameter defined as
1200 1210 1220 1230 1240 1250 1260 x=1—N/N.,. Notice that those fluctuations that satisfy the
N constraint are allowed only, by projectingp’ to the con-

straint subspace. Next, using a linear transformatidm
=3 2Q|gpr01 whereQ,= 6®- &prol, Eq. (4) can be rewrit-

ten as a functlon of, (1= . ,L),

FIG. 1. The energya) and the eigenvalué) as a function of
the bifurcation parametet=1—N/N¢, .

ing the fluctuations up to quadratic termsdaf the energy

functional E becomesE = E[ @]+ §®H 5P, whereH is the

Hessian matrix whose nonzero elements Biig=—2A;

+A,124+6NAgp2/12— 1 andH, 1 =H,, 1, =A,. Here, the

quctuatpnsé(D cannot be v_ane.d mdependgntly be_cause they +x'2 KiiQiQ, +(1—X),,E KijcQiQ; Qx

are subject to the normalization constraint. To impose the = =

constraint on the fluctuations, we used the projection matrix

P defined ad —®x ®, wherel is the identity matrlx[13]. _ +(1—x)“2 Kij QiQ;QuQ

Here® means the outer product of two vectors. Substituting ijkr=2

Po® for ®, we obtain a projected Hessian &

—P'HP. Each normal mode ofP™I belongs to either of Where a=Ng Az (4)*12=—0.802. The projection of

two subspaces. One subspace corresponds to the constrafige’ onto the constraint subspace eliminates all terms con-

subspace, and the other one corresponds to the orthogortainingQ;. Also the terer% does not appear in the first term

subspace whose normal modes are orthogon®. fbhen the  in the square bracket in E¢p) because ok5™/=0. Further-

stability of the stationary solution is determined by the secimore, Thom’s splitting lemm&13] enables us to split the

ond lowest eigenvaluab™! of HP™I. In Fig. 1(b) we plot  terms in Eq.(5) into two parts,

A5 and\ 5, which is the lowest frequency of the Hartree-

Bogoliubov equation, for both stable and unstable solutions ~ E[®.X]=Eq—ax+Fym(Q2) +Fu[Qs, ... QL]

as a function ofN. Instability occurs alN.,=1257.2, which e 2 B 3

is identified by a zero value of8" and 5. Beyond the =Eo axt xQpt yx Q3+ 6(1-%)Q;

instability point,\5"® goes to—< implying the collapse of +9(1-x)Q5+Fu[Qs, ... .QL, (6)

the condensate. Alsdyg becomes imaginary, which means

an exponential growth of the fluctuations with a time evolu-whereF,, is the non-Morse function written in a polyno-

tion. mial form of Q, with undetermined coefficients, ark, is
The canonical forms of the catastrophe function dependhe Morse function depending a@; (I=3,...). Thebasic

on the number of zero eigenvalues and the number of thilea of our analysis is to redudg— ax+ Fyy to the catas-

control parameterf8]. Since our system has single zero ei- trophe function with appropriate scaling parameters. igre

genvalue5®! and one control parametdt, the local geom- s a critical amplitude measuring how far is the system from

etry of the GPEF follows the fold catastrophe whose normathe bifurcation point. We propose the form of the catastrophe

form can be written as a cubic polynomial with respect to afunction F as

critical amplitude. However, it is almost intractable to derive

E[®,x]=Ey— ax+Ng,

23 AF“’J’Q?HZZ KiQ,

, ©)

the canonical form of the catastrophe function analytically F[Q,]=Ey— ax+ Bxx3Q,+ yXKZQg
from the original energy functionakE in such a high- 3 4
dimensional system. Instead, we first propose the functional +0(1-x)kQ3+ n(1-x)Q7, (7
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where B, v, 8, n, and k are to be determined from the 0.1 . .
numerical solutions. The parameteris introduced for the

stable

correct scaling of energy. Here we would like to emphasize unstable o
that the catastrophe functidf Q,] does not have terms of o 0 J
degree higher than 4 with respect@g, since the GPEF has 38 .

up to quartic nonlinear ternisee Eq.(4)]. “

From the stationary conditioaF/9Q,=0, we obtain the o1k %“‘*"w»,,, |
following three solutions that correspond to the critical solu- ' o
tions of Eq.(7): 0 0.01 0.02 0.03

VG(t)
— 1
Q K 1+2V1+B tcos( tan” 14 Byt }
p
= K§[1+ Zo],
Q; =«Q;
= KB[1+ Zo/2(— 1+ 1—(2p/3Z4)3(1+B,t))], 0 0.01 0.02 0.03
3 1-N/Ng
8 T T
® () stable
1.2 | unstable  ° -

where B;=—3q/p?, B,=—(27/20%(pg/3+r), and G(t)
=(3B;—2B,)t+(3B2—B3)t?>+B3t°, t=x/(1—x). Notice

that Qg has no physical meaning since it approackesas
x—0, which is nonvanishing. Since the critical amplitude
Q, corresponds to the order parameter measuring the dis-
tance from the bifurcation point, it should be zero at the
bifurcation point. In Eq(8), Q, andQ, correspond to the 0 0.01 0.02 0.03
stable and unstable branches of Eg), respectively. Let us 1-N/Nge

defineAg(x) as (@,— dy) - e proi, Whered, is the solution ~ _ _ _
2 FIG. 2. (a) Q, as a function of the bifurcation parameterThe

of Eq. (3) for a certain value of control paramebeNr'I;hen the " solid and dashed lines correspond to fitted results for the stable and
parameter®, B;, andB, are obtained by fittind)5 to the  unstable branches, respectively. The filled squares and open circles
numerically computedAg(x) for the stable (unstable  correspond to a numerical computation for the stable and unstable
branch. Still the value of remains to be determined from branches, respeciivelgb) The eigenvalua™ as a function ofk.

