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Lattice-Boltzmann and finite-difference simulations for the permeability
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Numerical micropermeametry is performed on three-dimensional porous samples having a linear size of
approximately 3 mm and a resolution of 7.5mm. One of the samples is a microtomographic image of
Fontainebleau sandstone. Two of the samples are stochastic reconstructions with the same porosity, specific
surface area, and two-point correlation function as the Fontainebleau sample. The fourth sample is a physical
model that mimics the processes of sedimentation, compaction, and diagenesis of Fontainebleau sandstone.
The permeabilities of these samples are determined by numerically solving at low Reynolds numbers the
appropriate Stokes equations in the pore spaces of the samples. The physical diagenesis model appears to
reproduce the permeability of the real sandstone sample quite accurately, while the permeabilities of the
stochastic reconstructions deviate from the latter by at least an order of magnitude. This finding confirms
earlier qualitative predictions based on local porosity theory. Two numerical algorithms were used in these
simulations. One is based on the lattice-Boltzmann method, and the other on conventional finite-difference
techniques. The accuracy of these two methods is discussed and compared, also with experiment.

DOI: 10.1103/PhysRevE.66.016702 PACS number~s!: 02.70.2c, 81.05.Rm, 83.85.Pt, 61.43.Gt
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I. INTRODUCTION

Almost all investigations of porous media focus on t
prediction of effective material properties such as fluid p
meability, electric or thermal conductivity, or elastic co
stants@1,2#. The knowledge or at least a reliable prediction
these properties is of great interest in a wide field of tech
cal applications ranging from petroleum engineering@3,4#, to
paper manufacturing@5#, and contaminant transport@6#. The
predictions are obtained either from approximate theo
that link the physical properties to geometrical observab
from geometrical models for which the physical problem c
be solved more easily, or from various cross property re
tions, which relate the parameter in question to other ph
cal transport parameters.

In this context, the exact numerical calculation of tran
port properties serves three purposes:~i! testing and valida-
tion of theories and theoretical predictions,~ii ! comparison
of geometrical models, and~iii ! testing of faithfulness of
computerized tomographic imaging by comparing nume
cally calculated transport parameters with their experime
values.

Of particular interest for porous media is the permeabil
and more precisely its fluctuations. These fluctuations
important because they dominate the large-scale perme
ity. For this reason it is important to collect as many micr
permeametry measurements as possible. Experimental
cropermeametry is costly and inaccurate. Hence exact
merical calculations are becoming an interesting alterna
for studying fluctuations in permeability.

In this paper we compare the permeabilities of a thr
dimensional computerized tomographic image of Fontain
leau sandstone and its three physical and stochastic re
struction models. We find that the stochastic models
particular fail to reconstruct the fluid permeability of th
original sandstone. This finding is in good agreement w
1063-651X/2002/66~1!/016702~11!/$20.00 66 0167
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conclusions drawn previously from a purely geometric
characterization of the same microstructures@7#.

The exact numerical calculation of transport paramet
for digitized three-dimensional samples remains a comp
tionally demanding task, and only few studies exist that t
the accuracy of such calculations. Here, we compare the
sults obtained by means of a finite difference~FD! method
and a lattice-Boltzmann~LB! algorithm. We begin our study
by calibrating both simulation methods against exact so
tions of the Stokes equation for straight tubes and cubic
rays of spheres. These calculations also serve to compar
speed of both methods. We then proceed to apply both a
rithms to the experimental sample and its three models.

II. DEFINITION OF THE PROBLEM

The problem to be solved is that of slow laminar flo
through a three-dimensional porous medium on a mic
scopic level. The three-dimensional microstructure of a tw
phase porous mediumS consisting of a pore phaseP and a
matrix or rock phaseM with S5PøM is described in detail
by the characteristic functionxG of a single phaseG
P$M,P% with

xG~xW !5H 1 for xWPG,

0 for xW¹G.
~1!

In the following, xW is the position vector of a cubic lattice
xW5ax1eW11ax2eW21ax3eW3, with xi50,1, . . . ,Mi21, the
unit vectorseW i of the Cartesian coordinate system, and t
grid spacinga. The total number of lattice points is given b
N5M1M2M3.

The Reynolds numbers of interest in geophysical a
petrophysical applications are usually much smaller th
unity @8# and hence it suffices to solve the Stokes equati
©2002 The American Physical Society02-1
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In the pore space geometry described by the character
functionxP(xW ), the steady-state Stokes equation and the c
straint of incompressibility read

hDvW ~xW !2¹W p~xW !50, xWPP, ~2!

¹W •vW ~xW !50, xWPP. ~3!

On the pore-matrix interface]P we apply no-flow boundary
conditions,

vW ~xW !50, xWP]P. ~4!

Darcy’s law permits us to compute thej th column of the
macroscopic permeability tensor from the microscopic so
tion of the hydrodynamic problem Eqs.~2!–~4! for a pres-
sure gradient applied along theeW j direction according to

ki j 5^v i~xW !&xWPS
h~M j11!a

pin2pout
. ~5!

Here the pressures at the inlet and the outlet surface
given bypin andpout as defined below in Eqs.~16! and~19!
@48#, respectively,̂ •••&xWPS denotes an average over all la
tice points, andv i5vW •eW i .

III. SAMPLES

We investigate four different samplesSEX , SDM , SGF, and
SSA, denoted also as EX, DM, GF, and SA. The first sam
SEX , or, in abbreviated form, EX, was obtained experime
tally by means of computerized tomography from a core
Fontainebleau sandstone. This sandstone is a popular r
ence standard because of its exceptional chemical, cryst
graphic, and microstructural simplicity@9,10#. Fontainebleau
sandstone consists of crystalline quartz grains that have
eroded for long periods before being deposited in du
along shore lines during the Oligocene, i.e., roughly
3106 years ago. It is well sorted containing grains of arou
200 mm in diameter. During its geological evolution, whic
is still not fully understood, the sand was cemented by si
crystallizing around the grains. Fontainebleau sandstone
hibits intergranular porosity ranging from 0.03 to roughly 0
@10#. The computer-assisted microtomography was car
out on a microplug drilled from a larger original core. Th
original core from which the microplug was taken had p
rosity f* 50.1484, permeability k* 51.3 D (1D
50.987 mm2), and formation factor 22.1~dimensionless
electrical resistivity@11#!. The microtomographic dataset ha
dimensionM13M23M3529933003300 with a resolution
of a57.5 mm, and porosityf50.1355. The pore spacePEX
is visualized in Fig. 1 of Ref.@7#.

