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Collapse of the metastable state in an attractive Bose-Einstein condensate
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The characteristic features of the collapse of the ground state in trapped one-component attractive Bose-
Einstein condensates are studied by applying the catastrophe theory. From numerically obtained stable and
unstable solutions of the Gross-Pitaevskii equation, we derive the catastrophe function defining the stability of
the stationary points on the Gross-Pitaevskii energy functional. The bifurcation diagram and the universal
scaling laws stemming from the catastrophe function show quantitative agreement with the numerical results.
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The experimental observation of Bose-Einstein conden
tion ~BEC! in ultracold atomic gases@1,2# has stimulated
immense interests in the study of the macroscopic quan
phenomena. One of the central issues in the field of BEC
to understand how the interparticle interaction influences
ground state of BEC. In this respect, recent realization
BEC in7Li atomic gases@3# has invoked special interes
since it is expected to show the collapse behavior when
number of particlesN in the condensate exceeds a critic
valueNcr @4#. The collapse of trapped BEC stands in contr
to the well-known homogeneous system in which the c
densate is always unstable for the attractive interaction@5#.
First qualitative insight into the collapse behaviors was
tained by the variational approach based on the Gaus
approximation@6#. It shows that the condensate is in th
metastable state belowNcr corresponding to a minimum o
the Gross-Pitaevskii energy functional~GPEF!. Above Ncr ,
the minimum disappears and corresponding Gross-Pitae
equation~GPE! has no solution.

More advanced description for the collapse of BEC w
presented by Huepeet al. @7#. They computed the branche
of the stable and unstable solutions of the GPE, and fo
that these meet at a critical particle number through
Hamiltonian saddle node~HSN! bifurcation. Within suffi-
ciently narrow range around the critical point, the HSN
furcation describes the essential features of the collapse
havior. For the system following the HSN bifurcation, th
bifurcation function must be symmetric with respect to
proper control parameter. However, in a present system,
eigenvalues of the Hessian matrix of the GPEF shows str
asymmetric behavior with respect to the control parame
x512N/Ncr . Also, the critical amplitude, which was de
fined as the one related to the radius of the condensate@7#,
does not show symmetric behavior predicted by the H
bifurcation. To maintain the symmetry, the catastrophe fu
tion governing the bifurcation has to retain the odd symme
with respect to the critical amplitude@8#. Our study shows
that the catastrophe function indeed has additional e
terms, which is essential to describe the asymmetric natur
the bifurcation.

The condensate in a radially symmetric trap is descri
by the GPEF,

E@c;g,N#5E dr c* @2¹2/21r 2/21gN/2ucu2#c, ~1!
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whereg is a pseudopotential between the trapped atoms
fined by 4pas / l 0 , as andl 05A\/mv being thes-wave scat-
tering length and the harmonic oscillator length, respectiv
We scaled the length and the energy with respect tol 0 and
\v, respectively. The stationary solutions of Eq.~1! has been
calculated by solving the GPE,@2¹2/21r 2/21gNucu2)]c
5mc, where the Lagrange multiplierm is introduced to pre-
serve the number of particleN. In previous works@9,10,11#,
the stability of the ground state of the condensate has b
studied by computing the excitation frequencies of t
Hartree-Bogoliubov equation. Here we examine the stabi
of the condensate by calculating the eigenvalues of the H
sian matrix of the GPEF. The bifurcation pattern stemm
from the critical point can be obtained by investigating ho
the stability of the stationary solutions ofE@c;g,N# changes
as a function of the control parametersg andN @11#.

By settingc(r )5f(r )/r and dividing the space into grid
by approximatingf(r ) by f l for ld,r ,( l 11)d, whered
is the mesh length in a radial direction, the GPEF becom

E@f l #5A1(
l

f l~f l 1122f l1f l 11!1A2(
l

l 2f l
2

1NA3(
l

f l
4/ l 2, ~2!

whereA1522p/d, A252pd3, and A352pg/d. The dis-
crete form of the GPE is also given by

A1~f l 1122f l1f l 21!1A2l 2f l12NA3f l
3/ l 25mf l .