the scaling of the energy. In Fig.(@, we plot O; and (©) The energy as a function of
AQ(X) for the stable and unstable branches with respext to {4 E+ of the stable branch. Figuré@ shows the profiles of

respectively. TheQ, shows good agreements with the nu- F[Q,] andE* as a function ok. The numerical values of
merically obtalnedAQ(x) including asymmetric behaviors the coefficients and scaling parameter @e —0.6853, y
for a wide range ok (<0.03). The eigenvalues™ are ob- =1.345, §=0.6852, »=1.16, andx=1.418. We plot the
tained by differentiating Eq.7) twice with respect ta@,, catastrophe functioR[ Q,] as a function 0fQ, in Fig. 3 as
control parameterx varies. TheF shows three optimum
*_ _ _ DE (D)2 points(local maximum, minimum, and global maximuifior
AN qu3- 2p/8Q; +(Q2)7)) © x>0, two optimum pointgsaddle and global maximunfior
x=0, and one global maximum point for<<0. For whole
range ofx, the global maximum corresponding @) does
not correspond to any physically meaningful state. The local
structure ofF aroundQ,=0 shows the characteristic behav-
ior of collapse of attractive BEC. At the critical point, the
local minimum and maximum, which represent the stable
(Q,) and unstable @,) solutions of Eq.(8), are merged
into one, and disappear fof>N,, .
Notice that quadratic and quartic terms with respecdio

E/N

where é= 7«2 Here¢ is determined by identifying the nu-
merical values of\5™ for the stable branch with *. We
confirmed that the samiis obtained by identifying.5™’ of
the unstable branch with~. BothA " and\ ™ are compared
with exactAb"™ obtained from the branches of stable and
unstable solutions, respectively, in Figb2 Finally, the pa-
rameterx is determined by fitting

F[Q; ]=Eo— ax+(1-x)éx?[4rtQ; +2qt(Q;)? in Eq. (7) are proportional to~x?, whereas linear and cubic
v terms are proportional te-x>2, sinceQ,(x) ~x*? for x<1.
—4p/3(Q2 Qz ] Therefore, within vary narrow range af our scaling form
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1.26
1.24
12F .
118 |
116 | /7
114
112 Here, B=B«°I gt, y=y«?I qt, and 6= S«/ 5. The point to
1 L be stressed here is that for whole rangexpthe implicit
-02-0.1 0 0.1 020304 05 0¢ function theorem guarantees the existence of a smooth
Q. vertible transformationQ,(y), which transforms away all

FIG. 3. The catastrophe functidh as a function ofQ, with  terms of degree greater than 3. A0, F[y] reduces to
varying x. At x=0, F has a saddle point @,=0. Forx>0, F  Eo— dxy® by choosing a proped, . OnceD is determined
shows asymmetric behavior arou@y=0 with a local maximum as —1/35 from F,=0, the transformation coefficien®®,
and minimum. The global maximum arou@3=0.5 is an unphysi-  can be chosen to get rid of the term proportionalyfoin
cal state. F[y] for n>3. Fort+0, all coefficientD, (n>2) are well

. defined. First, we seb,=—7/B to remove the quadratic
can be reduced to th+e same form predicted by the HSN blt'erm inF[y]. For arbitrazryD33//veBcan make (n>2) to be
furcation, such asQ, ~*x, A*~=x, and AE=E" "

zero by choosing a propdd, (n>4). The resultingF
—E*~x%2 by neglecting quadratic and quartic terms with y g a propd, ( ) o (y)

i becomes
respect toQ, in Eq. (7). Next we show that Eq(7) can be
reduced to a canonical form of the fold catastrophe by the g — ox+ Bx w3y +[(Bx3Ds—2y%k/ B)x+ Sk(1—x)]y>.
nonlinear transformation of,. For this purpose, we apply
locally diffeomorphic nonlinear transformatio®,(y)=y By selectingD;=27?/(8«)? the canonical form of the fold
+32,-2D,y". By substitutingQ»(y) into Eq.(7) and equat-  catastrophe is obtained aB(y)=Ey— ax+ Bxx3y+ 8(1
ing the coefficients ofy", we haveF[y]=Eo—ax+n(1  —x)xy3 with a new critical amplitudg.
—X)Z=1Fn(t)y", where

Fs=pBD3+2yD,+3,

F,=BD4+7(2D3+D3)+35D,+1,

F(Qp)

Fs=pBDs+2yD,+38(D3+D3)+4D,.
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