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Kawasaki-type dynamics: Diffusion in the kinetic Gaussian model
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In this Brief Report, we retain the basic idea and at the same time generalize Kawasaki’s dynamics, the
spin-pair exchange mechanism, to a spin-pair redistribution mechanism, and present a normalized redistribu-
tion probability. This serves to unite various order-parameter-conserved processes into a universal framework
in microscopics and provides the basis for further treatment. As an example of the applications, we treated the
kinetic Gaussian model and obtained the exact diffusion equation. We observed critical slowing down near the
critical point and found that the critical dynamic exponentz51/v52 is independent of space dimensionality
and the assumed mechanism, whether Glauber type or Kawasaki type.
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Irreversible dynamic systems exhibit complicated but
teresting nonequilibrium phenomena near the critical po
In spite of their complexity, the interesting dynamic critic
behaviors have attracted a lot of researchers for many
cades. Within the vast body of literature, pioneering wo
completed by Glauber@1# and Kawasaki@2# has been re-
garded as a milestone. Great progress has been achieved
the application of Glauber’s single-spin-flip mechanism a
Kawasaki’s spin-pair exchange mechanism, which h
proved to catch the inherent essential process.

Kawasaki’s dynamics deals with a system consisting of
array ofN coupled spins. The coupling between the spins
represented by a set of probabilities of spin exchange.
tially, the focus was on the Ising model. The spins may
change with their nearest neighbors, and in this way the
tem evolves while the total spin remains conserved. In la
studies the idea of exchange has proved very successful
catches the essential nature of the process. As the b
mechanism in order-parameter-conserved processes, it
important applications in Ising@3# and Ising-like models
such as the lattice gas model@4#, the Blume-Emery-Griffiths
model @5#, and others@6#.

However, its initial embodiment was closely tied up wi
the simplicity of the Ising model, in which the spins can on
take two values,61, and there exist only nearest-neighb
interactions. It turned to be limited when applied to oth
more complicated systems. The same situation exists
Glauber’s dynamics. Recently Zhu and Yang successf
generalized Glauber’s single-spin-flip mechanism to a sin
spin transition mechanism and gave a normalized versio
the transition probability@7#. Applications yielded encourag
ing results@7,8#. In this article, along the same line, we reta
the basic idea and at the same time generalize Kawas
dynamics, the spin-pair exchange mechanism, to a spin-
redistribution mechanism, also with a normalized redistrib
tion probability.
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The limit is to be removed and the spins may take vario
discrete values~discrete-spin model! or continuous values
~continuous-spin model!. Because in the Ising model spin
can only be11 or 21, simple direct exchange may b
enough to describe the way the system evolves. In o
different models, such as the Gaussian model, Potts mo
or XY model, this simple picture may not be as capable.
the other hand, as mentioned above, the conservation o
order parameter has been regarded as the most impo
feature of this class of processes~and a necessary result o
the exchange mechanism!. Based on these considerations,
a generalized mechanism, two neighboring spinssk and
sk11 no longer merely exchange with each other. Inste
they may take any valuesŝk and ŝk11 as long as their sum
remains conserved; their sum is redistributed, and we
this spin-pair redistribution.

The probability distribution functionP(s1 , . . . ,sN ;t),
or simply P($s%;t), denotes the probability of theN-spin
system being in the state (s1 , . . . ,sN), or simply $s%, at
time t. Wjl (s js l→ŝ j ŝ l) is the probability per unit time tha
two neighboring spinss j ands l are redistributed while the
others remain unchanged. Then, on the supposition of ne
boring spin-pair redistributions, we have

d

dt
P~$s%;t !5(̂

j l &
(

ŝ j ,ŝ l

$2Wjl ~s js l→ŝ j ŝ l !P~$s%;t !

1Wjl ~ ŝ j ŝ l→s js l !P~$s iÞ j ,l%,ŝ j ,ŝ l ;t !%.

~1!

This is a probability equation, in which the first term on th
right-hand side denotes the decrease of the probability di
bution functionP($s%;t) per unit time, due to the redistri
bution of the spin pair from initiallys js l to various values
ŝ j ŝ l ; and the second term denotes the contrary situat
~Clearly, in Ising and Ising-like systems, it does become K
wasaki’s picture.! We shall refer to Eq.~1! as the master
equation since its solution would contain the most compl
description of the system.
©2002 The American Physical Society02-1
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The key to the master equation is the redistribution~or
exchange, flip, transition, etc.! probability. Usually it cannot
be uniquely determined by the detailed balance condit
and thus in Kawasaki’s and Glauber’s pioneering work so
arbitrariness remained. We hope to make our choice of
spin-pair redistribution probability able to contain the orig
nal form in the specific Ising model, and applicable to oth
various spin systems, while at the same time clearer
more definite. Now we consider it in both mathematical a
physical respects. In mathematics, generally speaking,
probability must be positive and normalized; in physics,
often require that a system in thermodynamic equilibriu
satisfy the detailed balance condition; the probability sho
also be ergodic as long as the total spin remains conser
Based on these considerations, for arbitrary neighboringj th
and l th spins, the redistribution probabilityWjl should sat-
isfy the following conditions.

