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Nonlinear dynamics of topological solitons in DNA
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Dynamics of topological solitons describing open states in the DNA double helix are studied in the frame-
work of a model that takes into account asymmetry of the helix. It is shown that three types of topological
solitons can occur in the DNA double chain. Interaction between the solitons, their interactions with the chain
inhomogeneities, and stability of the solitons with respect to thermal oscillations are investigated.
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I. INTRODUCTION small amplitudes. The approach has, however, one essential
deficiency: because of the limited possibilities of modern
It is widely accepted now that the DNA molecule has acomputers it cannot be used to study long DNA fragments,
rather movable internal structure, and that the internal DNAand therefore it does not suit studies of the processes of
mobility plays an important role in the functioning of the propagation of local structural distortions along the mol-
molecule. In the thermal bath in which the DNA molecule isecule.
usually immersed, collisions with the molecules of the solu- In this paper, to investigate the internal DNA mobility, we
tion which surrounds DNA, local interactions with proteins, use the approach developed in a series of wiks-25.
drugs or some other ligands lead to activation of differentPeculiarity of the approach is that it uses rather simple mod-
types of internal motions. Small oscillations of individual els of the internal DNA dynamics, which take into account
atoms near equilibrium positions, rotational, transverse, andnly one or a few types of the DNA internal motions. This
longitudinal displacements of atomic grougphosphate simplification gives us an opportunity to find analytical so-
groups, sugars and bagesotions of the double chain frag- lutions of corresponding dynamical equations imitating both
ments having several base pairs lengths, local unwinding admall and large amplitude internal motions. And one more
the double helix, transitions of DNA fragments from one merit of the approach is that it gives a possibility to study the
conformational form to another, for example, fréxrfiorm to  internal dynamics of long DNA fragments. Three works in
B form and so on, are only some of them. A more detailecthe series are most interesting.
list of internal motions and of their dynamical characteristics The first one has been done by Englander and co-authors
can be found in the works of FritzscH&], Keepers and [14] who studied the dynamics of DNA open states. Their
Jameqd 2], McClure[3], McCommon and Harvej4], Yaku-  model took into account only rotational motions of nitrous
shevich[5], and Yakushevich and Komar¢®]. bases which, as it was suggested, made the main contribution
Different approaches to the modeling of the internal DNAto formation of the open states. Another paper belonged to
mobility are known. One of them has been developed byPeyrard and Bishop22], who studied the process of DNA
Prohofsky and co-authof—10], who considered DNA as a denaturation. Suggesting that the stretching of the hydrogen
lattice and took into account the motions of all atof@scept  bonds in pairs made the most contribution into the process,
of hydrogen atomsin the lattice cell. Their approach was they created a simplified model where only transverse mo-
limited, however, by harmonic approximation, and this limi- tions of bases along the direction of the hydrogen bonds
tation did not permit them to model large amplitude internalwere taken into account. The third important paper was pub-
motions such as local unwinding of the double helix. An-lished by Muto and co-authof&1]. These authors suggested
other approach, based on the methods of molecular dynamigsat two types of internal motions made the main contribu-
and first proposed by Leviftl1l] and Tidor and co-authors tion to DNA denaturation process: transverse motions along
[12], is known now as one of the most powerful tools of the hydrogen bond direction and longitudinal motions along
investigation of the internal DNA mobility13]. This ap- the backbone direction. Their model consisted of two poly-
proach is not limited by harmonic approximation and therenucleotide strands linked together through the hydrogen
fore it can be used to study internal motions of both large andhonds described by a Lennard-Jones potential, and the phos-
phodiester bridges in the backbone were described by an
anharmonic Toda potential.

*Electronic address: ykushev@icb.psn.ru Further development of the approach was limited for sev-
"Electronic address: asavin@center.chph.ras.ru eral years by small improvements of the models and their
*Electronic address: Imanev@center.chph.ras.ru combinations, and only involving numerical methods of
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TABLE I. The values of the parametens, ,r,,,| ,=m,r2, for

a’ a

all possible bases (m,=1.67343<10 2" kg is the proton mags

a m, (M) r. (A) I, (X10 %" m?kg)
A 135.13 5.8 7607.03
T 126.11 4.8 4862.28
G 151.14 5.7 8217.44
C 111.10 4.7 4106.93

to the helix axis. Below we shall call the chain placed on the
left as first chain, and the right chain as second chain. Posi-
tive directions of the rotations of the bases for each of the
chains are shown in Fig. 1.