The three remaining samples are physical and stocha
reconstruction models for the Fontainebleau sample EX.
have the same lattice resolution,a57.5 mm, and approxi-
mately the same porosity. The ‘‘diagenesis model’’ DM tri
to mimic the geological formation process of the natu
sandstone in three steps: the sedimentation of sphe
grains, the compaction of the sediment, and the simulatio
01670
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quartz cement overgrowth. The sample dimensions
M13M23M3525532553255.

The SA and GF samples are stochastic models with
mensionsM13M23M3525632563256. Both models re-
construct the porosityf and the two-point correlation func
tion of the original sandstone EX. This implies th
reconstruction of the specific surfaceSV . However, due to
problems in the reconstruction procedure of the Gauss
field method, the porosity and the specific surface of the
model do not exactly match those of the original sandsto
We find f50.1354 for SA, andf50.1421 for GF.

For a more detailed description of the modeling proc
dures and a visualization of the microstructures, the reade
referred to Ref.@7# and the references therein. In the sam
paper results of an extensive geometrical investigation of
four samples are presented, which use both classical geo
ric quantities but also concepts introduced in local poros
theory @12,13#. The main findings in Ref.@7# were as fol-
lows.

~1! None of the three models can reproduce the vis
appearance of the original sandstone. EX shows a gran
structure of the matrix phase where single sand grains
easily be identified. The matrix phase of DM is also clea
granular but with artificial, spherical grains. In both mode
the matrix and the pore phase are very well connected,
the pore-matrix interface is smooth. In contrast, the po
matrix interface of the stochastic models SA and GF is v
rough. Here, both phases are strongly scattered and ex
isolated clusters.

~2! The two-point correlation functions, S2(r )
5^x(xW1)x(xW2)& with r 5uxW12xW2u, of SA and GF show good
agreement with the original sandstone except for minor
viations at smallr in the case of GF. The correlation functio
of DM clearly deviates from that of EX. Moreover, it show
strong anisotropy with respect to directionseW1 , eW2, andeW3. A
modified correlation function giving the conditional prob
ability to find two points in pore space, which are also co
nected by a path inside the pore space was measured
discussed in Ref.@15#. Small but significant differences exis
between the samples. The experimental sample EX is m
stable under the morphological operations of erosion and
lation @15,16#.

~3! The differences between the samples are most p
nounced when comparing the geometrical connectivity of
pore space. As a measure for the geometrical connecti
we use the total fraction of percolating cellsp3(L) at scaleL,
introduced in local porosity theory@16#, which is defined as
the probability for a cubic subblock of sizeL of the sample
to percolate in all three coordinate directionseW i . Here, per-
colation in directioneW i means that there exists a path lyin
entirely in the pore space, which spans from one face of
cubic subsample perpendicular toeW i to the opposite face. Fo
EX and DM the curves ofp3(L) nearly coincide while for
the stochastic models SA and GF the curves ofp3(L) fall
well below that of the original sandstone~see Fig. 13 in Ref.
@7#!. Table I gives the values ofp3(L) for L560a. Again we
find anisotropy in the DM model when we measure the pr
ability peW i

(L) for a subblock to percolate in directionseW i .
2-2
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Geometrical connectivity is an indispensable precondit
for dynamical connectivity and physical transport. Hence,
expect to find a strong correlation between the total fract
of percolating cellsp3(L) and the macroscopic permeabili
whose calculation is discussed next.

IV. THE NUMERICAL METHODS

A. The finite-difference method

1. Algorithm

Numerically we obtain the solution of Eqs.~2!–~4! from
the infinite time limit of the time-dependent Stokes proble
using an iterative pressure-correction algorithm@14,17#. Dis-
cretization in time of the time-dependent Stokes equa
yields

vW n11~xW !2vW n~xW !

Dt
5hDvW n~xW !2¹W pn11~xW !, ~6!

¹W •vW n11~xW !50, ~7!

where the superscriptn denotes the iteration step. In our ca
the discretized time derivative on the left-hand side of E
~6! has no physical meaning. In the long-time lim
vW n11(xW )5vW n(xW ) holds, and we recover Eq.~2!.

Given the solutionsvW n and pn at iteration stepn, an ap-
proximate solutionvW * for the velocity field is obtained from

vW * ~xW !2vW n~xW !

Dt
5hDvW n~xW !2¹W pn~xW !. ~8!

Subtracting Eq.~8! from Eq. ~6!, we find that

vW n11~xW !2vW * ~xW !

Dt
52¹W „pn11~xW !2pn~xW !…. ~9!

On the right-hand side of this equation appears the pres
correctionp8(xW )[pn11(xW )2pn(xW ). Applying the¹W operator
to Eq. ~9!, and using the incompressibility constraint Eq.~7!
we obtain Poisson’s equation forp8,

TABLE I. Geometrical characteristics of the four samples.SV ,
KV , andTV are specific surface, specific integral of mean curvatu
and specific integral of total curvature of the matrix phase, resp
tively, f p is the fraction of percolating pore lattice points, an
p3(60a) is the probability of finding a cubic subblock of sizeL
560a of the sample, which is percolating in all three directions

EX DM GF SA

f̄ 0.1355 0.1356 0.1421 0.1354

SV(M)(mm21) 9.99 10.30 14.53 11.04
KV(M)(mm22) 2151 2194 2449 2222
TV(M)(mm23) 22159 22766 4334 14484
f p(%) 99.35 99.23 79.16 62.73
p3(60a) 0.9561 0.9647 0.3255 0.1695
01670
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¹W •vW * ~xW !. ~10!

Thus, we arrive at the following algorithm:
~1! Let vW n and pn be the solution of the velocity and th

pressure field, respectively, at iteration stepn with the maxi-
mum absolute erroren5maxxWPPuhDvW n(xW )2¹p(xW )u. From
vW n andpn an approximate solutionvW * of the velocity field is
calculated using Eq.~8!.

