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Numerical micropermeametry is performed on three-dimensional porous samples having a linear size of
approximately 3 mm and a resolution of 7/m. One of the samples is a microtomographic image of
Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific
surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical
model that mimics the processes of sedimentation, compaction, and diagenesis of Fontainebleau sandstone.
The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the
appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to
reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the
stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms
earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these
simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference
techniques. The accuracy of these two methods is discussed and compared, also with experiment.

DOI: 10.1103/PhysRevE.66.016702 PACS nunier02.70—c, 81.05.Rm, 83.85.Pt, 61.43.Gt

[. INTRODUCTION conclusions drawn previously from a purely geometrical
characterization of the same microstructurés

Almost all investigations of porous media focus on the The exact numerical calculation of transport parameters
prediction of effective material properties such as fluid perfor digitized three-dimensional samples remains a computa-
meability, electric or thermal conductivity, or elastic con- tionally demanding task, and only few studies exist that test
stantg1,2]. The knowledge or at least a reliable prediction ofthe accuracy of such calculations. Here, we compare the re-
these properties is of great interest in a wide field of technisults obtained by means of a finite differen¢®) method
cal applications ranging from petroleum engineefidgl, to  and a lattice-Boltzman(LB) algorithm. We begin our study
paper manufacturinfs], and contaminant transpdié]. The by calibrating both simulation methods against exact solu-
predictions are obtained either from approximate theorie§ions of the Stokes equation for straight tubes and cubic ar-
that link the physical properties to geometrical observablegiays of spheres. These calculations also serve to compare the
from geometrical models for which the physical problem canspeed of both methods. We then proceed to apply both algo-
be solved more easily, or from various cross property relatithms to the experimental sample and its three models.
tions, which relate the parameter in question to other physi-

cal transport parameters. _ , II. DEFINITION OF THE PROBLEM
In this context, the exact numerical calculation of trans-
port properties serves three purposgsiesting and valida- The problem to be solved is that of slow laminar flow

tion of theories and theoretical predictiori) comparison through a three-dimensional porous medium on a micro-
of geometrical models, andii) testing of faithfulness of scopic level. The three-dimensional microstructure of a two-
computerized tomographic imaging by comparing numeri{phase porous mediuth consisting of a pore phade and a
cally calculated transport parameters with their experimentamatrix or rock phasél with S=PUM is described in detall
values. by the characteristic functiony, of a single phaseG

Of particular interest for porous media is the permeability, e { M, P} with
and more precisely its fluctuations. These fluctuations are
important because they dominate the large-scale permeabil- 1 for XeG,
ity. For this reason it is important to collect as many micro- xe(X)=
permeametry measurements as possible. Experimental mi- 0 f
cropermeametry is costly and inaccurate. Hence exact nu-
merical calculations are becoming an interesting alternativén the following, X is the position vector of a cubic lattice,
for studying fluctuations in permeability. X=ax;6; +ax,€,+axz€;, with x=0,1,... M;—1, the

In this paper we compare the permeabilities of a threeunit vectorsé; of the Cartesian coordinate system, and the
dimensional computerized tomographic image of Fontainebgrid spacinga. The total number of lattice points is given by
leau sandstone and its three physical and stochastic recoN=MM,M .
struction models. We find that the stochastic models in The Reynolds numbers of interest in geophysical and
particular fail to reconstruct the fluid permeability of the petrophysical applications are usually much smaller than
original sandstone. This finding is in good agreement withunity [8] and hence it suffices to solve the Stokes equation.

@

or Xe&G.
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In the pore space geometry described by the characteristiquartz cement overgrowth. The sample dimensions are
function xp(X), the steady-state Stokes equation and the conM ; X M, X M 3= 255X 255X 255,

straint of incompressibility read The SA and GF samples are stochastic models with di-
. mensionsM ; X M, X M ;= 256X 256X 256. Both models re-
nAvU(X)—Vp(X)=0, XeP, (2)  construct the porosityy and the two-point correlation func-
tion of the original sandstone EX. This implies the
V.5(X)=0, XeP. 3 reconstruction of the specific surfa&y. However, due to

problems in the reconstruction procedure of the Gaussian
On the pore-matrix interfacel” we apply no-flow boundary field method, the porosity and the specific surface of the GF
conditions, model do not exactly match those of the original sandstone.
We find ¢=0.1354 for SA, andp=0.1421 for GF.

For a more detailed description of the modeling proce-
dures and a visualization of the microstructures, the reader is
referred to Ref[7] and the references therein. In the same
paper results of an extensive geometrical investigation of the
four samples are presented, which use both classical geomet-
ric quantities but also concepts introduced in local porosity
7(M;+1)a theory[12,13. The main findings in Refl7] were as fol-
g 5)  lows.

(1) None of the three models can reproduce the visual

Here the pressures at the inlet and the outlet surface a@PpPearance of the original sandstone. EX shows a granular
given byp;, andp,, as defined below in Eq¢16) and(19)  Structure of the matrix phase where single sand grains can

[48], respectively(- - - )¢z s denotes an average over all lat- €asily be identified. The matrix phase of DM is also clearly
tice points, and); =0 - &, . granular but with artificial, spherical grains. In both models