FIG. 1. Fragment of the DNA double chain consisting of three L&t us consider the plane DNA model where the chains of
AT base pairs. Longitudinal pitch of the hel= 3.4 A; transverse ~ the macromolecule form two parallel straight lines placed at
pitch h=16.15 A. a distanceh from each other, and the bases can make only

rotation motions around their own chain, being all the time
simulation of the internal DNA dynamics gave a new im- Perpendicular to it. Let us suggest thag, is the angular
pulse and interesting possibilities which have been realizediSPlacement of thath base of the first chain, ang,  is the
in the works of Van Zandi26], Techera and co-authof27], angular dlsplac_:em_ent of theth base of Fhe second chain.
Salerno[25], Barbi and co-author28,29, and Camp430]. Then the Hamiltonian of the double chain takes the form
Just these methods permitted not only to study a possibility
of appearance of large amplitude localized distortions in the 1 1 o o
DNA structure, but also to investigate their stability, the in- _ T2 Ty 2 ; nt1l ¥nl
fluence of thermal noise, the intergctions between )t/he distor- : En: 2 nafnat g lnaehat €naSirF 2
tions, the propagation of them along the homogeneous and o o
inhomogeneous DNA. p2¥n+12 ®n2

In all these works, however, the asymmetry of the base +engsi? 2 T Vag(enaien2 - @
pairs was neglected. That is, both bases in a pair were mod-
eled as identical structural elements with the same character-
istics (masses, moments of inertia and so.d@ut even inthe  The first two terms of Hamiltoniaril) correspond to the
case of homogeneoigsyntheti¢ DNA the asymmetry exists. Kinetic energy of thenth base pair. Herg,, ; is the moment
Indeed, if, for example, one of the polynucleotide chainsof inertia of thenth base of the first chairh;,,z is the moment
consists of only adenines, the other chain should consist dif inertia of thenth base of the second chain, and the point
thymines, and this homogeneous model is substantiallflenotes differentiation in time For the base paixs (a8
asymmetrical. Just this type of asymmetrical model is stud=AT,TA,CG,GC) the moment of inertia is equal th, ;
ied in this work. To simplify calculations, we consider only =m,r2, Ino= mﬁrf;. The value of the base mass,, the
rotational motions of nitrous bases around the sugarlength r,, and the corresponding moment of inertig
phosphate chains in the plane perpendicular to the main axis m,r?2 for all possible base pairs are presented in Table I.
of the double chain. We find solitary wave solutions describ- The third and the fourth terms in Hamiltoniéh) describe
ing open states in the double helix. We classify the solitonsinteraction of the neighboring bases along each of the mac-
investigate stability of the solitons with respect to thermalromolecule chains. Parametgy; characterizes the energy of
oscillations, interactions between the solitons, and interacinteraction of thenth base with therf+1)th base of théth
tion of the solitons with inhomogeneities of the chain. Tochain (=1,2). The value of the parameter is unknown. But
solve all these problems, we use numerical-variation methif we take into account the fact that angular displacement of
ods efficiency of which was proved in the work31-36,  one base is accompanied not only by overcoming the barrier
devoted to the analysis of nonlinear dynamics of moleculague to the stacking interaction, but also by substantial defor-
chains and polymer crystals. mation of the dihedral and valence angles, we can suggest
that the energy of the displacemest; should be wittingly
more than the stacking 40-60 kJ/md@7], and it should
weakly depend on the type of the base. This gives us a pos-

Let us consideB form of the DNA molecule, the frag- sibility to suggest later on that, ;= e, ,= €>60 kJ/mol.
ment of which is presented in Fig. 1. The lines in the figure The fifth term in Hamiltonian1l) corresponds to the en-
correspond to the skeleton of the double helix, black andkrgy of interaction between conjugated bases of different
gray rectangles correspond to bases in pa$ and GC). chains. Here indexaB=AT,TA,GC,CG determines the
Let us focus our attention on the rotational motions of basesype of the base pair. It is convenient to model the energy of
around the sugar-phosphate chains in the plane perpendiculiateraction of conjugated pairs by the potential

Il. DISCRETE MODEL OF THE DNA DOUBLE HELIX
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1 TABLE II. Dependence of sound velocity, (m/s) on the value
Vep(@n1:6n2)= EK“ﬁ| R,— Rno|2, (2) of the parametee for homogeneoua3=AT (GC) chain.
. . kJ/ 60 600 6000
whereR, is the vector connecting the end of the basglf ¢ (kJ/mo)
with the end of the basen(2), RS is the value of the vector AT 219.47 694.02 2194.7
for the ground state of the chaip, =0, ¢,,=0. Potential GC 223.38 706.39 2233.4