~2! Using the definition of the pressure correction, a n
pressurepn115pn1p8 is obtained from a solution of Eq
~10!. This part of the algorithm consumes most of the co
putation time, because Eq.~10! has to be solved for eac
iteration step. However, we found that it suffices to solve E
~10! only up to an error

max
xWPP

UDp8~xW !2
1

Dt
¹W •vW * ~xW !U<gen,

whereg is an empirical factor. For the calculations presen
here, a value ofg in the range 0.01,g,0.1 seems to be
appropriate. We use a successive over-relaxation metho
solve Eq.~10!. Of course it would be desirable to use mo
sophisticated methods such as a multigrid method, but
could not find a general procedure to restrict the microstr
ture of the porous medium to a coarser grid without chang
the topology of the pore space.

~3! From p8 and vW * a new velocityvW n11 is calculated
using Eq.~9!. The algorithm terminates whenen11 is smaller
than some given value.

The equations are spatially discretized using a mark
and-cell~MAC! grid @18#. The pressure values are placed
the centers of the grid cells. They coincide with the latti
points of the discretized characteristic functionxP . On each
face of a grid cell the velocity component perpendicular
this face is located. The pore-matrix interface]P follows the
surface of the cubic grid cells. For velocity components p
pendicular to the interface the boundary condition, Eq.~4!,

v'~xW !50, ~11!

is implemented exactly. For parallel velocity components
distancea/2 from the interface, Eq.~4! is fulfilled to second-
order accuracy,

v i~xW !52v i~xW1aeW'!1O~a2!, ~12!

in which the interface is located as shown in Fig. 1. Insert
Eq. ~4! into the Stokes equation, Eq.~2!, one finds as the
boundary conditions for the pressure

]'p~xW !u]P50. ~13!

Using Eqs.~11!–~13!, the D operators in Eqs.~8! and ~10!
take the form

,
c-
2-3
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Dv i~xW !5v i~xW2aeW i !1v i~xW1aeW i !22v i~xW !

1(
j 5” i

$xP~xW1aeW j !xP~xW1aeW j1aeW i !@v i~xW1aeW j !

1v i~xW !#1xP~xW2aeW j !xP~xW2aeW j1aeW i !

3@v i~xW2aeW j !1v i~xW !#24v i~xW !%, xWPP, ~14!

and

Dp8~xW !5(
i

$xP~xW1aeW i !@p8~xW1aeW i !2p8~xW !#xP~xW2aeW i !

3@p8~xW2aeW i !2p8~xW !#%, xWPP, ~15!

where we used second-order accurate central difference
discretize the spatial derivatives.

2. Boundary conditions

On the sample surface an additional outer layer of g
cells, the so-called shadow row, is added. It provides
neighboring pressure and velocity values needed for
evaluation of Eqs.~14! and ~15! for the grid cells on the
sample surface. The pressure and velocity values of
shadow row are set according to the macroscopic boun
conditions. LeteW j denote the direction of the applied pressu
gradient. For grid cells of the shadow row on the outflo
boundary of the sample, i.e.,xWP$xW :xj5M j%, we choose

p~xW !5pout, ~16!

v i~xW !50 for i 5” j , ~17!

v j~xW !5v j~xW2aeW i!, ~18!

as the boundary conditions. ForxWP$xW :xj521%, i.e., on the
inflow boundary, we set

p~xW !5pin , ~19!

v i~xW !50 for i 5” j , ~20!

v j~xW !5v j~xW2aeW i! ~21!

FIG. 1. Spatial discretization of the velocity and pressure fi
on a MAC grid. The gray shaded cell lies in the matrix phase,
white cell in the pore space.
01670
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as the boundary conditions. The last condition has to be
troduced directly into Eq.~14! because the positionxW2aeW j
lies outside the simulation lattice. In the simulations repor
below we used alwayspin51, pout521 unless indicated
otherwise.

On the remaining sample surfaces the grid cells of
shadow row are assigned to the matrix phase. The velo
and pressure values are set to zero.

B. The lattice-Boltzmann method

In this section we introduce the lattice-Boltzmann meth
used here, in particular the LBGK~lattice-Bhatnagar-Gross
Krook! model. Then we discuss the basic hydrodynamics
the model and the relevant boundary conditions. The num
cal accuracy of the lattice-Boltzmann results for permeabi
will be considered in terms of finite-size effects.

1. Lattice-Boltzmann hydrodynamics

The lattice-Boltzmann method@19–22# is a mesoscopic
approach for computational fluid dynamics in which the b
sic idea is to solve a discretized Boltzmann equation. T
macroscopic dynamics of the system can be shown to o
the Navier-Stokes equation. One of the most successful
plications of the method has been to flow in porous me
@23,24,5#.

In this method the fluid is modeled by particle distrib
tions that move on a regular lattice. In our implementati
each lattice point is connected to its nearest and next-nea
neighbors. Together with a rest particle, each lattice poin
then occupied by 19 different particles~the D3Q19 model!.
At each time step particles propagate to their adjacent lat
points, and redistribute their momenta in the subsequent
lisions. The dynamics of the LBGK model is given by th
equation@19,20#

f i~r1ci ,t11!5 f i~r ,t !1
1

t
@ f i

eq~r ,t !2 f i~r ,t !#, ~22!

where ci is a vector pointing to an adjacent lattice sit
f i(r ,t) is the density of the particles moving in theci direc-
tion, t is the BGK relaxation parameter, andf i

eq(r ,t) is the
equilibrium distribution towards which the particle popul
tions are relaxed. Hydrodynamic quantities such as densir
and velocityu are obtained from the velocity moments of th
distribution f i in analogy with the kinetic theory of gase
The equilibrium distribution can be chosen in many ways
common choice is

f i
eq5t iF11

1

cs
2 ~ci•u!1

1

2cs
4 ~ci•u!22

1

2cs
2

u2G , ~23!

in which t i is a weight factor that depends on the length
the link vectorci , andcs is the speed of sound in the fluid
The weightst i we choose here are in accordance with t
19-link LBGK model, and they are13 , 1

18 , and 1
36 for the rest

d
e

2-4
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particle and the particles moving to the nearest and n
nearest neighbor sites, respectively. The speed of soun
cs51/A3 for this model, and the kinematic viscosity of th
simulated fluid ish5(2t21)/6. ~Here and in the following,
lattice units are always used if the units are not specifie!
The fluid pressure is given by

p~r ,t !5cs
2
„r~r ,t !2 r̄…[cs

2Dr~r ,t !, ~24!

wherer̄ is the mean density of the fluid.
The Stokes equation, Eq.~2!, is produced directly by the

linearized lattice-Boltzmann method, in which the quadra
velocity terms in the equilibrium distribution function, Eq
~23!, are neglected. To be consistent with the fini
difference method, we use in what follows the lineariz
lattice-Boltzmann method if not stated otherwise.