~3!

Comprehensive explanations on numerical techniques c
structing the solution of the GPE can be found in Ref.@12#.
Therefore, only a brief explanation is presented. We first
termine a trial solutionf l for an arbitraryN andm from the
recursion relation Eq.~3!. Next, we scalef l and N with e
5( lf l

2 as N85eN and f l85f l /Ae, respectively. Then we
obtain a true solutionf l8 for N8 andm. In Fig. 1~a! we plot
the energies for the stable (E1) and unstable solutions (E2)
as functions ofN, respectively.

The stabilities of the stationary solutions are determin
from the eigenvalues of the Hessian of the GPEF. Consid
©2002 The American Physical Society01-1
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ing the fluctuations up to quadratic terms atF, the energy
functional E becomesE5E@F#1dFHdF, whereH is the
Hessian matrix whose nonzero elements areH l ,l522A1

1A2l 216NA3f l
02/ l 22m andH l ,l 115H l 11,l5A1. Here, the

fluctuationsdF cannot be varied independently because th
are subject to the normalization constraint. To impose
constraint on the fluctuations, we used the projection ma
P defined asI2F^ F, whereI is the identity matrix@13#.
Here ^ means the outer product of two vectors. Substitut
PdF for dF, we obtain a projected Hessian asHpro j

5PTHP. Each normal mode ofHpro j belongs to either of
two subspaces. One subspace corresponds to the cons
subspace, and the other one corresponds to the orthog
subspace whose normal modes are orthogonal toF. Then the
stability of the stationary solution is determined by the s
ond lowest eigenvaluel2

pro j of Hpro j. In Fig. 1~b! we plot
l2

pro j andlHB , which is the lowest frequency of the Hartre
Bogoliubov equation, for both stable and unstable soluti
as a function ofN. Instability occurs atNcr51257.2, which
is identified by a zero value ofl2

pro j andlHB . Beyond the
instability point,l2

pro j goes to2` implying the collapse of
the condensate. AlsolHB becomes imaginary, which mean
an exponential growth of the fluctuations with a time evo
tion.

The canonical forms of the catastrophe function dep
on the number of zero eigenvalues and the number of
control parameters@8#. Since our system has single zero e
genvaluel2

pro j and one control parameterN, the local geom-
etry of the GPEF follows the fold catastrophe whose norm
form can be written as a cubic polynomial with respect to
critical amplitude. However, it is almost intractable to deri
the canonical form of the catastrophe function analytica
from the original energy functionalE in such a high-
dimensional system. Instead, we first propose the functio

FIG. 1. The energy~a! and the eigenvalue~b! as a function of
the bifurcation parameterx512N/Ncr .
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form of the catastrophe function from the GPEF, and de
mine the scaling parameters by numerical fitting. The Tay
expansion of the GPEF aroundF0 andNcr , whereF0 is the
solution of the GPE at the bifurcation pointNcr , gives

E@F,x#5E0@F0,0#2xNcrA3(
l

~f l
0!4

l 2

1NcrF2x4A3(
l

~f l
0!3

l 2
df l1dF8THpro jdF8

2x6A3(
l

~f l
0!2

l 2
df l

21~12x!4A3(
l

~f l
0!

l 2
df l

3

1~12x!A3(
l

df l
4

l 2 G , ~4!

wheredF5PdF8, andx is the control parameter defined a
x512N/Ncr . Notice that those fluctuations that satisfy th
constraint are allowed only, by projectingdF8 to the con-
straint subspace. Next, using a linear transformationdF
5( l 52Qlel

l
pro j, whereQl5dF•el

l
pro j, Eq. ~4! can be rewrit-

ten as a function ofQl ( l 52, . . . ,L),

E@F,x#5E02ax1NcrF(
i 53

l i
pro jQi

21x(
i 52

KiQi

1x (
i j 52

Ki j QiQj1~12x! (
i jk 52

Ki jkQiQjQk

1~12x! (
i jkl 52

Ki jkl QiQjQkQl G , ~5!