the matrix and the pore phase are very well connected, and
the pore-matrix interface is smooth. In contrast, the pore-
matrix interface of the stochastic models SA and GF is very
We investigate four different sampl8gsy, Spm, Sge, and  rough. Here, both phases are strongly scattered and exhibit
Ssa, denoted also as EX, DM, GF, and SA. The first sampldsolated clusters.
Sgx, or, in abbreviated form, EX, was obtained experimen- (2) The two-point correlation functions, Sy(r)
tally by means of computerized tomography from a core of=(x(X;) x(X,)) with r =|X; —X,|, of SA and GF show good
Fontainebleau sandstone. This sandstone is a popular refeigreement with the original sandstone except for minor de-
ence standard because of its exceptional chemical, crystalleiations at smalf in the case of GF. The correlation function
graphic, and microstructural simplicif®,10]. Fontainebleau of DM clearly deviates from that of EX. Moreover, it shows
sandstone consists of crystalline quartz grains that have beatrong anisotropy with respect to directiofis €,, andé;. A
eroded for long periods before being deposited in dunesnodified correlation function giving the conditional prob-
along shore lines during the Oligocene, i.e., roughly 30ability to find two points in pore space, which are also con-
x 10° years ago. It is well sorted containing grains of aroundnected by a path inside the pore space was measured and
200 wm in diameter. During its geological evolution, which discussed in Ref15]. Small but significant differences exist
is still not fully understood, the sand was cemented by silicsdbetween the samples. The experimental sample EX is more
crystallizing around the grains. Fontainebleau sandstone estable under the morphological operations of erosion and di-
hibits intergranular porosity ranging from 0.03 to roughly 0.3lation [15,16.
[10]. The computer-assisted microtomography was carried (3) The differences between the samples are most pro-
out on a microplug drilled from a larger original core. The nounced when comparing the geometrical connectivity of the
original core from which the microplug was taken had po-pore space. As a measure for the geometrical connectivity,
rosity ¢*=0.1484, permeability k*=1.3 D (1D we use the total fraction of percolating cglig(L) at scalel,
=0.987 um?), and formation factor 22.Xdimensionless introduced in local porosity theorfyi6], which is defined as
electrical resistivity 11]). The microtomographic dataset has the probability for a cubic subblock of sizeof the sample
dimensionM ; X M, X M ;= 299x 300X 300 with a resolution to percolate in all three coordinate directiofs Here, per-
of a=7.5 um, and porosityp=0.1355. The pore spadgy  colation in directioné; means that there exists a path lying
is visualized in Fig. 1 of Ref[7]. entirely in the pore space, which spans from one face of the
The three remaining samples are physical and stochastigubic subsample perpendiculardoto the opposite face. For
reconstruction models for the Fontainebleau sample EX. AIEX and DM the curves ops(L) nearly coincide while for
have the same lattice resolutiom=7.5 um, and approxi- the stochastic models SA and GF the curvegsg(fL) fall
mately the same porosity. The “diagenesis model” DM trieswell below that of the original sandstoiigee Fig. 13 in Ref.
to mimic the geological formation process of the natural[7]). Table | gives the values qf;(L) for L=60a. Again we
sandstone in three steps: the sedimentation of sphericéihd anisotropy in the DM model when we measure the prob-
grains, the compaction of the sediment, and the simulation adbility péi(L) for a subblock to percolate in directiogs.

U(X)=0, Xedl. 4

Darcy’s law permits us to compute thj¢h column of the
macroscopic permeability tensor from the microscopic solu
tion of the hydrodynamic problem Eq&)—(4) for a pres-
sure gradient applied along tié direction according to

kij:<Ui(i)>ies

Ill. SAMPLES
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TABLE |. Geometrical characteristics of the four sampl8g,
Ky, andTy, are specific surface, specific integral of mean curvature, Ap'(X)=
and specific integral of total curvature of the matrix phase, respec-
tively, f, is the fraction of percolating pore lattice points, and
p3(60a) is the probability of finding a cubic subblock of site  Thus, we arrive at the following algorithm:

1.
1e
AV (). (10)

=60a of the sample, which is percolating in all three directions. (1) Let v" and p" be the solution of the velocity and the
pressure field, respectively, at iteration stewith the maxi-
EX DM GF SA mum absolute erroe"=max_ | 7Av"(X)— Vp(X)|. From
7 0.1355 0.1356 01421 01354 U" andp"an gpproximate solutiosi* of the velocity field is
\ 1 calculated using Eq8).
S\’(M)(mmfz) 9.99 10.30 14.53 11.04 (2) Using the definition of the pressure correction, a new
KV(M)(mmfs) —151 —194 —449 —222 pressurep”'=p"+p’ is obtained from a solution of Eq.
Tv(M)(mm™) —2159  -2766 4334 14484 (10). This part of the algorithm consumes most of the com-
Fp(%) 99.35 99.23 79.16 62.73  putation time, because E¢L0) has to be solved for each
p3(60a) 0.9561  0.9647 03255  0.1695 jteration step. However, we found that it suffices to solve Eq.

(10) only up to an error

Geometrical connectivity is an indispensable precondition 1
for dynamical connectivity and physical transport. Hence, we g S ko n
) ) » maxAp’'(X)—-—=V-0*(X)| < ye",
expect to find a strong correlation between the total fraction P*(X) At Y ()| =ve
of percolating cellp;(L) and the macroscopic permeability
whose calculation is discussed next.

XeP

wherevy is an empirical factor. For the calculations presented
here, a value ofy in the range 0.0& y<0.1 seems to be

IV. THE NUMERICAL METHODS appropriate. We use a successive over-relaxation method to
solve Eq.(10). Of course it would be desirable to use more
sophisticated methods such as a multigrid method, but we
1. Algorithm could not find a general procedure to restrict the microstruc-
ture of the porous medium to a coarser grid without changing
the topology of the pore space.

A. The finite-difference method

Numerically we obtain the solution of Eq&)—(4) from
the infinite time limit of the time-dependent Stokes problem (3) From p’ andg* a new velocitys™* is calculated

using an iterative pressure-correction algoritfim,17). Dis- using Eq.(9). The algorithm terminates whesft* 1 is smaller

cretization in time of the time-dependent Stokes equation) .
yields than some given value.

The equations are spatially discretized using a marker-

5 L(R) = 57(R) and-cell(MAC) grid [18]. The pressure values are placed at

= pAT"(X)— Vp"tL(x), (6)  the centers of the grid cells. They coincide with the lattice

At points of the discretized characteristic functign. On each
face of a grid cell the velocity component perpendicular to

V.ght Yx)=0, (7) this face is located. The pore-matrix interfaide follows the

surface of the cubic grid cells. For velocity components per-

where the superscriptdenotes the iteration step. In our casePendicular to the interface the boundary condition, &g
the discretized time derivative on the left-hand side of Eq.
(6) has no physical meaning. In the long-time limit v, (X)=0, (12)
" 1(X)=¢"(X) holds, and we recover E@R).