2. Boundary conditions

The physical boundary condition at solid-fluid interfac
is the no-slip condition Eq.~4!, which in lattice-Boltzmann
simulations is usually realized by the so-called bounce-b
rule @25,26#. In this approach the momenta of the particl
that meet a solid wall are simply reversed.

In simple shear flows the bounce-back condition assu
that the location of the wall is exactly halfway between t
last fluid point and the first wall point. In more complicate
cases the no-slip boundary lies somewhere in between t
two points, the exact place depending on the relaxation
rameter and the geometry of the system@26,27#. In Poiseuille
flow, e.g., the bounce-back rule gives velocity fields that
viate from the exact solution, for no-slip boundaries at e
actly halfway between the last fluid point and the first so
point, by @26#

Du5usim2uexact5umax

48h224h21

L2
, ~25!

whereusim anduexact are the simulated and the exact velo
ties, respectively,umax is the velocity at the center of th
channel, andL is the channel width. This implies that th
simulated permeability will depend somewhat on viscos
especially at low discretization levels. This viscosity depe
dence can practically be eliminated by using the so-ca
second-order boundaries, in which case the desired loca
of the no-slip boundary is determined by extrapolating
distribution function from the last fluid points. Some of the
more sophisticated solid-fluid boundaries are restricted
regular geometries@28,29#, but there are also genera
boundary-fitted models@30,31# available. For practical simu
lations the bounce-back boundary is, however, very att
tive, because it is a simple and computationally efficie
method for imposing no-flow conditions on irregular
shaped walls. Also, the error created by the bounce-b
boundary does not destroy the spatial second-order con
gence of the method@27,32#.

In simulating fluid flow it is important that the velocit
and pressure boundary conditions of the system have b
imposed in a consistent way. However, general velocity
pressure boundaries are still under development for
01670
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lattice-Boltzmann method@32–34#. So far in most of the
practical simulations a body force has been implemen
@23,27,35# instead of pressure or velocity boundaries.

When the body force is used, the pressure gradient ac
on the fluid is replaced with a uniform external force. T
use of a body force is based on the assumption that,
average, the effect of an external pressure gradient is c
stant throughout the system, and that it can thus be repla
by a constant force that adds at every time step a fi
amount of momentum on the fluid points. Conditions that
close to pressure boundaries can be obtained by avera
the velocity and pressure fields over the planes of the i
and outlet of the simulated system@27#.

During one iteration step, the fluid momentum oscillat
in the stationary state by an amount given to each fluid po
by the body force. For this reason the fluid velocity is no
defined as the average of the precollision and postcollis
values@36,37#.

Pressure fields generated by the body force are obta
from the effective pressurepeff ,

peff~r ,t !5cs
2Dr~r ,t !2 r̄gx, ~26!

wherex is the distance from the inlet of the system measu
in the flow direction andg is the acceleration the body forc
gives to the fluid.

It is a well-known fact that, due to staggered invarian
the fluid momentum may oscillate in a time scale of a fe
time steps@22#, even in the stationary state. In open are
this effect is usually unimportant, but in closed pores t
effect may become visible as the fluid momentum may
cillate around zero, with a magnitude determined by
body force. This effect may lead to some corruption of t
fluid-velocity distributions as can be seen in Fig. 6. Noti
that staggered momenta can be eliminated by averaging
quantities over a few time steps.

Notice finally that the diagonal links allow the fluid t
leak to neighboring lattice points that have only a single ed
in common. For this reason the ‘‘standard’’ lattice
Boltzmann model is not expected to be accurate very clos
the percolation threshold. For the three-dimensional chec
board structure, e.g., we found that the permeability of
system was about 0.036 lattice units for all the six latt
resolutions that were used, although the structure is not
colating. If better accuracy is needed, diagonal leaks can
eliminated by applying the bounce-back rule on such dia
nal links that actually cross a solid boundary~like diagonals
in the checkerboard structure!.

3. Finite-size effects and the saturation time

The accuracy of lattice-Boltzmann simulations depen
on the ratio of the mean free pathlMFP of the fluid particles
to the representative sizel0 of the obstacles and pore
@21,23,34#. The simulated flow field does not describe t
true hydrodynamic behavior unless this ratio is small. F
increasinglMFP/l0 ratio Knudsen-flowbehavior is found,
which is also true in real fluids@38#. These effects mus
always be considered when lattice-Boltzmann simulatio
2-5
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are performed. In this way the maximum size of the latt
spacing can be estimated together with the accuracy of
simulations.

Finite-size effects restrict to some extent the use of
methods based on regular lattices. In porous media clos
the percolation threshold, e.g., many pores are very sm
and very big lattices may be needed for realistic simulatio
It is still an open question whether the finite-size effects
always dominated by the minimum pore size or the aver
pore size. The effect can be estimated by simulating the
tem with several different lattice spacings, but occasionall
is difficult to distinguish the finite-size effects from oth
sources of numerical error.

Practice has shown@23,5# that smaller values of the relax
ation parametert tend to decrease the finite-size effects~see
also our simulations below!. Equation~25! can be used to
explain this: due to Knudsen-flow effects, low-discretizati
simulations regularly give too high permeabilities, where
decrease oft has the opposite effect down tot50.625, at
least for tube flows. On the other hand, the lattice-Boltzma
algorithm may become@22# unstable with values oft close
to 0.5. In practical permeability simulations the relaxati
parameter has usually been chosen to be bigger than 0.6
effect oft on the behavior of the lattice-Boltzmann model
thus quite complicated and not yet fully understood.

