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Kawasaki-type dynamics: Diffusion in the kinetic Gaussian model
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In this Brief Report, we retain the basic idea and at the same time generalize Kawasaki's dynamics, the
spin-pair exchange mechanism, to a spin-pair redistribution mechanism, and present a normalized redistribu-
tion probability. This serves to unite various order-parameter-conserved processes into a universal framework
in microscopics and provides the basis for further treatment. As an example of the applications, we treated the
kinetic Gaussian model and obtained the exact diffusion equation. We observed critical slowing down near the
critical point and found that the critical dynamic exponertl/v =2 is independent of space dimensionality
and the assumed mechanism, whether Glauber type or Kawasaki type.
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Irreversible dynamic systems exhibit complicated but in- The limit is to be removed and the spins may take various
teresting nonequilibrium phenomena near the critical pointdiscrete valuegdiscrete-spin modglor continuous values
In spite of their complexity, the interesting dynamic critical (continuous-spin modgl Because in the Ising model spins
behaviors have attracted a lot of researchers for many dean only be+1 or —1, simple direct exchange may be
cades. Within the vast body of literature, pioneering workenough to describe the way the system evolves. In other
completed by Glaubefl] and Kawasaki2] has been re- different models, such as the Gaussian model, Potts model,
garded as a milestone. Great progress has been achieved withXY model, this simple picture may not be as capable. On
the application of Glauber’s single-spin-flip mechanism andhe other hand, as mentioned above, the conservation of the
Kawasaki's spin-pair exchange mechanism, which hav@rder parameter has been regarded as the most important
proved to catch the inherent essential process. feature of this class of process@nd a necessary result of

Kawasaki's dynamics deals with a system consisting of arthe exchange mechanignBased on these considerations, in
array ofN coupled spins. The coupling between the spins isa generalized mechanism, two neighboring spins and
represented by a set of probabilities of spin exchange. Iniey+1 no longer merely exchange with each other. Instead,
tially, the focus was on the Ising model. The spins may exthey may take any valua%k and (}k+1 as long as their sum
change with their nearest neighbors, and in this way the sysemains conserved; their sum is redistributed, and we call
tem evolves while the total spin remains conserved. In latethis spin-pair redistribution.
studies the idea of exchange has proved very successful as it The probability distribution functiorP(o 4, ... ,on;t),
catches the essential nature of the process. As the basi¢ simply P({c};t), denotes the probability of thi-spin
mechanism in .ordgr—pa_ramgter-conserve_d processes, it hggstem being in the stater(, ...,oy), or simply {a}, at
important applications in Ising3] and Ising-like models e ¢ W (aj0y— ajay) is the probability per unit time that
such as the lattice gas modél, the Blume-Emery-Griffiths two neighboring spingr; and o are redistributed while the

model[5], anq 0_”‘_?@6]- . _ .. others remain unchanged. Then, on the supposition of neigh-
However, its initial embodiment was closely tied up with boring spin-pair redistributions, we have

the simplicity of the Ising model, in which the spins can only
take two values;+ 1, and there exist only nearest-neighbor
interactions. It turned to be limited when applied to other _P({U}.t):z
more complicated systems. The same situation exists in dt ’ 4
Glauber’s dynamics. Recently Zhu and Yang successfully
generalized Glauber’s single-spin-flip mechanism to a single- +W, (00— 0j0)P{Tij 1}, 05,0150}
spin transition mechanism and gave a normalized version of )
the transition probability7]. Applications yielded encourag-
ing resulty 7,8]. In this article, along the same line, we retain
the basic idea and at the same time generalize KawasakiEhis is a probability equation, in which the first term on the
dynamiCS, the Spin_pair exchange mechanism, to a spin_paliight'hand side denotes the decrease of the probablllty distri-
redistribution mechanism, also with a normalized redistribu-bution functionP({c};t) per unit time, due to the redistri-
tion probability. bution of the spin pair from initiallyo; o to various values
&jfr,; and the second term denotes the contrary situation.
(Clearly, in Ising and Ising-like systems, it does become Ka-