Given the solutiong™ and p" at iteration stem, an ap-

proximate solutiony* for the velocity field is obtained from is implemented exactly. For parallel velocity components at

distancea/2 from the interface, Eq4) is fulfilled to second-
5 (%) — 5"(%) AT o order accuracy,

At 7av P ) o
vH(x)=—vH(x+aeL)+O(a2), (12

Subtracting Eq(8) from Eq. (6), we find that
in which the interface is located as shown in Fig. 1. Inserting

M L(R) —5* (X) o o Eq. (4) into thg _Stokes equation, E), one finds as the
At = V(" (X)) —p"(X)). (9  boundary conditions for the pressure
On the right-hand side of this equation appears the pressure 9, p(X)|5p=0. (13

correctionp’ (X)=p"*1(x) — p"(X). Applying theV operator
to Eq.(9), and using the incompressibility constraint Eg) Using Egs.(11)—(13), the A operators in Egs(8) and (10)
we obtain Poisson’s equation for, take the form
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v w® as the boundary conditions. The last condition has to be in-
ui(®) (e-adi) troduced directly into Eq(14) because the positioki—ag;
A A\ lies outside the simulation lattice. In the simulations reported
AR AR\ below we used alwaypi,=1, Ppouw=—21 unless indicated
?(&) G e otherwise.
[:> O E> O E> On the remaining sample surfaces the grid cells of the
& @ vu(F+a1) shadow row are assigned to the matrix phase. The velocity
A A and pressure values are set to zero.
JARN JARN
B. The lattice-Boltzmann method

In this section we introduce the lattice-Boltzmann method
used here, in particular the LBGHattice-Bhatnagar-Gross-
eKrook) model. Then we discuss the basic hydrodynamics of
the model and the relevant boundary conditions. The numeri-
cal accuracy of the lattice-Boltzmann results for permeability
will be considered in terms of finite-size effects.

FIG. 1. Spatial discretization of the velocity and pressure field
on a MAC grid. The gray shaded cell lies in the matrix phase, th
white cell in the pore space.

Avi(X)=vi(X—a&)+vi(X+a&)—2v;(X)

+ 2 {xp(X+ ag)xp(X+aé+ag)[vi(x+ag) 1. Lattice-Boltzmann hydrodynamics
i#i

. o o R The lattice-Boltzmann methofdl9-22 is a mesoscopic
+ui(X) ]+ xp(X—ag) xp(X—ag +ag) approach for computational fluid dynamics in which the ba-

s N 7 - sic idea is to solve a discretized Boltzmann equation. The
X[vi(X-ag)+vi(X)]-4vi(X)}, XeP, (14 macroscopic dynamics of the system can be shown to obey
the Navier-Stokes equation. One of the most successful ap-

and plications of the method has been to flow in porous media
[23,24,5.
Ap’()?)=2 {xp(X+a&)[p'(X+a&)—p'(X)|xp(Xx—aé) In this method the fluid is modeled by particle distribu-
! tions that move on a regular lattice. In our implementation
X[p'(X—a&)—p (N}, Rel, (15) each lattice point is connected to its nearest and next-nearest

neighbors. Together with a rest particle, each lattice point is
where we used second-order accurate central differences #en occupied by 19 different particléthe D3Q19 model

discretize the spatial derivatives. At each time step particles propagate to their adjacent lattice
points, and redistribute their momenta in the subsequent col-
2. Boundary conditions lisions. The dynamics of the LBGK model is given by the

ion[19,2
On the sample surface an additional outer layer of gridequatlon[ 9.20

cells, the so-called shadow row, is added. It provides the
neighboring pressure and velocity values needed for the
evaluation of Eqs(14) and (15) for the grid cells on the
sample surface. The pressure and velocity values of the
shadow row are set according to the macroscopic bounda
conditions. Le€; denote the direction of the applied pressure
gradient. For grid cells of the shadow row on the outflow
boundary of the sample, i.&X {X:xj=M}, we choose

fi(r+c,t+1)="f(r,t)+ %[f?"(r,t)—fi(r,t)], (22

here ¢, is a vector pointing to an adjacent lattice site,
fi(r,t) is the density of the particles moving in tlegdirec-

tion, 7 is the BGK relaxation parameter, afff(r,t) is the
equilibrium distribution towards which the particle popula-

P(X) = Pouts (16)  tions are relaxed. Hydrodynamic quantities such as depsity
and velocityu are obtained from the velocity moments of the
vi(X)=0 for i#j, (17)  distribution f; in analogy with the kinetic theory of gases.

The equilibrium distribution can be chosen in many ways. A

Uj()_()):Uj()-()_ aé‘), (18) common choice is

as the boundary conditions. FeE {X:x;=—1}, i.e., on the 1 1 1
inflow boundary, we set 9=t 1+ < (G-u)+ —(g-u)?>~ —u?|, (23
CS CS S
P(X) = Pin, 19
. o in which t; is a weight factor that depends on the length of
vi(X)=0 for i#j, (200 the link vectorc, , andc, is the speed of sound in the fluid.
~ o The weightst; we choose here are in accordance with the
vi(X)=v;(X—ag) (21)  19-link LBGK model, and they aré, &, and= for the rest
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particle and the particles moving to the nearest and nextattice-Boltzmann method32-34. So far in most of the
nearest neighbor sites, respectively. The speed of sound gactical simulations a body force has been implemented
cs=1/\/3 for this model, and the kinematic viscosity of the [23,27,33 instead of pressure or velocity boundaries.

simulated fluid isp= (27— 1)/6. (Here and in the following, When the body force is used, the pressure gradient acting
lattice units are always used if the units are not specjfied.on the fluid is replaced with a uniform external force. The

The fluid pressure is given by use of a body force is based on the assumption that, on

average, the effect of an external pressure gradient is con-

p(r,t)=ci(p(r,t)—p)=cZAp(r,t), (24)  stant throughout the system, and that it can thus be replaced

. ) ) by a constant force that adds at every time step a fixed
wherep is the mean density of the fluid. _ amount of momentum on the fluid points. Conditions that are
~ The Stokes equation, E), is produced directly by the ¢jose to pressure boundaries can be obtained by averaging
linearized lattice-Boltzmann method, in which the quadraticihe yelocity and pressure fields over the planes of the inlet
velocity terms in the equilibrium d|s'tr|but|on .functlon, .E'q. and outlet of the simulated systeia7].