In permeability simulations a simple dimensional analy
shows that, with a constant body force, the saturation t
tsat needed to reach the steady state is of the form

tsat}Rpore
2 /h, ~27!

whereRpore is the characteristic length of the void pores
the system. For systems with high porosity, the satura
times can, therefore, be very long. In some cases, ten
thousands of time steps may be needed. It is thus evident
a constant body force may be computationally inefficie
especially when one is only interested in the steady-s
solution. The saturation time can be reduced by using, e
the iterative momentum-relaxation~IMR! method, where the
applied body force is adjusted during the iteration in a d
nite relation to the change of the fluid momentum duri
iteration steps@27#. For other ways to reduce the saturati
time see Ref.@39#.

V. RESULTS

A. Tube with quadratic cross section

One of the few cases for which the analytical solution
the hydrodynamic problem Eqs.~2!–~4! is known is Poi-
seuille flow, the flow through a linear tube with consta
cross section. We will consider a tube with quadratic cr
section, because here the geometry can be discretized
cubic lattice without discretization error.

We consider a tube directed along theeW1 direction with
quadratic cross section of side lengthB532a. We compare
the velocity componentv1(x2 ,x3) with its exactly known
reference valuev1

ref(x2 ,x3) given in Ref. @40#. Figure 2
shows the relative error (v12v1

ref)/v1
ref for the LB solution

with relaxation parametert50.688. In Fig. 2 we show also
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the same relative error for the LB solution witht51.0
~middle surface! and the FD solution~upper surface!. The
pressure gradient in the FD simulation was 2/33 while in
LB simulations it was around 1024.

Around the center of the tube the analytical flow profile
very well recovered. Near the boundaries we find deviatio
that are biggest in the corners. The LB solution witht
50.688 underestimates the reference valuev ref while the so-
lution with t51.0 overestimates the true value. Hence,
relaxation parametert or equivalently the viscosityh could
be adjusted to find better agreement with the analytical
locity field. From Fig. 2 one expects to find a value 0.6
,t,1.0 for which the numerical solution closely match
the analytical velocity profile.

The computation time needed by the FD method, wh
terminated when maxxWPPuDvW (xW )2¹p(xW )u,1028, was 951 s
on a DEC Alpha work station. In LB simulations, the relativ
error of permeability was below 1025 in 754 s on a Cray
T3E for t51.0, but the simulations were continued for ov
5000 s to make sure the saturation of the velocity fields.

B. Cubic array of spheres

To test the accuracy and efficiency of our two algorithm
in a more complicated geometry with narrow constrictio
we computed flow past a cubic array of spheres. This pr
lem has become a reference system for checking hydro
namic algorithms because accurate reference values fo
permeability, and the drag coefficient, are available ove
wide range of porosities@41,42#.

The solution of this problem proceeds by solving t
problem in a single unit cell of the cubic lattice. We gene
ated six different unit cells of size LP$20a,
36a,56a,63a,71a,89a%. A sphere is placed at the center
each cell whose radius is chosen such that the poro
matches as closely as possible tof50.15. Thus, the porosity
is close to the porosity of the sandstones investigated la

FIG. 2. Relative error of the numerical solution of the veloc
field for a Poiseuille flow through a tube with quadratic cross s
tion of sizeB532a. The upper surface shows the FD solution, t
lower surfaces the LB solutions witht51.0 andt50.688, respec-
tively. As the FD solution, the LB solution witht51.0 overesti-
mates the reference solution while the LB solution witht50.688
underestimates the references values. The reference values ar
culated from the analytical solution given in Ref.@40#.
2-6



g
ce
th
ow

n
ns
it
h

er

-

em
th
d

tio
an

fo
fo

ot
-
re
rs

th
ve
n

ult
re
t

e
o
D
a

he
-

sity
tic
ed.
ed
for

a
he
1
at
a
run
to

for-
cu-
r-

e
step
ms
m-
19

m-

al
d
ray
e

s of

r.
s

-
nt
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The FD solution of the flow field was computed usin
periodic boundary conditions on those faces of the unit
that are parallel to the macroscopic flow direction. On
faces of the unit cell perpendicular to the macroscopic fl
we applied the conditions Eqs.~16!–~21! with the standard
pressure gradientpin51, pout521. In the LB solution the
flow field was computed using periodic boundary conditio
in all directions. This difference of the boundary conditio
arises from the fact that in the LB simulations the dens
fluctuations around an average density are calculated w
in the FD simulations the pressure field enters directly.

Once the velocity field was known we calculated the p
meability from Eq.~5!. Following Ref.@41# we then utilize
the expression

k

R2
5

1

6pCD
S L

RD 3

, ~28!

to obtain the reference valuekref of the permeability from the
drag coefficientCD given in Ref.@41#. The radiusR(f,L) of
the spheres depends onf and L and is given implicitly by
the expression

f5
8p

3 S R

L D 3

23pS R

L D 2

1
p

4
11. ~29!

To calculate the reference valuekref we solve this equation
and find (L/R)'1.6011 forf50.15. Using the drag coeffi
cient CD51.0203103 @41#, we findk ref /R

2'0.000 213 5.
In Fig. 3 the relative error (k2kref)/kref of the permeabil-

ity is plotted as a function of the linear dimensionless syst
sizeL/a. With increasing resolution the results of both me
ods converge to each other and the error predominantly
creases. In the lattice-Boltzmann simulations the relaxa
parametert51.0 is seen to give regularly better results th
t50.688. It thus appears that fort51.0 the effective loca-
tion of the no-slip boundary is more satisfactory than that
t50.688, and, consequently, the relative error is smaller
t51.0 even though the finite-size effects are similar in b
cases. The deviation forL589a is negative and varies be
tween 3% and 6% depending on the method. This disc
ancy might possibly result mainly from discretization erro
as there is a similar oscillatory trend in the LB as well as
FD results. Further work on larger systems is howe
needed to answer the question whether the discrepa
might also result from other sources.

The curves in Fig. 3 are all nonmonotonous. This res
most likely from the discretization of the cross-sectional a
of the pore throats between the spheres. The curve of
discretized cross-sectional area as a function ofL/a shows a
similar nonmonotonic behavior.