~a! Ergodicity, positivity, and conservation of spin:

Wjl ~s js l→ŝ j ŝ l !H .0, ; ŝ j1ŝ l5s j1s l

50, ; ŝ j1ŝ lÞs j1s l .

~b! Normalization:

(
ŝ j ,ŝ l

Wjl ~s js l→ŝ j ŝ l !51.

~c! Detailed balance:

Wjl ~s js l→ŝ j ŝ l !

Wjl ~ ŝ j ŝ l→s js l !
5

Peq~s1 , . . . ,ŝ j ,ŝ l , . . . ,sN!

Peq~s1 , . . . ,s j ,s l , . . . ,sN!
,

wherePeq is the equilibrium distribution function.
Although the redistribution probabilities are still not d

termined uniquely by the above restrictions, there is l
room left. The consideration that we use is similar to tha
the generalization of Glauber’s dynamics@7#, that the redis-
tribution of a neighboring pair depends merely on the m
mentary values of the surrounding spins and the influenc
the heat bath. Based on this, we can similarly assume tha
redistribution probabilityWjl depends only on the hea
Boltzmann factor of the system,

Wjl ~s js l→ŝ j ŝ l !5
1

Qjl
ds j 1s l ,ŝ j 1ŝ l

3exp@2bHj l ~ ŝ j ,ŝ l ,$sm%mÞ j ,l !#,
~2!

where the factorQjl can be determined by the normalizatio
condition. Compared with Kawasaki’s expression, Eq.~2! is
a normalized version. In his expression of the excha
probability, there is ana assumed to be a constant. In th
Ising model, redistribution is in fact exchange and actua
our expression is only a definite selection for constanta by
extra considerations.

Usually, we are interested in local magnetization. It
defined as
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qk~ t !5^sk~ t !&5(
$s%

skP~$s%;t !. ~3!

According to the definition~3! and the master equation~1!,
and using the normalization condition~b!, the time-evolving
equation ofqk(t) can be derived as

d

dt
qk~ t !522dqk~ t !1(

$s%
(
w

F (
ŝk ,ŝk1w

ŝk

3Wk,k1w~sksk1w→ŝkŝk1w!GP~$s%;t !, ~4!

whered is the system dimensionality, and(w means sum-
mation taken over the nearest neighbors~clearly it is related
to the dimensionality, too!.

Kawasaki’s exchange mechanism was initially design
for study of the diffusion constant, and he himself obtain
an approximate result for the Ising model by first deriving
expression for the spin flux@2#. As an application of the
redistribution mechanism, we will now study the same ph
nomenon in the kinetic Gaussian model, while our method
a direct one.

The Gaussian model, proposed by Berlin and Kac initia
in order to make the Ising model more tractable, is
continuous-spin model. It has the same Hamiltonian form
the Ising model~three dimensional!,

2bH5K (
i , j ,k51

N

(
w

s i jk~s i 1w, jk1s i j 1w,k1s i j ,k1w!. ~5!

Compared with the Ising model, it has two extensions. Fi
the spinss i jk can take any real value between (2`,1`).
Second, to prevent the spins from tending to infinity, t
probability of finding a given spin betweens i jk and s i jk
1ds i jk is assumed to be the Gaussian-type distribution

f ~s i jk !ds i jk5A b

2p
expS 2

b

2
s i jk

2 Dds i jk ,

whereb is a distribution constant independent of tempe
ture. Although it is an extension of the Ising model, t
Gaussian model is quite different. In the equilibrium case,
translationally invariant lattices the Gaussian model is
actly solvable, and later as a starting point to study the
solvable models it has also been investigated with mean fi
theory and the momentum-space renormalization-gr
method.

In the three-dimensional~3D! kinetic Gaussian model
there are six combined terms in the 3Dtype time-evolving
equation of the local magnetization, Eq.~4!. Because the
spins take continuous values, the summation for the s
value turns into the integration
2-2
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(
s

→E
2`

`

f ~s!ds.