(2) can be written in a more simple form,

Vap(@n1:@n2) =Kopll o1 o1 5) (1—COS@p 1) pIitude,qe[O,w/a] is thg wave number. It is easy to show
that in the linear approximation the frequeneyshould sat-

H1p(Mat1p)(1—COSen ) isfy the dispersion equation

—rorgll—cogen1—en2ll. (3 0*+Bw?+C=0, (6)

The rigidity of interactionk ,; can be estimated from the
energy of interaction where

. ,da
ea[,:% Vaﬁ<0%)+vag g'OHZ%Kin“fﬂ- B= Kaﬁuar§+|ﬁr§)+4x(|a+|ﬁ)sm27}/ Ll 5,
The pairAT (TA) is stabilized by two hydrogen bondthey
are shown in Fig. 1 by dotted lingsand the paiCG (GC) Lol g
by three hydrogen bonds. Therefore we suggest later on that
eaT=era=2€cg/3=2eg/3=¢e. k= €/2 is the rigidity of the interaction of neighboring bases
For the value of the energy of interaction of the bases iralong the chain.
AT base pair we can take the double energy of hydrogen Dispersion curve6) has two branches:
bond e=40 kJ/mol. Then the rigidity of the bond between

C:

2, 2y 242 2 o092
4KKaﬁ(ra+rﬁ)sm27+16K S|n47

the bases is equal to wa(q)=[(B—\B?—4C)/2]*?,

e _ 2__ 1/2

Kar=Kra=3Koc=5Kce=K=—5—5=0.234 N/m. wo(Q) =[(B+ VB =4C)/2]7~
rC(

+r
g (4)  The upper curvev=w,(q) corresponds to optical phonons,

the lower curvew= w,(q) corresponds to acoustic phonons
On the other hand, the value of the parameter can be estin the chain.
mated from the frequency spectrum of small amplitude os- The frequencyw,(q) tends to zero ag—0. Let us deter-
cillations of the chain. We shall obtain it in the following mine the velocity of acoustic phonons as
section.

_w(q) K(re+13)
ll. DISPERSION EQUATION vo=lim——=a\/——.
g—o0 9 (N g 1
The system of equations of motion, which corresponds to
macromolecule Hamiltoniafl), takes the form The dependence of the sound velocity in the homoge-
neous moleculeeB=AT (GC) on the energy of rotation is
f e presented in Table II.
n1Pn1= "G, According to different estimatior{88—4( the velocity of
’ sound in DNAis in the interval from 1890 m/s till 3500 m/s.
OH From Table Il it is clear that among three typical values
In20n2= =5 —, (5)  =60,600,6000 kJ/mol the value=6000 kJ/mol is the best.
n.2 Just this value will be used in the numerical investigations of
N=0+1-+2, ... . the dynamics of topological solitons.

The lowest value of the optical frequency is

Let us consider a homogeneous macromolecule in which _ = >
only one type of base pair exiss8 (I,:=I,, In2=1p). wo(0)= \/Kaﬁ(l ol pt1pra)lal . ()

Insert small amplitude plane wave . 1
According to Ref[41] w,(0)=35cm -, therefore from Eq.

(@n1(1), @n21)= (@1, p) A @aN~ 0D (7) we have

into the system of equation®). Here (p;,¢,) is a two-

3
dimensional vector that is normalized toAs< = is the am- Kar=K=4.744 N/m, Kcg=5K=7.117 N/m. (§)

2
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L, =0, L

#n,1

=0, N=0,+1,+2, ... . (10)
n,2

(2

Here the functional
02
L= ; 2_612[| o(Pnr11— On1)?t lg( P12~ ®n2)°]

. e( sir? (Pn+1,;_ ®n,1 L sir? ‘Pn+l,;_ <Pn,2)

_Vaﬁ(‘Pn,la(Pn,Z)]

is a discrete version of the Lagrangian

1 . 1 . 1) —
2 2 . n+1,1 n,1
E' niPna1t 5' n2®Pn2" 5( sin? 5

FIG. 2. Acoustic w=w,(q) (curve 1,3,% and optical »
=wy(q) (curve 2,4,6 branches of the dispersion curve for homo-
geneous chaindB=AT, €=60,600,6000 kJ/mplfor chain with 2
K=0.234 N/m(a) andK=4.744 N/m(b).