/ {_WJ|(O'JO'|_>&J(}I)P({O-}'t)

g ,(T|
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The key to the master equation is the redistribution
exchange, flip, transition, ejcprobability. Usually it cannot a(D)=(o(1)=2 oxP{a}t). 3
be uniquely determined by the detailed balance condition, {o}
and thus in Kawasaki's and Glauber’s pioneering work some
arbitrariness remained. We hope to make our choice of th@ccording to the definitior(3) and the master equatidi),
spin-pair redistribution probability able to contain the origi- and using the normalization conditigh), the time-evolving
nal form in the specific Ising model, and applicable to otherequation ofg,(t) can be derived as
various spin systems, while at the same time clearer and
more definite. Now we consider it in both mathematical and
physical respects. In mathematics, generally speaking, the = _ ~
probability must be positive and normalized; in physics, we dtqk(t)_ 2qu(t)+% % L g Ik
often require that a system in thermodynamic equilibrium KT
satisfy the detailed balance condition; the probability should -~ A
also be ergodic as long as the total spin remains conserved. X Wi k+w( Tk w— Ok Ok +w)
Based on these considerations, for arbitrary neighbajihg
andIth spins, the redistribution probability/;; should sat-

P{chit), (4

isfy the following conditions. _ _ whered is the system dimensionality, ari, means sum-
(a) Ergodicity, positivity, and conservation of spin: mation taken over the nearest neighb@igarly it is related
L to the dimensionality, tgo
-~ | =0,V ojto=0jto Kawasaki's exchange mechanism was initially designed
Wi(ojo—ojo)) ~n for study of the diffusion constant, and he himself obtained
an approximate result for the Ising model by first deriving an
(b) Normalization: expression for the spin fluk2]. As an application of the

redistribution mechanism, we will now study the same phe-
o nomenon in the kinetic Gaussian model, while our method is
2 W, (ojo1—0j01)=1. a direct one.
7501 The Gaussian model, proposed by Berlin and Kac initially
in order to make the Ising model more tractable, is a
continuous-spin model. It has the same Hamiltonian form as
the Ising modelthree dimensional

(c) Detailed balance:

Wj|(0'j0'|—>(}j(}|) _ Peq(O'l, PP '(}J ,(}|, P ,O'N)
WJ'|((}]'(}|—>O'J'O'|) Peq((fl,...,0'j,0'|,...,0'N)' N
whereP, is the equilibrium distribution function. —BH= KH%:l % Tijk(Tirw ikt Tijrwk T Oij kew)- (5

Although the redistribution probabilities are still not de-
termined uniquely by the above restrictions, there is less ) ) ) ) )
room left. The consideration that we use is similar to that inCompared with the Ising model, it has two extensions. First,
the generalization of Glauber's dynamid, that the redis-  the spinsoy; can take any real value betweer €, +).
tribution of a neighboring pair depends merely on the mo-S€cond, to prevent the spins from tending to infinity, the
mentary values of the surrounding spins and the influence dirobability of finding a given spin betweem;;, and o,
the heat bath. Based on this, we can similarly assume that thedoijx is assumed to be the Gaussian-type distribution
redistribution probability W;, depends only on the heat

Boltzmann factor of the system, b b
f(Uijk)dUijk: —ex;{——o?jk)daijk,
1 2 2

Wj|(0'10'|—>0'10'|):Q—“5<rj+u,,<}j+z}|
whereb is a distribution constant independent of tempera-
Xexr{—BH“(&j 0 {Tmtmzi0], ture. Although it_is an e>_<tension of the Is_ir_lg_model, the
Gaussian model is quite different. In the equilibrium case, on
translationally invariant lattices the Gaussian model is ex-
where the factoQ; can be determined by the normalization actly solvable, and later as a starting point to study the un-
condition. Compared with Kawasaki's expression, E).is  solvable models it has also been investigated with mean field
a normalized version. In his expression of the exchange¢heory and the momentum-space renormalization-group
probability, there is are assumed to be a constant. In the method.
Ising model, redistribution is in fact exchange and actually In the three-dimensional3D) kinetic Gaussian model,
our expression is only a definite selection for constarily  there are six combined terms in the 3{pe time-evolving

extra considerations. equation of the local magnetization, E@l). Because the
Usually, we are interested in local magnetization. It isspins take continuous values, the summation for the spin
defined as value turns into the integration
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; —>ficf((r)d0.