(23), are neglected. To be consistent with the finite-  pying one iteration step, the fluid momentum oscillates
difference method, we use in what follows the linearizedi, {he stationary state by an amount given to each fluid point
lattice-Boltzmann method if not stated otherwise. by the body force. For this reason the fluid velocity is now
defined as the average of the precollision and postcollision
values[36,37].

The physical boundary condition at solid-fluid interfaces Pressure fields generated by the body force are obtained
is the no-slip condition Eq(4), which in lattice-Boltzmann from the effective pressunges,
simulations is usually realized by the so-called bounce-back
rule [25,26. In Fhis approaqh the momenta of the particles peﬁ(r,t)zcﬁAp(r,t)—ng, (26)
that meet a solid wall are simply reversed.

In simple shear flows the bounce-back condition assumes ) ) )
that the location of the wall is exactly halfway between theWWherexis the distance from the inlet of the system measured
last fluid point and the first wall point. In more complicated N the flow direction andj is the acceleration the body force
cases the no-slip boundary lies somewhere in between the§&/es to the fluid. _ _
two points, the exact place depending on the relaxation pa- It is a well-known fact that3 due _to stz_aggered invariants,
rameter and the geometry of the syste28,27. In Poiseuille the fluid momentum may oscnla}te in a time scale of a few
flow, e.g., the bounce-back rule gives velocity fields that defime steps[22], even in the stationary state. In open areas
viate from the exact solution, for no-slip boundaries at ex-this effect is usually unimportant, but in closed pores this
actly halfway between the last fluid point and the first solidefféct may become visible as the fluid momentum may os-

2. Boundary conditions

point, by[26] cillate around zero, with a magnitude determined by the
body force. This effect may lead to some corruption of the
4872 —4p—1 fluid-velocity distributions as can be seen in Fig. 6. Notice
AU= Ugjy— Ugyact= Umax 5 , (25  that staggered momenta can be eliminated by averaging the
L guantities over a few time steps.

h d he simulated and th loci Notice finally that the diagonal links allow the fluid to
WNEreUsim andUeyaceare the simulated and the exact Velocl- o5y 15 neighboring lattice points that have only a single edge
ties, respectivelylnay is the velocity at the center of the ;, ~ommon. For this reason the “standard” lattice-

channel, and is the channel width. This implies that the g\, mann model is not expected to be accurate very close to
simulated permeability will depend somewhat on viscosityy,e hercolation threshold. For the three-dimensional checker-

especially at Iow.discretizati_on_ levels. This _viscosity depen oard structure, e.g., we found that the permeability of the
dence can practically be eliminated by using the so-callg& stem was about 0.036 lattice units for all the six lattice
second-order boundaries, in which case the desired locatiqiic | tions that were used, although the structure is not per-

of the no-slip boundary is determined by extrapolating the q|a1ing. If better accuracy is needed, diagonal leaks can be
distribution function from the last fluid points. Some of thesegiminated by applying the bounce-back rule on such diago-

more sophisticated solid-fluid boundaries are restricted tQal links that actually cross a solid boundalike diagonals
regular geometrie28,29, but there are also genera in the checkerboard structire

boundary-fitted modelg30,31] available. For practical simu-
lations the bounce-back boundary is, however, very attrac-
tive, because it is a simple and computationally efficient
method for imposing no-flow conditions on irregularly  The accuracy of lattice-Boltzmann simulations depends
shaped walls. Also, the error created by the bounce-bacin the ratio of the mean free pakhy,ep of the fluid particles
boundary does not destroy the spatial second-order convete the representative sizk, of the obstacles and pores
gence of the methof27,32. [21,23,34. The simulated flow field does not describe the
In simulating fluid flow it is important that the velocity true hydrodynamic behavior unless this ratio is small. For
and pressure boundary conditions of the system have beéncreasing\ yep/\g ratio Knudsen-flowbehavior is found,
imposed in a consistent way. However, general velocity andavhich is also true in real fluid§38]. These effects must
pressure boundaries are still under development for thelways be considered when lattice-Boltzmann simulations

3. Finite-size effects and the saturation time
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are performed. In this way the maximum size of the lattice FO ——
; ; - LB t=1.0 -~
spacing can be estimated together with the accuracy of the LB t20 668 -

simulations.

Finite-size effects restrict to some extent the use of LB 015 ¢
methods based on regular lattices. In porous media close to 0.1
the percolation threshold, e.g., many pores are very small, 0.05 £
and very big lattices may be needed for realistic simulations. o,
It is still an open question whether the finite-size effects are g5 |4
always dominated by the minimum pore size or the average g /
pore size. The effect can be estimated by simulating the sys-
tem with several different lattice spacings, but occasionally it
is difficult to distinguish the finite-size effects from other
sources of numerical error. FIG. 2. Relative error of the numerical solution of the velocity