., ® —¢
+sz n+1,2 n,2

) - Va,B( Pn,1s @n,z)

which corresponds to the system of equations of motin
For further analysis it is convenient to write the functional

This estimation of the value of the rigidity differs from that . : .
L in the dimensionless form

obtained in Eq.4). The use of the value given in E)

gives substantially lower value of the frequenay,(0)

=7.77 cm 1. Thus we have the following estimation of the  L=2L/K(r2+r2)=">,

value of the parametef:0.234<K=<4.744 N/m. The view n

of the dispersion curves for homogeneous chaiB€ AT)

with different values of the parameters is presented in Fig. 2. - (pnyz)z— g(
For numerical investigation of the soliton dynamics we

Col @ns 11— @)+ Ca(Pni1

.o P - .o P — ¢
sz n+1,; n,1+sm2 n+1,; n,2

shall take the intermediate vallle=0.8714 N/m that corre-
sponds to the frequenay,(0)=15cmi !, and energy of in- —Uupleni,en |, (11
teractione,t= 149 kJ/mol.
where the dimensionless coefficients
IV. NUMERICAL METHOD OF FINDING SOLITARY
WAVE SOLUTIONS o vll, o v2lg
a 2., .2\ “BT 2. .27
Complexity of the system of equations of motits does Ka?(rz+r7) Ka(ra+r7)
not permit us to carry out analytical investigation. Therefore, .
we shall study it numerically and use the variation techniqueParameter of cooperativity
proposed in Ref[32], to find solitonlike solutions. _ P
Let us consider homogeneous DNA molec{fler all n g=2€/K(ra+r7), (12)
ln1=1,, 1ho=14, wher =AT (TA . We shall . . .
ni=las Ino=lp, Wherea/s (TA,CG,GC)]. We sha and dimensionless potential U ,s(@n1,0n2)

find the solution of systen(5) in the form of a wave with

— 2, .2
smooth, constant profile. For this purpose, let us suggest that zvaﬁ("on,l"Pn@)/K(rA+rT)' .
ena()=01(8), @no(t)=,(£), where the wave variablé Soliton solution of the systerf10) can be found numeri-
—na—wvt, andv is the velocity of the wave. cally as a solution of the problem on conditional minimum

Let us assume, that the functiogg and ¢, smoothly —

depend or¢. Then the time second derivatives can be sub- —L= min 12: (13
stituted for discrete derivatives, P2jr PN-1i 1=
) PLI=P-w1) P12= P2, (14
d%en, qor
A2 72 L ) /52
a2z 9¢? v enrim 20t en-s)lan (9 PNI= Poo,1s PN2= Poo 2 (19

Boundary conditiong14),(15) for the problem(13) deter-
i=1,2. Using these relations, we can write the equations omine the type of the soliton solution. We should take a rather
motions(5) in the form large number folN, in order that the form of the solution of
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the problem might not depend on its value. For this purpose TABLE lll. Dependence of the threshold value of the parameter
it is enough to takeN ten times larger than the width of the of cooperativityg, on the value of the soliton topological charge

soliton. g=(0;,9,) for homogeneousrB=AT (GC) chain.

The soliton solution of the probleifd3) can be character-
ized by the topological charge=(q;,q,), where g; (91,92) 1.0 0.1 1.1
= ((Poc,i_ QD—oc’i_)/ZWy ) | = 1,2, ) iS a-n integel’_ C{i :O,i 1, AT 8.3 5.7 8.3
+2,...). To findsoliton solution with topological chargg GC 12.0 8.2 12.0

it is necessary to solve the problem on minimgb3) with
boundary conditions,

B B B B coefficientsc,=cz=0 whenv=0. So, only one dimension-
P01 P27 0, €21=2701, Qe 2= 270, less parameteg (12) that characterizes cooperativity of ro-
tational motions remains in functionéll). The existence of
soliton solution and its form depend on the value of the
parameter.