Besides the accuracy, the demand of computation tim
the second important characteristic of a numerical meth
Comparison of the computation time of the LB and the F
algorithms is difficult. The FD method iterates the physic
velocity field vW and the physical pressure fieldp. The itera-
tion is terminated whenvW andp fulfill the Stokes equation,
Eq. ~2!, with a predefined accuracy. In the LB method on t
other hand, the particle distributionsf i are iterated. The ve
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locity and pressure fields are calculated from the final den
distribution. In our implementation there is no determinis
stopping criterion, although such criterion could be includ
In practice the calculations were terminated after a fix
number of iteration steps. This number was determined
each system by comparing runs of different length.

All calculations with the FD code were performed on
Cray T3E-900/512 at the HLRS computing center of t
University of Stuttgart with a peak performance of 46
Gflops. The LB code was run on a Cray T3E-750/512
Center for Scientific Computing in Espoo, Finland, with
peak performance of 384 Gflops. In order to compare the
times for the two codes we took the actual time required
execute the program corrected by the ratio of peak per
mances. The run time required for the LB code was cal
lated from the number of iterations multiplied by a conve
sion factor. The conversion factor was 0.039 448 forL
520a, 0.208 096 for L536a, 0.628 828 for L556a,
0.885 556 forL563a, 1.275 176 forL571a, and 2.216 36
for L589a. It was determined by the wall time spent for on
iteration step computed from averages over several 100-
iterations. The memory requirements of the two algorith
are different. The FD algorithm requires to store eight nu
bers per lattice node in the version used here. The D3Q
model used for the LB algorithm requires to store 19 nu
bers per lattice node

In Fig. 4 we compare the time evolution of the numeric
value of the permeabilityk for different system sizes. Plotte
on thex axis is the total time in seconds needed on two C
processors. ForL520a andL536a, both methods reach th
final value ofk in approximately the same time. For largeL
the LB method seems to be faster. Notice that the result
the LB simulations shown in Fig. 4 were performed fort
50.688. Fort51.0 the simulations were about 45% faste

The convergence ofk(t) towards its asymptotic value i
monotonic for the FD method, while in the LB casek(t)
shows strong oscillations for allL. The reason for these os
cillations is probably the slight compressibility error inhere

FIG. 3. Numerical results for the permeabilityk of a cubic array
of spheres for different values of the lattice spacinga. The porosity
is constant for all systems,f50.15. The reference valuekref is
taken from Ref.@41#.
2-7
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in the model@21,22#. The horizontal line in Fig. 4 gives th
reference valuekref towards which the asymptotic values
both algorithms converge withL.

We also compared the permeabilities given by the Nav
Stokes and Stokes~linearized! versions of the LB method fo
the cubic arrays of spheres. Very much as expected, the
results were the same within the first seven digits~body force
about 1024).

C. Three-dimensional sandstones

We now apply both algorithms to the solution of the h
drodynamic problem Eqs.~2!–~4! within the irregular pore
space geometries of the whole experimental sample EX
the model samples DM, GF, and SA.

The FD algorithm used the boundary conditions as
scribed above. The iteration scheme was terminated w
the condition maxxWPPuDvW (xW )2¹p(xW )u,1026 for the dimen-
sionless left-hand side of Eq.~2! was fulfilled for the first
time. Thus, the relative errore(kii )/kii of the diagonal ele-
ments of the permeability tensor is estimated to be sma
than 0.012 in the case of EX, ande(kii )/kii ,0.36 in the case
of SA. The relative error for the samples DM and GF lies
between these two extreme values.

In the LB simulations no flow boundary conditions we
applied on the sample surfaces parallel to the main flow
rection. At the inlet and outlet~i.e., the sample surfaces pe
pendicular to the main flow direction! an additional fluid
layer with a thickness of 19–21 lattice spacings was ad
and then periodic boundary conditions were applied. T
body force did not act in the additional fluid layer. The
additional fluid layers increased the total number of latt
points by about 8% in comparison with the FD method. T
relaxation parameter wast50.688. The simulation stoppe
after a predefined number of iterations, which was estima
to suffice for the permeability to converge.

In Table II we give the components of the permeabil
tensors for all four samples and for both algorithms.

The permeability results confirm the predictions from
previous purely geometrical analysis based on local poro

FIG. 4. Time evolution of the numerical solution of the perm
ability k for flow through a cubic array of spheres with poros
f50.15. The relaxation parameter wast50.688 for the LB simu-
lations.
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theory @7#. The analysis in Ref.@7# emphasized the impor
tance of local connectivity. The permeabilities are stron
correlated with the geometrical connectivity of the po
space, measured by means of the total fraction of percola
cells p3(L). In accordance with our discussion ofp3(60a)
given in Table I in Sec. III, we find that the permeability o
the original sandstone EX and that of the process model
are in good agreement, while the permeabilities of the s
chastic models GF and SA are an order of magnitude sma
It seems as if the stochastic reconstruction models can
reproduce the high degree of geometrical connectiv
present in the original sandstone. The reconstructed t
point correlation function lacks information about the ge
metrical connectivity of the pore space. A correct descript
of the geometrical connectivity is, however, an indispensa
precondition for the correct dynamical connectivity that d
termines the transport properties.

We now proceed to compare the numerically obtain
value of the permeabilitykEX of the Fontainebleau sandston
EX with the experimental valuek* 51.3 D. Such a compari-
son requires a correction due to the difference between
porosity of the EX sample and the porosityf* 50.1484 of
the original core sample on which the experiment was p
formed. There exists a well-known experimental correlat
between porosity and permeability of Fontainebleau sa
stone@10#. This correlation is usually approximated in th
form

k5Afb, ~30!

in which A and b are constants. In the porosity range
interestf'0.13, . . . ,0.15, this correlation hasb'4, with,
however, a large uncertainty due to the scatter in the m
sured results. Hence, we can extrapolate the numerically
termined permeabilitiesk̄5(k111k221k33)/3 into the pre-
diction

k̄* 5 k̄S f*

f D b

, ~31!

where f* is the previously defined porosity of the co
sample and the constantA has dropped out. From Eq.~31!