Because of its length, here we give only the results:

A E TijkWi j i+ 1) kK TijkTi+ 1 k= Tijk Ti+1j k) = 20+ K) [K(oijr1kT Oiz1jkt Oij—1kT Tijk-1T i jkr1t Tijk
Tijk Tix1 k

tOi1j kT Tiz1j+1k Oix2jk~ Tiz1j—1k— Tix1jk+1
—0j+1j k1) TB(Tijk T Ti+1j0],

A 2 TijkWi j ki j= 1k Tijk T j+ 16— Tijk Ti j= 1) = 2(b+K) [K(oijkr1T0ijsikt Tijx-1t Tim1jxt Tir1jct Tij
Tijk T, j+ 1k

1O 21k~ Tijx1k+1 00 jz2k~ O jz1k—1" Ti+1j+1k
—0j_1j+1) TB(Tjjt oy j=1)],

> O'ijkWi,j,k;i,j,kil(o'ijka'i,j,kt1_>0'ijk0'i,j,kil)=—2(b+K) [K(oit1jxtoijrs1t oictjct oijo1xt oijrixt Tijk

Oijk +0i j k+1
T O k1T Oi+1j k=1 Oijke2" 0i—1jkx17 Ojj+1kx1

=0 j-1k=1) T B(Tjjct oy j k1],

Substituting them into the time-evolving equation of the local magnetizétiprwe get
d 1
&qijk(t): z(b—_'_K)b{[(qurl,j,k_qijk)_(qijk_qifl,j,k)]+[(qi,j+l,k_qijk)_(qijk_qi,jfl,k)]+[(qi,j,k+1_qijk)_(qijk

K
—Qijk- ]t m[z(zqi—l,j,k_ch—l,j+1,k_Qi—l,j—l,k)+(ZQi—1,j,k_qijk_Qi—z,j,k)+2(ZQi+1,j,k
—Oit1jr1k— Gitrj—10) T (204 1)k~ Aijk— i+ 25,0 T2(20i jo 15— i j-1kr1— i j—1k-1) +(20i j—1x— ijx
=026 T 20200 j+ 1k Ui jrik+1—ij+1k—1) T (20 j+ 16— ik =i jr26) T2(20 j k-1~ i+ 1j.k-1

—Qi—1jk-1) T (20i j k-1 ijk =i jk-2) T 220 jkr 1= D+ 1,k 1~ Di—1j,k+2) T (200 j k1~ ijk =i jkr2) ]

(6)
With lattice constant we can transform the above equation to
Eq(t)=a—zb(szrszrvz)q(t)—a—zK[2(2V2+V2)+2(2v2+v2)+2(2V2+V2)]q(t)
dt 2(b+K) XLy Tz 2(b+K) y VX 2T Vy xT Vz
~3a* (b « o2 .
T b+K\6 a). 0
|
It is of the form of a diffusion equation: whered is the system dimensionality. This diffusion equation
reveals that the diffusion will get much slower when it is
dq(t) 5 3a% [b ) near its critical point, which is already known to &
g ~PVaa), D=plgK/an =J/kgT.=b/2d. The linear equations we obtained for a

single spin can be directly solved, but the solution of the

diffusion equations may already give us satisfying informa-
The one- and two-dimensional Gaussian models can bgon. For example, in the 1D case, we have

treated in the same way. Here we give only the results,
a2

at9M= ik

b _ 1 * ~ (x— £)24Dt
E—K)qu, ®) q(x,t) 2ijwq(é,o)e d¢.
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In a specific example of the diffusion of a Gaussian typeapplication.
packetq(g,O)zeffz, one will obtain Up to this point we have successfully generalized Glaub-