This problem was solved by the method of conjugated gra-
dient. The valueN=2000 was taken, and the initial point

eni=[1l+tanhu(n—N/2)]m7q;, i=1,2,
A. Stationary solution

was used. Herg. is a changeable parameter. The results of numerical investigations of the problem

Soliton solution(solution in the form of a solitary waye . . .

o O1N . . . (13) show that in the homogeneous chains stationary topo-
{#n1:¢natn=1 COMesponds to topological soliton with the logical soliton solutions exist when the parameter of cooper-
energyE=K(ri+r$)E/2, where the dimensionless energy ativity g is larger than the threshold valug=go>0. The

_ absence of the soliton topological stability whert g, can

rep z be explained in the following way. Any topological defect

=1 can be eliminated by turning the DNA bases. The turning of
one base by about 360° transfers the system to the initial
sir? Pnt+11" (P”’1+sin2 Pn+12" Pn2 state, that is¢; ,=¢; ,=27. And this is why the narrow
2 2 solitons with the size equal to one link of the chain are
equivalent to the ground state and this is why they are un-
stable. So, only relatively wide solitons with the general

Col @ns 1.1~ €n 1)+ Cal@ni 1.0~ Pn2)”

+U“5(<P”'1(P”'2)} turning consisting of several small changes in rotational
. . angles that is whei; .1~ ¢; o|<27, are stable. Depen-
and with the diameter dence of the threshold valug, on the soliton topological
— chargeq for homogeneou&\T and GC chains are given in
D=1+2V(n—n)’p, Table III.

From Fig. 3 it becomes clear that the soliton endEggnd

where the point . ) ; )
P its width D monotonically increase when the parameter of

N cooperativityg increases. For soliton stability it is necessary
=> np,, that its widthD>4.33. The view of stationary solitons with
n=1 the parameters of cooperativity=10 andg=150 is pre-

sented in Fig. 4. In the case of the soliton with topological
chargeq (1,0), the first component has the form of a
N1 smooth stegwhenn monotonically changes, the base of the
pn:En/E:(Z[Ca(QDn+1,1_ Pn-10%+ Ca(Pni12 first of two DNA chains makes a complete tiraccompa-
nied by smooth small-amplitude deformation in the second
component[Fig. 4(a)]. In the case of the soliton witly
=(0,1), only the second component has the form of a step
[Fig. 4(b)]. In the case of soliton witlg=(1,1), each of the
o Pn1— Pno11 . o Pno— Pn_12 components has the form of a stfpig. 4(c)], with steps
+ i’ — > +sin’ — > relatively displacing one another. Later on we shall show that
this soliton is the bound state of two topological solitons

determines the position of the soliton center, and the formula

Sir? Pn+1,1 Pna

: i Pn+1,2~ Pn2

+sli

1
- @n—1,2)2]+ Eg

— with the chargesy;=(1,0) andg,=(0,1). There exist two
+ Uaﬂ(‘Pn,l‘Pn,z)} = equivalent states of the soliton: the left stgte(1,1),, when
the soliton with the charge; is on the left side of the soliton
gives the distribution of the energy along the chain. with the chargeq, [Fig. 4(c)], and the right stateq
=(1,1),, when the soliton with the chargg is on the right
V. DYNAMICAL PROPERTIES OF SOLITONS side of the soliton with the chargs.

When e=6000 kJ/mol andK=0.234 N/m the parameter
At the beginning let us consider stationary soliton solu-of cooperativityg=150.24>g,, and whenK =0.8714 N/m
tions of the problen{13). In the dimensionless functional,  the parameteg=40.34>g, (see Table Il for all types of
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FIG. 3. Dependence of the dimensionless soliton en&rgynd
the widthD on the velue of the parameter of cooperativgtyvhen
g=(1,0)(0,1),(1,1) (curves 1,2,Bin homogeneou&T (a),(c) and \ . . .

GC chains(b),(d). 800 900 1000, 1100 1200

topological solitons. So, for these values of the rigidity pa- g, 4. The view of stationary soliton with the topological
rameterK stable solitons with different topological charges chargeq=(1,0) (a); g=(0,1) (b); g=(1,1) (c). Continuous lines
exist. For maximum value of the rigidity paramet&  correspond to displacements by the first compongpt; dotted
=4.744 N/m the parameter of cooperativig=7.41<gg, lines correspond to displacements by the second compangnt
and this means that the stable topological solitons are abseriin lines correspond to chain witp=10; flat lines correspond to
Thus the problem of the existence of topological solitonschain withg=150.