TABLE II. Permeability tensors of the Fontainebleau sandsto
and its models. The values are given in mD.

FD LB
ki1 ki2 ki3 ki1 ki2 ki3

EX 692 47 215 621 40 215
15 911 50 14 808 47

2103 21 789 285 15 687

DM 923 40 16 766 31 10
27 581 25 19 482 22
21 35 623 14 32 528

GF 34 1 4 43 3 6
0 35 2 1 50 6
8 1 36 7 4 57

SA 35 0 5 56 22 7
27 22 21 25 46 13
3 27 20 8 1 50
2-8
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we obtain k̄* 51150 mD for the FD method andk̄*
51015 mD for the LB algorithm. These values are surpr
ingly close to the experimental valuek* 51300mD. Such an
excellent agreement is not common. This will in fact be se
in the following when we determine the permeability of
subsample.

We also checked by the LB methods the difference
tween the Navier-Stokes and Stokes permeability of sam
EX. The relative difference was found to be 0.000 36 for
parameters specified above, with an about 17% longer si
lation time in the full Navier-Stokes case. The smallness
this difference only demonstrates that, for the small press
differences considered here, we indeed are in the Stoke
gime.

D. Fine graining

We investigate the permeability of subsamples of
original samples for two reasons. First, this gives us an e
mate of the magnitude of permeability fluctuations, and s
ond, it allows us to estimate the dependence of numeric
obtained permeability on the lattice resolutiona. The sub-
samples have dimensions ofM13M23M351003100
3100. To test the dependence ofk on a, we apply a fine
graining scheme@43#. The fine graining algorithm replace
each lattice point byn3n3n lattice points of the same
phase withnP$2,3,4%. Thus, we get systems of dimensio
M13M23M35n1003n1003n100 with lattice spacingan
5(7.5/n)mm. For each system the hydrodynamic proble
Eqs. ~2!–~4! is solved, and the permeabilityk(n) is deter-
mined.

Figure 5 showsk(n) for a cubic subsample of EX with a
applied pressure gradient in directioneW1. The permeabilities
obtained from the LB simulations are significantly higher f
all t. This is due to the extra fluid layer with a thickness
10% of M1 outside the sample and the periodic bound
conditions used in the LB simulations. For this smaller pie
of the sample, the effect of the boundary conditions is m
significant than for the whole sample. We also perform
with LB a couple of simulations with conditions similar t
those used in FD. The pressure boundary condition was
tated using the body force combined with density and m
mentum averaging at the inlet and the outlet in the adjac
free fluid layer with thickness of one lattice spacing. No-flo
boundary conditions were applied on the other cube sid
We found that the results of the LB and the FD method w
again very close. This is indicated in Fig. 5 by two isolat
points ~filled square and star! at a157.5 mm which were
obtained from LB simulations with these boundary con
tions fort50.688 andt51.0, respectively. However, a com
plete recomputation of the data of Fig. 5 would have e
hausted the available computation time. Moreover,
results for the free fluid layer and for periodic boundary co
ditions allow us to estimate the influence of the bound
conditions on the result.

For the original resolution the permeabilities obtain
from the LB algorithm differ with varyingt by nearly a
factor of 2. This again shows that the accuracy of the
results for low-porosity~and low-discretization! systems
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strongly depends on the relaxation parameter. While
t50.6 the LB results are nearly independent of the latt
spacing, the changes in the permeability are drastically
creased with increasingt. As we have already discussed,
the permeability simulations, decrease in the relaxation
rametert ~or viscosity! can be used to compensate an ina
equate grid resolution~finite-size effects! within certain lim-
its. By testing the structures of the subsamples for sev
grid resolutions and values oft, we choset50.688 for the
main simulations of the permeabilities. This is not necess
ily the optimal choice and it differs from the results for pip
flow, but a more accurate calibration oft would require fur-
ther simulations or other independent results.

The permeabilityk(`) for an infinite resolution of the lat-
tice is obtained from a linear extrapolation of the data d
played in Fig. 5. Extrapolation of the FD results yieldsk(`)

5224 mD. Thus, we obtain an estimate for the relative er
of our permeabilities in the case of EX, (k(1)2k(`))/k(1)

'0.33. For LB the extrapolated permeability isk(`)

5550 mD. Analogously, fort50.688 we obtain (k(1)

2k(`))/k(1)'0.15. For DM this error of LB is about the
same size as for EX, and approximately 0.3–0.4 for SA a
GF.

The simulations of the subsamples show also that
magnitude of fluctuations in permeability, within one and t
same sample, can be 100% even when the sample is
tremely homogeneous. An effect of similar size may be
duced by inaccurate boundary conditions. This is import
when comparing two micropermeameter experiments
which different boundary conditions may have applied.

When analyzing a subsample of sample SA, we enco
tered another difference between the FD and LB simulati
Geometrical analysis of the considered subsample of SA
veals that this subsample is not percolating in directioneW1

FIG. 5. Permeabilityk of a cubic subsample of the Fontaine
leau sandstone~EX! for different values of the lattice spacinga and
different relaxation parameterst. The size of the subsample isL
5750 mm. The LB simulation used an additional fluid layer an
the periodic boundary conditions. The isolated data points wita
57.5 mm are obtained from LB simulation without extra flui
layer, with momentum averaging in the inlet and outlet and w
no-flow boundary conditions. The LB relaxations parameters w
t51.0 andt50.688.
2-9
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and its FD permeability vanishes. We found, neverthele
that its LB permeability isk11

(1)550 mD for t50.688, and
for the original resolutiona157.5 mm. We attribute this re-
sult to diagonal leaks that are present in the LB model us

E. Velocity distributions

Next we consider the velocity fields in more detail, a
analyze the histograms of velocity magnitudes. Figure
shows the scaled distributions of the magnitude of the ve
ity uvW (xW )u with xWPP for samples EX and SA. The distribu
tions were sampled using the solutions of the flow fields
an applied pressure gradient in directioneW1. The higher per-
meability of the original sandstone EX is reflected by
higher probability density of regions with average flow v
locity. The distribution of sample SA on the other hand e
hibits a higher peak atuvW u50, and it extends to higher ve
locities. The former observation indicates large stagn
areas where no transport is taking place. The increased p
ability at high velocities may be related to a large number
narrow pore throats through which the fluid has to move. T
velocity results for sample GF exhibit close resemblance
those of sample SA while those for sample DM resem
those for EX.