Because of its length, here we give only the results:

(
ŝ i jk ,ŝ i 61,j ,k

ŝ i jkWi , j ,k; i 61,j ,k~s i jks i 61,j ,k→ŝ i jk ŝ i 61,j ,k!5
1

2~b1K !
@K~s i , j 11,k1s i 71,j ,k1s i , j 21,k1s i , j ,k211s i , j ,k111s i jk

1s i 61,j ,k2s i 61,j 11,k2s i 62,j ,k2s i 61,j 21,k2s i 61,j ,k11

2s i 61,j ,k21)1b~s i jk1s i 61,j ,k!],

(
ŝ i jk ,ŝ i , j 61,k

ŝ i jkWi , j ,k; i , j 61,k~s i jks i , j 61,k→ŝ i jk ŝ i , j 61,k!5
1

2~b1K !
@K~s i , j ,k111s i , j 71,k1s i , j ,k211s i 21,j ,k1s i 11,j ,k1s i jk

1s i , j 61,k2s i , j 61,k112s i , j 62,k2s i , j 61,k212s i 11,j 61,k

2s i 21,j 61,k)1b~s i jk1s i , j 61,k!],

(
ŝ i jk ,ŝ i , j ,k61

ŝ i jkWi , j ,k; i , j ,k61~s i jks i , j ,k61→ŝ i jk ŝ i , j ,k61!5
1

2~b1K !
@K~s i 11,j ,k1s i , j ,k711s i 21,j ,k1s i , j 21,k1s i , j 11,k1s i jk

1s i , j ,k612s i 11,j ,k612s i , j ,k622s i 21,j ,k612s i , j 11,k61

2s i , j 21,k61)1b~s i jk1s i , j ,k61!],

Substituting them into the time-evolving equation of the local magnetization~4!, we get

d

dt
qi jk~ t !5

1

2~b1K !
b$@~qi 11,j ,k2qi jk !2~qi jk2qi 21,j ,k!#1@~qi , j 11,k2qi jk !2~qi jk2qi , j 21,k!#1@~qi , j ,k112qi jk !2~qi jk

2qi , j ,k21!#%1
K

2~b1K !
@2~2qi 21,j ,k2qi 21,j 11,k2qi 21,j 21,k!1~2qi 21,j ,k2qi jk2qi 22,j ,k!12~2qi 11,j ,k

2qi 11,j 11,k2qi 11,j 21,k!1~2qi 11,j ,k2qi jk2qi 12,j ,k!12~2qi , j 21,k2qi , j 21,k112qi , j 21,k21!1~2qi , j 21,k2qi jk

2qi , j 22,k!12~2qi , j 11,k2qi , j 11,k112qi , j 11,k21!1~2qi , j 11,k2qi jk2qi , j 12,k!12~2qi , j ,k212qi 11,j ,k21

2qi 21,j ,k21!1~2qi , j ,k212qi jk2qi , j ,k22!12~2qi , j ,k112qi 11,j ,k112qi 21,j ,k11!1~2qi , j ,k112qi jk2qi , j ,k12!#.

~6!

With lattice constanta we can transform the above equation to

d

dt
q~ t !5

a2

2~b1K !
b~¹x

21¹y
21¹z

2!q~ t !2
a2

2~b1K !
K@2~2¹y

21¹x
2!12~2¹z

21¹y
2!12~2¹x

21¹z
2!#q~ t !

5
3a2

b1K S b

6
2K D¹2q~ t !. ~7!
b

n
is

a
he
a-
It is of the form of a diffusion equation:

dq~ t !

dt
5D¹2q~ t !, D5

3a2

b1K S b

6
2K Da2.

The one- and two-dimensional Gaussian models can
treated in the same way. Here we give only the results,

d

dt
q~ t !5

da2

b1K S b

2d
2K D¹2q, ~8!
01710
e

whered is the system dimensionality. This diffusion equatio
reveals that the diffusion will get much slower when it
near its critical point, which is already known to beKc
5J/kBTc5b/2d. The linear equations we obtained for
single spin can be directly solved, but the solution of t
diffusion equations may already give us satisfying inform
tion. For example, in the 1D case, we have

q~x,t !5
1

2ADpt
E

2`

`

q~j,0!e2(x2j)2/4Dtdj.
2-3



p

ith

t
ie

ha
t
m

ys
in
x
h
at
lit
n
n,
an
re
n
to
K

re
rl
ri

he
u
th
p
lf-
c

ct
a-
tin
he

ub-
si-
ha-

wo
ay
con-

of
d-
ich
re-
the
n
dy-
and

el,

-
nda-
in a
g-
o

d
the
nd
is

ion
ough
ion
pro-
ple,

ce
as-

tion
the

k in
ent,
rue
gs

ce

BRIEF REPORTS PHYSICAL REVIEW E66, 017102 ~2002!
In a specific example of the diffusion of a Gaussian ty
packetq(j,0)5e2j2

, one will obtain

q~x,t !5A 1

11t/t
expF2

x2

11t/tG ,
~9!

t5
1

4D
5F 4a2

b1K S b

2
2K D G21

.