(open statesin the DNA reduces to the problem of receiving

exact estimation of the parameterandK. But this is, how- Dependence of the soliton eneryand the diameteb
ever, a rather difficult problem. We think that the values , the dimensionless velocityis presented in Fig. 5. With
=6000 kJ/mol, K=0.8714 N/m, when all three types of jncrease in the soliton velocity its energy monotonically in-
solitons exist, are the most grounded. And we shall use thesgeases, and the diameter monotonically decreases. Using the

values for further calculations. _ dependencé&(s) we can find the mass of rest of the topo-
Dependence of the enerdy and the diameteb of sta-

) . i / . . logical soliton,

tionary topological soliton on its topological chargen the

chain with e=6000 kJ/mol and the transverse rigidity deter- 2[E(s)—E(0)]
mined by formulag4) and (8), are given in Table IV. From M= Iim#
the data of the table it follows that the energy of interaction s—0 Svg

of the solitons with charge€l,0) and (0,1) is equal toAE

=E(1,0)+E(0,1)—E(1,1)=90.71 kJ/mol for the chain with TABLE IV. Dependence of the enerdy and the diameteb of
the rigidity of the transverse interactiét=0.8714 N/m, and stationary topological soliton on its topological chamgevith two
the energy is equal tAE=42.16 kJ/mol for the chain with values of the transverse rigiditg.

K=0.234 N/m.
aB=AT aB=GC
B. Nonstationary solutions K (N/m) q E (kJ/mo) D E (kJ/mo) D

Numerical investigation of the problefil) shows that in (1,0 2776.52 16.59 3405.48 13.69
the homogeneous chain topological soliton has the intervad.234 0,9 2237.36 19.58 2733.60 16.18
of the velocities Bss<s;<1, wheres=v/v is the dimen- (1,2 4971.72 42.85 6087.54 35.13
sionless velocity andy is the velocity of sound. Dependence (1,0 5329.76 9.03 6394.96 7.64
of maximum velocity of the solitos; on its chargey, onthe  0.8714 0,2 4302.09 10.59 5146.38 8.98
type of base in the chaia3, and on the rigidity of the (1,2 9551.14 22.60 1144496  18.93

transverse interactiol is presented in Table V.

016614-6



NONLINEAR DYNAMICS OF TOPOLOGICAL SOLITONS IN DNA PHYSICAL REVIEW E56, 016614 (2002

TABLE V. Dependence of the maximum value of the soliton  TABLE VI. The dependence of the soliton mass of rektthe
velocity s; on its topological charge, the soliton moving in the values are given in proton mass unitg) on its topological charge
homogeneoug 3 chain with the transverse rigidit. g, the soliton being in the homogeneoa® chain with the trans-
verse rigidityK.

K (N/m) q AT GC
K (N/m) q AT GC

(1,0 0.77 0.70

0.234 0,2 0.88 0.84 (1,0 7640 9663
(1,0 0.77 0.70 0.234 0,9 4052 4064
(1,0 0.64 0.55 1,9 11581 13590

0.8714 0,1 0.86 0.84 1,0 14978 18730
(1,2 0.65 0.56 0.8714 0,1 7899 7804

1,1 22 660 26 265

Dependence of the mass of ré4f the soliton on its charge
g, on the type of the bases of the chaiB and on the
rigidity of the transverse interactioK is presented in Table DNA is a rather long molecule, and several open states
VI. can be activated in it simultaneously. Therefore it is interest-
Numerical investigation shows that all topological soli- ing to consider the problem of interaction of solitons imitat-
tons at all permitted velocities are stable. They move alongng the open states.
the chain with constant velocity, their form and energy being Numerical approaci{13) permits us to investigate the
conserved. Thus, the specificity of the chain of the DNAproblem and to obtain the dependence of the energy of a pair
molecule leads to a principal effect consisting in the possiof solitons with the chargeg,,q, on the distance between
bility of preferable localization of soliton excitations on one their centeran,,n,. For this purpose it is necessary to take
chain. Moreover, it appears that soliton excitation with thethe boundary conditions and the initial point, which corre-
charge(1,1) is a bound state of two excitations localized in spond to a pair of topological solitons with the centers mov-
separate chains. ing away at a distand®. When minimizing the energy of the
systemE=—L, it is necessary also to fix the turns of the
. . . . bases, which correspond to the centers of solitons. Then the