Unlike the results for the permeabilities, which are clo
to each other, the velocity distributions reveal more sign
cant differences between FD and LB calculations~see Fig.
6!. The distributions obtained from the LB solution exhibit
maximum at small velocities, which is not present in t
distributions obtained from the FD solution. The differenc
could perhaps be attributed to the slip velocities at
boundary due, e.g., to the bounce-back boundary cond
and the diagonal leak flows in the LB algorithm, which cou
lead to a systematic deficit of zero velocities near the bou
ary.

For SA the LB simulations show an additional spurio
~double! peak at uvW u/^uvW u&'1.5. Similar, although smalle
peaks were also found for GF and EX. The locations of th
peaks were found to beDP/2r^uvW u&, whereDP is the body
force. We attribute these peaks to the staggered mom
found in small closed pores, the number of which is ve
high for SA and GF. We have checked that these peaks
appear when time-averaged velocities are used, and a c
sponding increase appears at zero velocity, which is the
pected velocity for small closed pores.

VI. CONCLUSION

We have performed numerical micropermeametry
three-dimensional porous microstructures with a linear s
of approximately 3 mm and a resolution of 7.5mm. One of
the samples was a microtomographic image of Fontaineb
sandstone. Two of the samples were stochastic recons
tions with the same porosity, specific surface area, and t
point correlation function as the Fontainebleau sample.
fourth sample was a physical model, which mimics the p
cesses of sedimentation, compaction, and diagenesis of
tainebleau sandstone. The permeabilities of these sam
were determined by numerically solving at low Reynol
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numbers the appropriate Stokes equations in the pore sp
of the samples, using standard finite differences methods
the lattice-Boltzmann method. Our work shows that bo
methods, the LB method as well as standard FD methods
applicable to the solution of the steady-state Stokes equa
within the microstructure of a three-dimensional porous m
dium. We investigated systems with sizes of up to 4003 lat-
tice points. The solution of even larger systems seems p
sible. Hence, numerical micropermeametry is becomin
feasible technique for studying permeability fluctuations.

An accurate, quantitative comparison of the two nume
cal methods is difficult due to the different approaches
derlying these methods. The memory requirements of
algorithms used in this study differ by roughly a factor
2.5. The FD algorithm requires storing eight real numb
per lattice node, while the LB algorithm needs 19 real nu
bers per node. However, in this LB model 15 real numb
could also be used@19#. Considering the time consumption
both methods are quite similar. Our comparison has sho
that there are some features in the standard application o
LB method, which need special attention. These include
t dependence of the no-flow boundary, the compressibility
the fluid, staggered invariants, and diagonal leak flows. O
should notice that these occasionally inconvenient featu
can usually be eliminated if so needed. The compressib
of the fluid can be eliminated for stationary flows@44#, and
the effects of staggered invariants can be eliminated w
proper averaging. The diagonal leak flow, which becom
noticeable for rough surfaces and near the percolation thr
old and limits there the accuracy of the method, can also
eliminated by fairly straightforward means. Thet depen-
dence of the no-flow boundaries can as well be eliminat
entirely by introducing a modified LB model@45#, or almost
entirely by using second-order boundaries as discus
above. We could of course have implemented here all th
corrections in the LB code, and achieved thereby a m
favorable comparison with the FD code and experiment,

FIG. 6. Velocity distribution functionP(uvW u) of the Fontaineb-
leau sandstone~EX! and the SA model sampled over the pore spa
The distributions are scaled with the mean velocity^uvW (xW )u&xWPP .
The inset shows a magnification of the distribution of EX for sm
velocities.
2-10
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we wanted to show the points of concern in a ‘‘standa
implementation of the LB method.

Our results provide a quantitative comparison of vario
models for porous rocks. We show that stochastic reconst
tion models for Fontainebleau Sandstone are less accu
than originally believed@46,47#. In addition, our results for
the permeabilities of the Fontainebleau sandstone and
models confirmed previous predictions@7# of a purely geo-
metrical investigation of the same samples based on l
porosity theory. The numerical value ofk for the EX sample
was found to be in good agreement with the experime
value. Nevertheless, one has to keep in mind that ‘‘num
cally exact’’ results for the fluid permeability must b
handled with care. We have shown here that they may
pend on the numerical method, the boundary conditions,
size of the sample, and the resolution of the microstruct
-

he
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01670
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Errors of as much as 100% cannot typically be ruled out
summary, numerically exact determination of permeability
difficult to achieve. On the other hand, the same is true
the precision measurements in an experiment.
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@6# R. Helmig, Multiphase Flow and Transport Processes in t

Subsurface~Springer, Berlin, 1997!.
@7# B. Biswal et al., Physica A273, 452 ~1999!.
@8# R. Hilfer and P. O” ren, Transp. Porous Media22, 53 ~1996!.
@9# T. Bourbie and B. Zinszner, J. Geophys. Res.@Solid Earth

Planets# 90, 11524~1995!.
@10# T. Bourbie, O. Coussy, and B. Zinszner,Acoustics of Porous

Media ~Editions Technip, Paris, 1987!.
@11# F. Dullien,Porous Media—Fluid Transport and Pore Structu

~Academic Press, San Diego, 1992!.
@12# R. Hilfer, Phys. Rev. B44, 60 ~1991!.
@13# R. Hilfer, Adv. Chem. Phys.XCII , 299 ~1996!.
@14# S. Patankar,Numerical Heat Transfer and Fluid Flow~Hemi-

sphere Publishing Corporation, New York, 1980!.
@15# A. Tscheschelet al., Physica A284, 46 ~2000!.
@16# R. Hilfer, in Statistical Physics and Spatial Statistics, edited by

K. Mecke and D. Stoyan~Springer, Berlin, 2000!, Vol. 554, p.
203.

@17# C. Hirsch, Numerical Calculation of Internal and Externa
Flows ~Wiley, Sons, New York, 1988!, Vol. 1 & 2.

@18# F. Harlow and J. Welsh, Phys. Fluids8, 2182~1965!.
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