where a5NcrA3( l(f l
0)4/ l 2520.802. The projection of

dF8 onto the constraint subspace eliminates all terms c
tainingQ1. Also the termQ2

2 does not appear in the first term
in the square bracket in Eq.~5! because ofl2

pro j50. Further-
more, Thom’s splitting lemma@13# enables us to split the
terms in Eq.~5! into two parts,

E@F,x#5E02ax1FNM~Q2!1FM@Q3 , . . . ,QL#

5E02ax1bxQ21gxQ2
21d~12x!Q2

3

1h~12x!Q2
41FM@Q3 , . . . ,QL#, ~6!

whereFNM is the non-Morse function written in a polyno
mial form of Q2 with undetermined coefficients, andFM is
the Morse function depending onQl ( l 53, . . . ). Thebasic
idea of our analysis is to reduceE02ax1FNM to the catas-
trophe function with appropriate scaling parameters. HereQ2
is a critical amplitude measuring how far is the system fro
the bifurcation point. We propose the form of the catastrop
function F as

F@Q2#5E02ax1bxk3Q21gxk2Q2
2

1d~12x!kQ2
31h~12x!Q2

4 , ~7!
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where b, g, d, h, and k are to be determined from th
numerical solutions. The parameterk is introduced for the
correct scaling of energy. Here we would like to emphas
that the catastrophe functionF@Q2# does not have terms o
degree higher than 4 with respect toQ2, since the GPEF ha
up to quartic nonlinear terms@see Eq.~4!#.

From the stationary condition]F/]Q250, we obtain the
following three solutions that correspond to the critical so
tions of Eq.~7!:

Q2
05k

p

3 F112A11B1t cosS 1

3
tan21

AG~ t !

11B2t D G
5k

p

3
@11Z0#,

Q2
65kQ̃2

6

5k
p

3
@11Z0/2„216A12~2p/3Z0!3~11B2t !…#,

~8!

where B1523q/p2, B252(27/2p3)(pq/31r ), and G(t)
5(3B122B2)t1(3B1

22B2
2)t21B1

3t3, t5x/(12x). Notice
that Q2

0 has no physical meaning since it approacheskp as
x→0, which is nonvanishing. Since the critical amplitu
Q2 corresponds to the order parameter measuring the
tance from the bifurcation point, it should be zero at t
bifurcation point. In Eq.~8!, Q2

1 andQ2
2 correspond to the

stable and unstable branches of Eq.~3!, respectively. Let us
defineDQ

6(x) as (Fx2F0)•el
2
pro j, whereFx is the solution

of Eq. ~3! for a certain value of control parameterx. Then the
parametersp, B1, andB2 are obtained by fittingQ̃2

6 to the
numerically computedDQ

6(x) for the stable ~unstable!
branch. Still the value ofk remains to be determined from
the scaling of the energy. In Fig. 2~a!, we plot Q̃2

6 and
DQ

6(x) for the stable and unstable branches with respect tx,

respectively. TheQ̃2
6 shows good agreements with the n

merically obtainedDQ
6(x) including asymmetric behavior

for a wide range ofx (,0.03). The eigenvaluesl6 are ob-
tained by differentiating Eq.~7! twice with respect toQ2,

l6512Ncrj~12x!@qt/322p/3Q̃2
61~Q̃2

6!2#, ~9!

wherej5hk2. Herej is determined by identifying the nu
merical values ofl2

pro j for the stable branch withl1. We
confirmed that the samej is obtained by identifyingl2

pro j of
the unstable branch withl2. Both l1 andl2 are compared
with exact l2

pro j obtained from the branches of stable a
unstable solutions, respectively, in Fig. 2~b!. Finally, the pa-
rameterk is determined by fitting