VI. INTERACTION OF TOPOLOGICAL SOLITONS

energy of the obtained staE{ R) corresponds to the energy
=3 of a pair of topological solitons, the solitons being at a dis-
_E) 12r 3 7 tanceR=n,—n, from each other. By changing positions of
0;! the soliton centers, we can obtain the potential of interaction
(@]
= Uq, .q,(R)=E(R)—E(ay) — E(qp),
moogl ]
1 whereE(q,;) andE(q,) are the energies of isolated solitons.
2 The potential of interaction of solitons of different types
and the potential of topological solitons with the charges of
4 . : : : the same sign are presented in Fig. 6. The potential of two
0 0.2 04 0.6 08 solitons of different types witly, = (1,0) andg,=(0,1) has
the form of symmetrical double well potentigig. 6, curve
2 6 1). Maximum of the potential is reached wh&0, that is
Q 5| ; i
15F . 3
2 4 j
},
mx 3t 4
10F ] 5
\ T 2} .
5K , =t ]
0 0.2 0.4 0.6 0.8
s 0
FIG. 5. Dependence of the ener§yand the diameteD of the -80 Ria 80
soliton that moves along homogene®is chain and has the charge
g=(1,0) (curves 1 and ¥ g=(0,1) (curves 2 and B and q FIG. 6. Potential of interaction of solitorld, 4,(R) with q;
=(1,1) (curves 3 and b6 on the dimensionless velocitg (e =(1,0), 9,=(0,1) (curve 2; q;=(1,0), g,=(0,—1) (curve 2;
=6000 kJ/mol,K=0.8714 N/m). d:=9,=(1,0), andg;=q,=(0,1) (curve 3.
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when the centers of the solitons are placed at the neighboring ' ' ' ' ' '
chains and when the solitons are opposite to each other —~
From energetic point of view this configuration of the soli-
tons of different chains is the most disadvantageous. Mini-
mum of the energy is reached wh&+ +20a. Thus two o
solitons of this type can form two energetically equivalent
coupled states. One of the statesft minimum of the poten-
tial of interactior) corresponds to the left isomer of the to-
pological soliton with the chargg=(1,1);, and the other
state(the right minimum of the potential of interactipnoor-
responds to the right isomer of the solitgs-(1,1), .

If solitons have different signs of charggs=(1,0) and
d2=(0,—1), the potential of interaction has a bell-ike form  FIG. 7. Potential of interaction of solitorid, q,(R) with g,
with one maximum aR=0 (Fig. 6, curve 2. From the po- =(1,1), q,=(—1,—1), (curve I; gq;=(1,1), g,=(—1,—1),
tential it follows that the solitons that belong to different (curve 2; g,=(1,0), g,=(—1,0) (curve 3; g;=(0,1), g,=(0,
chains should repulse from each other. Solitons with the-1) (curve 4.
same sign of chargeg; =g,=(1,0)(0,1)] also repulse from
each other. The potential of interaction of different topological soli-

When distance between the solitons decreases, the enertpns with the charges of opposite sigreg € —q,) is pre-
monotonically increases and goes to infinity whenr-0 sented in Fig. 7. The potential of interaction of one-
(Fig. 6, curve 3. component  solitons [q;=(1,0),(0,1) monotonically

The potential of interactiomqlqu(R) permits us to pre- decreases with decrease in the distance between the solitons.

dict the result of repulsion of solitons with the charggs When R—0, the potentialUg o, (R)— —[E(d1)+E(q2)].
andq,. Let us model the repulsion of the solitons. For theAt a distanceR=0 solitons completely recombine.
purpose, let us consider a double chain consistingNof The potential of interaction of two-component solitons
=4000 base pairs. At the end of each of the polynucleotidevith the charges of different signs has a similar form. If the
chains let us introduce viscous friction that provides withsolitons have different polarity, that is, if the first soliton is a
absorption of phonons. The system of equations of motioteft isomer[qg;=(1,1)] and the second soliton is a right
(5, n=1,2,... N, was integrated numerically with the ini- isomer[g,=(—1,—1),]. Solitons of that type attract one
tial condition that corresponds to two topological solitonsanother. Their collisions always leads us to recombination of
with the centers placed in the points;=N/4 and n,  the solitons.
=3N/4 and with the velocities; = —s,=5>0. If solitons have the same polarity, they repulse wiien
The results show that collision of solitons having equal>20a, and attract when the distances are shorter. Recombi-
signsg; =q,=(=*1,0),(0+ 1) leads to their reflection at one nation of the solitons requires overcoming the energy barrier
another. When the velocities are small, the reflection is 1730 kJ/mol. Solitons overcome the barrier only when
practically elastic, and when the velocitissire large, colli- >0.38, and the value of their kinetic energy is more than the
sion is accompanied by slight emission of phonons. Collisiorheight of the barrier. When the value of the velocity is
of solitons withqg;=(=*=1,0), g,=(0,51) ands=0.5 leads smaller, solitons reflect, and when the value is larger they
to their reflection, accompanied by slight emission ofrecombingFig. 8). During recombination the energy of soli-
phonons. This behavior is in a good agreement with the forntons is spent for intensive emission of phonons. Breatherlike
of corresponding potential of interactidhig. 6, curve 2. To  excitations can be also formed.
pass through one another, solitons need to overcome energy Collision of one-component soliton with two-component
barrier Uql,q2(0)22025 kd/mol. Thus, their kinetic energy soliton can leaddepending on the relationship of the signs
should be equal to Ey(s)=Eq,(s)+Eq(S)—Eq,(0) of charges and on the polarity of the two-component soliton