1 X2 gr’s singIe-spin—fIipping mecha_nism_to a.single—spin transi-

q(x,t)= / T50- ex;{ ~1¥0- tion mechanism, and Kawasaki’'s spin-pair exchange mecha-
nism to a spin-pair redistribution mechanism. These two

b 1 9 generalizations are of similar mathematical form and may
- K) become counterparts of each other in nonconserved and con-
2 served dynamics, respectively.
When K—K.=b/2, D—0 and the relaxation time—so, _The_ formulation of the mechanism is the_ chi_ef purpose of
and this is a typical critical slowing down phenomenon. With thiS Brief Report. As an example of its applications we stud-
the correlation length critical exponemt=1/2 and the dy- ied the diffusion process in a kinetic Gaussian model, which
namical scaling hypotheses~ &, &~|T—T.~*, one can people were pre_wously gqable to_treat. The temperature-
obtain the dynamic critical exponemt=2. The same result dependent diffusion coefficient, which becomes zero at the
can be obtained for 2D and 3D models. In earlier studiesritical point, reveals critical slowing down in the diffusion
[7,8] the same result= 1/ =2 for any dimensionality was Process. In this specific case, interestingly, the critical dy-
obtained with a Glauber-type mechanism. Thus we find thathamic exponent is independent of space dimensionality and
in the kinetic Gaussian modehe critical dynamic exponent the dynamic mechanism. The redistribution mechanisnu
is independent of space dimensionality and the dynamitransition can also be directly applied to the Potts model,
mechanism XY model, Heisenberg model, and many other ty(eprin-

To summarize, in this Brief Report, we presented a sysciple arbitrary. Although an exact treatment may be diffi-
tematic formulation of the Kawasaki-type dynamics: spin-cult, other methods can be used later based on this founda-
pair redistribution. As a natural generalization of the ex-tion. There have been many such efforts. For example, in a
change mechanism, it gives the system more freedom whilglonte Carlo simulation of the three-dimensional ferromag-
keeping the order parameter conserved. The master equatipatic Heisenberg mod¢B], Zhang has suggested that two
has begn given, with a normalized redistribution prObapi”tyneighboring spingr; anda; may rotate with their conserved
determined by the heat Boltzmann factor. The presentation ofym peing the axis. He found that this scheme enabled the
this probability, which is the key of the whole formulation, v stem to evolve to thermodynamic equilibrium faster, and
makes the mechanism mathematically well organized anfl,mented that it might be more favorable in reality. This is
physically meaningiul. In much of the earlier work there arejust a successful exploration of the spin-pair redistribution

already ideas of “redistribution” and these efforts often mechanism, and there are many other such examples, though

turned out to be rather fruitful. This Brief Report serves to . . . A
; . . . assuming different forms. At the same time the redistribution
provide a general foundation upon which the generalized Ka-

wasaki dynamics becomes universal and camlibectly ap- mechanism can be almos_t d|re_ctly a_pplled o conserved pro-
cesses other than those in spin-lattice models; for example,

plied to microscopic systems. Without any extra require- . X
ments, it has an advantage compared with some earlidp€ relaxation of granular material under shakingass con-

approaches covering the same ground, such as numericsgrved, or the activities of particles in spa¢particle num-
Ginzburg-Landau approaches. ber conservedd One may first present an analogous lattice

The formulation is compact in mathematics, while on themodel and define the parameter. Then one can write the mas-

other hand it is also quite open. People are able to introduct€r equation, modified if necessary, and the evolving equation
other elements into it. For example, one can easily give thef the parameter one is interested in. This serves to unite the
mathematical form of the competing dynamics, Glauber typeyarious conserved processes into a universal framework in
and Kawasaki type, both with a probability, to study self- microscopics, and provides the basis for further treatment,
organization phenomena in a wide range of systems. One caither exact, approximate, or Monte Carlo. The same is true
also modify the mechanism by some means and directlyor the single-spin transition mechanism. This in turn brings
study the small-world network effect in nonequilibrium sta- more significance back to the original mechanisms.

tistical dynamics. We have already obtained some interesting This work was supported by the National Natural Science
results, which will be reported in a later paper as a furthefFoundation of China under Grant No. 10075025.
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