Practice has show[23,5] that smaller values of the relax- field for a Poiseuille flow through a tube with quadratic cross sec-
ation parameter tend to decrease the finite-size effe#se  tion of sizeB=32a. The upper surface shows the FD solution, the
also our simulations below Equation(25) can be used to lower surfaces the LB solutions with=1.0 and7=0.688, respec-
explain this: due to Knudsen-flow effects, low-discretizationtively. As the FD solution, the LB solution witir=1.0 overesti-
simulations regularly give too high permeabilities, whereagnates the reference solution while the LB solution with 0.688
decrease ofr has the opposite effect down to=0.625, at  underestimates the references values. The reference values are cal-
least for tube flows. On the other hand, the lattice-Boltzman§ulated from the analytical solution given in Re40].
algorithm may becomg22] unstable with values of close
to 0.5. In practical permeability simulations the relaxationthe same relative error for the LB solution with=1.0
parameter has usually been chosen to be bigger than 0.6. Thiddle surface and the FD solutior{upper surface The
effect of  on the behavior of the lattice-Boltzmann model is pressure gradient in the FD simulation was 2/33 while in the
thus quite conjpllcgted ar)d not ygt fully _under_stood. " LB simulations it was around 1d.

In permeabl_hty simulations a simple dimensional a}naly_3|s Around the center of the tube the analytical flow profile is
shows that, with a constant body forpe, the saturation tlm(?/ery well recovered. Near the boundaries we find deviations
tsarNeeded to reach the steady state is of the form that are biggest in the corners. The LB solution with
=0.688 underestimates the reference vai{féwhile the so-
lution with 7=1.0 overestimates the true value. Hence, the

where R is the characteristic length of the void pores in relaxation parameter or equivalently the viscosityy could

the system. For systems with high porosity, the saturatiofe adjusted to find better agreement with the analytical ve-
times can, therefore, be very long. In some cases, tens ddcity field. From Fig. 2 one expects to find a value 0.688
thousands of time steps may be needed. It is thus evident that7<<1.0 for which the numerical solution closely matches
a constant body force may be computationally inefficientthe analytical velocity profile.

especially when one is only interested in the steady-state The computation time needed by the FD method, which
solution. The saturation time can be reduced by using, e.gterminated when max;|Ag(X) — Vp(X)| <108, was 951 s
the iterative momentum-relaxati¢tMR) method, where the on a DEC Alpha work station. In LB simulations, the relative
applied body force is adjusted during the iteration in a defi-orror of permeability was below 16 in 754 s on a Cray
nite refation to the change of the fluid momentum duringT3g for 7= 1.0, but the simulations were continued for over

iteration stepg27]. For other ways to reduce the saturation 5000 s to make sure the saturation of the velocity fields.
time see Ref[39].

15

tsaf* RSorJ 7, (27

B. Cubic array of spheres
V. RESULTS " :
To test the accuracy and efficiency of our two algorithms

A. Tube with quadratic cross section in a more complicated geometry with narrow constrictions
One of the few cases for which the analytical solution ofwe computed flow past a cubic array of spheres. This prob-
the hydrodynamic problem Eq$2)—(4) is known is Poi- lem has become a reference system for checking hydrody-
seuille flow, the flow through a linear tube with constantnamic algorithms because accurate reference values for the
cross section. We will consider a tube with quadratic crospermeability, and the drag coefficient, are available over a
section, because here the geometry can be discretized onndde range of porositieg41,42.
cubic lattice without discretization error. The solution of this problem proceeds by solving the
We consider a tube directed along tég direction with  problem in a single unit cell of the cubic lattice. We gener-
guadratic cross section of side lend®l+32a. We compare ated six different unit cells of size L e{20a,
the velocity componenb;(xz,X3) with its exactly known  36a,56a,63a,71a,8%]}. A sphere is placed at the center of
reference valuen(x,,x3) given in Ref.[40]. Figure 2 each cell whose radius is chosen such that the porosity
shows the relative errorg—v')/v" for the LB solution  matches as closely as possiblegte: 0.15. Thus, the porosity
with relaxation parameter=0.688. In Fig. 2 we show also is close to the porosity of the sandstones investigated later.
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The FD solution of the flow field was computed using 0.1 ¥
periodic boundary conditions on those faces of the unit cell
that are parallel to the macroscopic flow direction. On the 0.05 | o,
faces of the unit cell perpendicular to the macroscopic flow
we applied the conditions Eq&l6)—(21) with the standard ol
pressure gradiem;,=1, po,w=—1.Inthe LB solutionthe 3% T A «
flow field was computed using periodic boundary conditionsX o5 | e d
in all directions. This difference of the boundary conditions ¥ . R x
arises from the fact that in the LB simulations the density o1l g
fluctuations around an average density are calculated while
in the FD simulations the pressure field enters directly.
Once the velocity field was known we calculated the per- Rl FD —— |
meability from Eq.(5). Following Ref.[41] we then utilize . . . . L'Efi:;?égg Iffff.:fff.
the expression %% a0 40 s e 70 8 %0
k 1 [L)® - - - -
A (_) , (28) FIG. 3. Numgrlcal results for the permeabllk)o_f a cubic array
R2 67Cp\R of spheres for different values of the lattice spacinghe porosity

is constant for all systemsp=0.15. The reference valules is
to obtain the reference vallkg, of the permeability from the taken from Ref[41].
drag coefficienCp given in Ref[41]. The radiuR(¢,L) of

the spheres depends gnandL and is given implicitly by |ocity and pressure fields are calculated from the final density
the expression distribution. In our implementation there is no deterministic
87 (R\3 R\2 stopping criterion, although such criterion could be included.