When K→Kc5b/2, D→0 and the relaxation timet→`,
and this is a typical critical slowing down phenomenon. W
the correlation length critical exponentn51/2 and the dy-
namical scaling hypothesest;jz, j;uT2Tcu2n, one can
obtain the dynamic critical exponentz52. The same resul
can be obtained for 2D and 3D models. In earlier stud
@7,8# the same resultz51/v52 for any dimensionality was
obtained with a Glauber-type mechanism. Thus we find t
in the kinetic Gaussian model,the critical dynamic exponen
is independent of space dimensionality and the dyna
mechanism.

To summarize, in this Brief Report, we presented a s
tematic formulation of the Kawasaki-type dynamics: sp
pair redistribution. As a natural generalization of the e
change mechanism, it gives the system more freedom w
keeping the order parameter conserved. The master equ
has been given, with a normalized redistribution probabi
determined by the heat Boltzmann factor. The presentatio
this probability, which is the key of the whole formulatio
makes the mechanism mathematically well organized
physically meaningful. In much of the earlier work there a
already ideas of ‘‘redistribution’’ and these efforts ofte
turned out to be rather fruitful. This Brief Report serves
provide a general foundation upon which the generalized
wasaki dynamics becomes universal and can bedirectly ap-
plied to microscopic systems. Without any extra requi
ments, it has an advantage compared with some ea
approaches covering the same ground, such as nume
Ginzburg-Landau approaches.

The formulation is compact in mathematics, while on t
other hand it is also quite open. People are able to introd
other elements into it. For example, one can easily give
mathematical form of the competing dynamics, Glauber ty
and Kawasaki type, both with a probability, to study se
organization phenomena in a wide range of systems. One
also modify the mechanism by some means and dire
study the small-world network effect in nonequilibrium st
tistical dynamics. We have already obtained some interes
results, which will be reported in a later paper as a furt
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Up to this point we have successfully generalized Gla

er’s single-spin-flipping mechanism to a single-spin tran
tion mechanism, and Kawasaki’s spin-pair exchange mec
nism to a spin-pair redistribution mechanism. These t
generalizations are of similar mathematical form and m
become counterparts of each other in nonconserved and
served dynamics, respectively.

The formulation of the mechanism is the chief purpose
this Brief Report. As an example of its applications we stu
ied the diffusion process in a kinetic Gaussian model, wh
people were previously unable to treat. The temperatu
dependent diffusion coefficient, which becomes zero at
critical point, reveals critical slowing down in the diffusio
process. In this specific case, interestingly, the critical
namic exponent is independent of space dimensionality
the dynamic mechanism. The redistribution mechanism~and
transition! can also be directly applied to the Potts mod
XY model, Heisenberg model, and many other types~in prin-
ciple arbitrary!. Although an exact treatment may be diffi
cult, other methods can be used later based on this fou
tion. There have been many such efforts. For example,
Monte Carlo simulation of the three-dimensional ferroma
netic Heisenberg model@9#, Zhang has suggested that tw
neighboring spinss i ands j may rotate with their conserve
sum being the axis. He found that this scheme enabled
system to evolve to thermodynamic equilibrium faster, a
commented that it might be more favorable in reality. This
just a successful exploration of the spin-pair redistribut
mechanism, and there are many other such examples, th
assuming different forms. At the same time the redistribut
mechanism can be almost directly applied to conserved
cesses other than those in spin-lattice models; for exam
the relaxation of granular material under shaking~mass con-
served!, or the activities of particles in space~particle num-
ber conserved!. One may first present an analogous latti
model and define the parameter. Then one can write the m
ter equation, modified if necessary, and the evolving equa
of the parameter one is interested in. This serves to unite
various conserved processes into a universal framewor
microscopics, and provides the basis for further treatm
either exact, approximate, or Monte Carlo. The same is t
for the single-spin transition mechanism. This in turn brin
more significance back to the original mechanisms.
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