F@Q2
1#5E02ax1~12x!jk2@4rtQ̃2

112qt~Q̃2
1!2

24p/3~Q̃2
1!31~Q̃2

1!4#
01720
e
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to E1 of the stable branch. Figure 2~c! shows the profiles of
F@Q2

6# andE6 as a function ofx. The numerical values o
the coefficients and scaling parameter areb520.6853, g
51.345, d50.6852, h51.16, andk51.418. We plot the
catastrophe functionF@Q2# as a function ofQ2 in Fig. 3 as
control parameterx varies. TheF shows three optimum
points~local maximum, minimum, and global maximum! for
x.0, two optimum points~saddle and global maximum! for
x50, and one global maximum point forx,0. For whole
range ofx, the global maximum corresponding toQ2

0 does
not correspond to any physically meaningful state. The lo
structure ofF aroundQ250 shows the characteristic beha
ior of collapse of attractive BEC. At the critical point, th
local minimum and maximum, which represent the sta
(Q2

1) and unstable (Q2
2) solutions of Eq.~8!, are merged

into one, and disappear forN.Ncr .
Notice that quadratic and quartic terms with respect toQ2

in Eq. ~7! are proportional to;x2, whereas linear and cubi
terms are proportional to;x3/2, sinceQ2(x);x1/2 for x!1.
Therefore, within vary narrow range ofx, our scaling form

FIG. 2. ~a! Q̃2 as a function of the bifurcation parameterx. The
solid and dashed lines correspond to fitted results for the stable
unstable branches, respectively. The filled squares and open c
correspond to a numerical computation for the stable and unst
branches, respectively.~b! The eigenvaluel2

pro j as a function ofx.
~c! The energy as a function ofx.
1-3
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can be reduced to the same form predicted by the HSN
furcation, such asQ2

6;6Ax, l6;6Ax, and DE5E2

2E1;x3/2 by neglecting quadratic and quartic terms w
respect toQ2 in Eq. ~7!. Next we show that Eq.~7! can be
reduced to a canonical form of the fold catastrophe by
nonlinear transformation ofQ2. For this purpose, we appl
locally diffeomorphic nonlinear transformation,Q2(y)5y
1(n52Dnyn. By substitutingQ2(y) into Eq. ~7! and equat-
ing the coefficients ofyn, we haveF@y#5E02ax1h(1
2x)(n51Fn(t)yn, where

F15b̃, F25b̃D21g̃,

FIG. 3. The catastrophe functionF as a function ofQ2 with
varying x. At x50, F has a saddle point atQ250. For x.0, F
shows asymmetric behavior aroundQ250 with a local maximum
and minimum. The global maximum aroundQ250.5 is an unphysi-
cal state.
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F35b̃D312g̃D21 d̃,

F45b̃D41g̃~2D31D2
2!13d̃D211,

F55b̃D512g̃D413d̃~D31D2
2!14D2 .

Here, b̃5bk3/ht, g̃5gk2/ht, and d̃5dk/h. The point to
be stressed here is that for whole range ofx, the implicit
function theorem guarantees the existence of a smooth
vertible transformationQ2(y), which transforms away al
terms of degree greater than 3. Att50, F@y# reduces to
E02dky3 by choosing a properDn . OnceD2 is determined
as 21/3d̃ from F450, the transformation coefficientsDn
can be chosen to get rid of the term proportional toyn in
F@y# for n.3. For tÞ0, all coefficientsDn (n.2) are well
defined. First, we setD252g̃/b̃ to remove the quadratic
term inF@y#. For arbitraryD3 we can makeFn (n.4) to be
zero by choosing a properDn (n.4). The resultingF(y)
becomes

E02ax1bxk3y1@~bk3D322g2k/b!x1dk~12x!#y3.

By selectingD352g2/(bk)2 the canonical form of the fold
catastrophe is obtained asF(y)5E02ax1bxk3y1d(1
2x)ky3 with a new critical amplitudey.

This work was supported in part by BK21, and in part
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