¢:?<E) _37T(E +Z+1' (29 In practice the calculations were terminated after a fixed

number of iteration steps. This number was determined for

To calculate the reference valle, we solve this equation €ach system by comparing runs of different length.
and find L/R)~1.6011 foré=0.15. Using the drag coeffi- All calculations with the FD code were performed on a

cient Cp=1.020x 10° [41], we findk ,o/R?~0.000 213 5. Cra_ly TC_%E-900/512 at the_ HLRS computing center of the
In Fig. 3 the relative errork— K,e;)/K,es Of the permeabil- University of Stuttgart with a peak performance of 461
ity is plotted as a function of the linear dimensionless systen3flops. The LB code was run on a Cray T3E-750/512 at
sizeL/a. With increasing resolution the results of both meth-Center for Scientific Computing in Espoo, Finland, with a
ods converge to each other and the error predominantly dd2eak performance of 384 Gflops. In order to compare the run
creases. In the lattice-Boltzmann simulations the relaxatioimes for the two codes we took the actual time required to
parameterr=1.0 is seen to give regularly better results thaneéxecute the program corrected by the ratio of peak perfor-
7=0.688. It thus appears that faer=1.0 the effective loca- mances. The run time required for the LB code was calcu-
tion of the no-slip boundary is more satisfactory than that forlated from the number of iterations multiplied by a conver-
7=0.688, and, consequently, the relative error is smaller fosion factor. The conversion factor was 0.039448 for
7=1.0 even though the finite-size effects are similar in both=20a, 0.208096 for L=36a, 0.628828 for L=>56a,
cases. The deviation fdr=89a is negative and varies be- 0.885556 forL=63a, 1.275176 forL=71a, and 2.216 36
tween 3% and 6% depending on the method. This discregor L=389%. It was determined by the wall time spent for one
ancy might possibly result mainly from discretization errorsiteration step computed from averages over several 100-step
as there is a similar oscillatory trend in the LB as well as thdterations. The memory requirements of the two algorithms
FD results. Further work on larger systems is howevemre different. The FD algorithm requires to store eight num-
needed to answer the question whether the discrepandyers per lattice node in the version used here. The D3Q19
might also result from other sources. model used for the LB algorithm requires to store 19 num-
The curves in Fig. 3 are all nonmonotonous. This resultders per lattice node
most likely from the discretization of the cross-sectional area In Fig. 4 we compare the time evolution of the numerical
of the pore throats between the spheres. The curve of thealue of the permeabiliti for different system sizes. Plotted
discretized cross-sectional area as a functioh/af shows a  on thex axis is the total time in seconds needed on two Cray
similar nonmonotonic behavior. processors. Fdr=20a andL =36a, both methods reach the
Besides the accuracy, the demand of computation time inal value ofk in approximately the same time. For larhe
the second important characteristic of a numerical methodhe LB method seems to be faster. Notice that the results of
Comparison of the computation time of the LB and the FDthe LB simulations shown in Fig. 4 were performed for
algorithms is difficult. The FD method iterates the physical=0.688. Forr=1.0 the simulations were about 45% faster.
velocity field v and the physical pressure figid The itera- The convergence df(t) towards its asymptotic value is
tion is terminated whem and p fulfill the Stokes equation, monotonic for the FD method, while in the LB cakét)
Eq. (2), with a predefined accuracy. In the LB method on theshows strong oscillations for all. The reason for these os-
other hand, the particle distributiorfis are iterated. The ve- cillations is probably the slight compressibility error inherent
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0.00025 T T T T T TABLE Il. Permeability tensors of the Fontainebleau sandstone
and its models. The values are given in mD.
00002 | FD LB
| ki ko ks | ki ko ki
0.00015 |/ EX 692 47  -15 | 621 40 -15
k / 15 911 50 14 808 47
0.0001 | | —103 21 789 -85 15 687
/ ; FD L=20a DM 923 40 16 766 31 10
I iy — 27 581 25 19 482 22
/ ; LBL=36a - 21 35 623 14 32 528
/ s Y v —
" _~"RE. Larson ad J.JL. Higdon ------ GF 34 1 4 43 3 6
001 T 1Io 1clxo 1oloo 1ocl)oo 100000 0 35 2 ! 50 6
computation time in s 8 1 36 7 4 57
FIG. 4. Time evolution of the numerical solution of the perme- SA 35 0 5 56 —2 7
ability k for flow through a cubic array of spheres with porosity —7 22 -1 =S 46 13
¢»=0.15. The relaxation parameter was 0.688 for the LB simu- 3 -7 20 8 1 50
lations.

theory[7]. The analysis in Refl7] emphasized the impor-
reference valué,¢; towards which the asymptotic values of tance of Ioca_l connectivity. The permeab|_||t_|es are strongly
correlated with the geometrical connectivity of the pore

both algorithms converge with. . .
We also compared the permeabilities given by the NavierSPace measured by means of the total fraction of percolating

Stokes and Stokdg$inearized versions of the LB method for cells p(L). In accordance with our discussion p§(60a)

: iven in Table | in Sec. Ill, we find that the permeability of
the cubic arrays of spheres. Very much as expected, the o
results were the same within the first seven digitsdy force the 9r|g|nal sandstone EX and that of the process mode| DM
about 10°%). are in good agreement, while the permeabilities of the sto-

chastic models GF and SA are an order of magnitude smaller.
It seems as if the stochastic reconstruction models cannot
reproduce the high degree of geometrical connectivity
We now apply both algorithms to the solution of the hy- present in the original sandstone. The reconstructed two-
drodynamic problem Eq<2)—(4) within the irregular pore point correlation function lacks information about the geo-
space geometries of the whole experimental sample EX anahetrical connectivity of the pore space. A correct description
the model samples DM, GF, and SA. of the geometrical connectivity is, however, an indispensable
The FD algorithm used the boundary conditions as deprecondition for the correct dynamical connectivity that de-
scribed above. The iteration scheme was terminated wheiermines the transport properties.
the condition may_p|Av(X) — Vp(X)|<10" for the dimen- We now proceed to compare the numerically obtained
sionless left-hand side of Eq2) was fulfilled for the first  value of the permeabilitikgy of the Fontainebleau sandstone
time. Thus, the relative errag(k;;)/k;; of the diagonal ele- EX with the experimental value* =1.3 D. Such a compari-
ments of the permeability tensor is estimated to be smallegon requires a correction due to the difference between the
than 0.012 in the case of EX, ark;;)/k;;<0.36 in the case porosity of the EX sample and the porosity =0.1484 of
of SA. The relative error for the samples DM and GF lies inthe original core sample on which the experiment was per-
between these two extreme values. formed. There exists a well-known experimental correlation
In the LB simulations no flow boundary conditions were between porosity and permeability of Fontainebleau sand-
applied on the sample surfaces parallel to the main flow distone[10]. This correlation is usually approximated in the
rection. At the inlet and outle(i.e., the sample surfaces per- form
pendicular to the main flow directioran additional fluid k=Ag", (30)

layer with a thickness of 19-21 lattice spacings was addeg1 which A and b are constants. In the porosity range of
and then periodic boundary conditions were applied. Thffnterest¢~0 13 0.15. this correlation has~4. with

bOdY. force d.id not act in the additional fluid layer. The_sehowever a large uncertainty due to the scatter in the mea-
additional fluid layers increased the total number of lattice !

points by about 8% in comparison with the FD method. Thesure(_j results. Henq.at we can extrapolate th.e numerically de
relaxation parameter was=0.688. The simulation stopped tgrmlned permeabilitiek= (k1 +Kzo+ksg/3 into the pre-
after a predefined number of iterations, which was estimateg'c'[Ion
to suffice for the permeability to converge. o _dqﬁ_*)b
In Table Il we give the components of the permeability - '
tensors for all four samples and for both algorithms.
The permeability results confirm the predictions from awhere ¢* is the previously defined porosity of the core
previous purely geometrical analysis based on local porositgample and the constaAthas dropped out. From E¢31)

in the model[21,22. The horizontal line in Fig. 4 gives the

C. Three-dimensional sandstones

(31
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we obtain k*=1150 mD for the FD method and*
=1015 mD for the LB algorithm. These values are surpris-
ingly close to the experimental valk& = 1300mD. Such an
excellent agreement is not common. This will in fact be seen 47|
in the following when we determine the permeability of a
subsample. _ o8}
We also checked by the LB methods the difference be-2
tween the Navier-Stokes and Stokes permeability of sample 05
EX. The relative difference was found to be 0.000 36 for the

parameters specified above, with an about 17% longer simu %4 [ 7]
lation time in the full Navier-Stokes case. The smallness of
this difference only demonstrates that, for the small pressure 03T 1
differences considered here, we indeed are in the Stokes re 02 , . , . . . .
gime. 0 1 2 3 4 5 6 7 8
aum]
D. Fine graining FIG. 5. Permeabilityk of a cubic subsample of the Fontaineb-

) ) - leau sandston€EX) for different values of the lattice spacimgand
We investigate the permeability of subsamples of theifterent relaxation parameters The size of the subsample lis

original samples for two reasons. First, this gives us an esti=750 ,m. The LB simulation used an additional fluid layer and

mate_of the magnitude_of permeability fluctuations, and_SeCthe periodic boundary conditions. The isolated data points with
ond, it allows us to estimate the dependence of numericall=7.5 um are obtained from LB simulation without extra fluid

obtained permeability on the lattice resolutianThe sub- layer, with momentum averaging in the inlet and outlet and with
samples have dimensions d;XM,XM3z=100xX100 no-flow boundary conditions. The LB relaxations parameters were
X 100. To test the dependence lofon a, we apply a fine 7=1.0 andr=0.688.

graining schemég43]. The fine graining algorithm replaces

each lattice point bynxXnXn lattice points of the same strongly depends on the relaxation parameter. While for
phase withn € {2,3,4}. Thus, we get systems of dimensions 7=0.6 the LB results are nearly independent of the lattice
M; XM, X M3z=n100Xn100Xx n100 with lattice spacin@,  spacing, the changes in the permeability are drastically in-
=(7.5h)um. For each system the hydrodynamic problemcreased with increasing As we have already discussed, in
Egs. (2)—(4) is solved, and the permeabilityt™ is deter- the permeability simulations, decrease in the relaxation pa-
mined. rameterr (or viscosity can be used to compensate an inad-

Figure 5 showk(™ for a cubic subsample of EX with an equate grid resolutioffinite-size effectswithin certain lim-
applied pressure gradient in directiép. The permeabilities its. By testing the structures of the subsamples for several
obtained from the LB simulations are significantly higher for grid resolutions and values of we choser=0.688 for the
all 7. This is due to the extra fluid layer with a thickness of main simulations of the permeabilities. This is not necessar-
10% of M; outside the sample and the periodic boundaryily the optimal choice and it differs from the results for pipe
conditions used in the LB simulations. For this smaller pieceflow, but a more accurate calibration efvould require fur-
of the sample, the effect of the boundary conditions is morgher simulations or other independent results.
significant than for the whole sample. We also performed The permeabilityk(*) for an infinite resolution of the lat-
with LB a couple of simulations with conditions similar to tice is obtained from a linear extrapolation of the data dis-
those used in FD. The pressure boundary condition was imilayed in Fig. 5. Extrapolation of the FD results yiek&)
tated using the body force combined with density and mo=224 mD. Thus, we obtain an estimate for the relative error
mentum averaging at the inlet and the outlet in the adjacentf our permeabilities in the case of EXk(—k™))/km)
free fluid layer with thickness of one lattice spacing. No-flow~0.33. For LB the extrapolated permeability i)
boundary conditions were applied on the other cube sides=550 mD. Analogously, forr=0.688 we obtain K1)

We found that the results of the LB and the FD method were-k(*))/k(Y)~0.15. For DM this error of LB is about the
again very close. This is indicated in Fig. 5 by two isolatedsame size as for EX, and approximately 0.3—0.4 for SA and
points (filled square and starat a;=7.5 um which were GF.

obtained from LB simulations with these boundary condi- The simulations of the subsamples show also that the
tions for r=0.688 andr= 1.0, respectively. However, a com- magnitude of fluctuations in permeability, within one and the
plete recomputation of the data of Fig. 5 would have ex-same sample, can be 100% even when the sample is ex-
hausted the available computation time. Moreover, thd@remely homogeneous. An effect of similar size may be in-
results for the free fluid layer and for periodic boundary con-duced by inaccurate boundary conditions. This is important
ditions allow us to estimate the influence of the boundarywhen comparing two micropermeameter experiments in
conditions on the result. which different boundary conditions may have applied.

For the original resolution the permeabilities obtained When analyzing a subsample of sample SA, we encoun-
from the LB algorithm differ with varyingr by nearly a tered another difference between the FD and LB simulation.
factor of 2. This again shows that the accuracy of the LBGeometrical analysis of the considered subsample of SA re-
results for low-porosity(and low-discretization systems veals that this subsample is not percolating in directgn
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and its FD permeability vanishes. We found, nevertheless 10
that its LB permeability isk{}’=50 mD for =0.688, and

for the original resolutiora;=7.5 um. We attribute this re-

sult to diagonal leaks that are present in the LB model used

E. Velocity distributions

Next we consider the velocity fields in more detail, and
analyze the histograms of velocity magnitudes. Figure 6
shows the scaled distributions of the magnitude of the veloc- 01
ity |0(X)| with Xe I’ for samples EX and SA. The distribu-
tions were sampled using the solutions of the flow fields for
an applied pressure gradient in direct®n The higher per-
meability of the original sandstone EX is reflected by a 0.01

. . . ) ) 05 1 15 2 25
higher probability density of regions with average flow ve- WIKIVD
locity. The distribution of sample SA on the other hand ex- FIG. 6. Velocity distribution functiorP(|s|) of the Fontaineb-
hibits a higher peak d|=0, and it extends to higher ve- |eau sandstonéEX) and the SA model sampled over the pore space.
locities. The former observation indicates large stagnanthe distributions are scaled with the mean velodi(X)|)g.p .
areas where no transport is taking place. The increased profhe inset shows a magnification of the distribution of EX for small
ability at high velocities may be related to a large number ofvelocities.
narrow pore throats through which the fluid has to move. The

velocity results for samp_le GF exhibit close resemblance t¢, mbers the appropriate Stokes equations in the pore spaces

those of sample SA while those for sample DM resembléyt he samples, using standard finite differences methods and

those _for EX. _ the lattice-Boltzmann method. Our work shows that both
Unlike the results for the permeabilities, which are Closemethods the LB method as well as standard ED methods. are

to each other, the velocity distributions reveallmore s_|gn|f| applicable to the solution of the steady-state Stokes equation
cant differences between FD and LB calculatidese Fig. s . . .
Y : . -~ within the microstructure of a three-dimensional porous me-
6). The distributions obtained from the LB solution exhibit a . . . A 3
dium. We investigated systems with sizes of up to-4d-

maximum at small velocities, which is not present in the ; Th uti f |
distributions obtained from the FD solution. The dif“ferencest'_Ce points. The so ut_lon of even larger systems SEems pos-
could perhaps be attributed to the slip velocities at thelPle: Hence, numerical micropermeametry is becoming a
boundary due, e.g., to the bounce-back boundary conditioffasiPle technique for studying permeability fluctuations.
and the diagonal leak flows in the LB algorithm, which could An accurate, quantitative comparison of the two numeri-
lead to a systematic deficit of zero velocities near the boundé@l methods s difficult due to the different approaches un-
ary. derlying these methods. The memory requirements of the
For SA the LB simulations show an additional spurious@lgorithms used in this study differ by roughly a factor of
(double peak at|i]/(|5|)~1.5. Similar, although smaller 2.5. Th_e FD algorlthm requires stqung eight real numbers
peaks were also found for GF and EX. The locations of thes@€r lattice node, while the LB algorithm needs 19 real num-
peaks were found to b&P/2p(|i7|), whereAP is the body bers per node. However, in this LB model 15 real numbers
force. We attribute these peaks to the staggered momenfQuld also be usefll9]. Considering the time consumption,
found in small closed pores, the number of which is verybOth methods are quite similar. Our comparison has shown
high for SA and GF. We have checked that these peaks di¢hat there are some features in the standard application of the
appear when time-averaged velocities are used, and a correB method, which need special attention. These include the

Sponding increase appears at zero Ve|0city' Wh|Ch is the ex7: dependence Of the nO'ﬂOW boundary, the Compressibility Of

should notice that these occasionally inconvenient features
can usually be eliminated if so needed. The compressibility
of the fluid can be eliminated for stationary flojw#4], and

We have performed numerical micropermeametry orthe effects of staggered invariants can be eliminated with
three-dimensional porous microstructures with a linear siz@roper averaging. The diagonal leak flow, which becomes
of approximately 3 mm and a resolution of 7/m. One of  noticeable for rough surfaces and near the percolation thresh-
the samples was a microtomographic image of Fontainebleanld and limits there the accuracy of the method, can also be
sandstone. Two of the samples were stochastic reconstrueliminated by fairly straightforward means. Thedepen-
tions with the same porosity, specific surface area, and twodence of the no-flow boundaries can as well be eliminated,
point correlation function as the Fontainebleau sample. Thentirely by introducing a modified LB modg#5], or almost
fourth sample was a physical model, which mimics the pro-entirely by using second-order boundaries as discussed
cesses of sedimentation, compaction, and diagenesis of Foabove. We could of course have implemented here all these
tainebleau sandstone. The permeabilities of these samplesrrections in the LB code, and achieved thereby a more
were determined by numerically solving at low Reynoldsfavorable comparison with the FD code and experiment, but

VI. CONCLUSION
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we wanted to show the points of concern in a “standard”Errors of as much as 100% cannot typically be ruled out. In

implementation of the LB method. summary, numerically exact determination of permeability is
Our results provide a quantitative comparison of variougdifficult to achieve. On the other hand, the same is true for

models for porous rocks. We show that stochastic reconstrughe precision measurements in an experiment.

tion models for Fontainebleau Sandstone are less accurate

than originally believed46,47]. In addition, our results for
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