B . Lo L ' . to their partial recombination or to inelastic reflection ac-
.Eq?(0)>Uquq2(0). Th|§ condition is fulfilled only in t.he companied by disintegration of the two-component soliton.
vicinity of the most possible values of the velocigee. Fig.  gq at the velocitys=0.5 collision of the soliton having the
5). So, whens=0.5, the kinetic energ¥,=1732 kJ/molis  chargeq, = (1,0), with the two-component soliton having the
lower than the height of the energy barrieeflection takes chargeg,=(1,1),, leads to inelastic reflection of the first

placg, and whens=0.6, the energyE,=3000.9 k/mol is  ggjiton, and at the same time the second soliton disintegrates
higher than the barrigisolitons pass through one another o two one-component solitons with the chargég) and

Solitons with the charges, = (+1,0),q,=(0,=1) attract (0,1 (Fig. 9.
one another at a distané&>20a, and when the distance is
shorter they repulse one another. Here the energy barrier
Uquq2(0)=4989 kJ/mol does not permit solitons to pass VII. EFFECT OF THE CHAIN INHOMOGENEITIES ON

. . THE DYNAMICS OF TOPOLOGICAL SOLITONS

through one another. Solitons always reflect. Formation of
the bound state does not occur even when the value of the Till now our investigation was limited by the consider-
velocity is small. It is explained by the small value of bond ation of homogeneous model of DNA. The real DNA is,
energyAE=91 kJ/mol. however, a substantially inhomogeneous system, therefore it

kJ/mo

0 20 40 60 80 100 120
Ria
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FIG. 8. Recombination of solitons with the same signs of

charges and the same polaritieg;=(1,1),, q,=(—-1,—1),, s
=0.5).
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4000

100

FIG. 9. Disintegration of two-component solitdi,=(1,1),]
when it comes into collision with one-component solitpg,
=(1,0)]. The velocity of the movement is=0.5.

is of special interest to consider the effect of the chain inhothe problem(13). To fix the soliton center position we need
mogeneity on the dynamics of topological solitons. In theto solve the problem of minimizingl6) with respect to vari-

inhomogeneous chain, the energy of stationary soltevill
depend on the position of the center of the solitonTo

ables ¢, ; where 2<n<=N-1, n#n, i=1,2. For soliton
with chargeq;#0 it is necessary to fix the valuey

move, soliton requires to overcome the energetic potentiaF 7q;, and for soliton wherej,+0 is the valuep, ,= 7Q5.

barrierE(n). To find the energy of the soliton with the center

at the pointn=Fwe need to numerically solve the problem
of minimizing,

E— min : (16)
P2 ON—1i i=1.2

PLITP-n1s P12= P2, 17

PNAT P 1y PN2T Por 21 (18

where the energy
E= 2 e( Si
n

+Vap (n1,@n2)

. ¢n+l,;_ ®n,1 +si? @n+1;‘ ®n,2

The problem on conditional minimunil6) has been
solved by the numerical method of conjugate gradient. We
took N=2000. A possible view of energetic profile of the
soliton moving in the inhomogeneous chain is presented in
Fig. 10.

At the beginning, let us estimate the effect of point inho-
mogeneities. From Fig. 18) it is obvious that one-point
defect in the homogeneousT chain leads to the appearance
of localized potential barrier with height equal tBy
=150 kJ/mol. To overcome the barrier, the soliton kinetic
energy should satisfy the conditiok,(s)=E(s)—E(0)
>E,4. Soliton can overcome the barrier only when its veloc-
ity s>sy4, where the threshold value of the velociy is
taken from equatiorE(sy) —E(0)=E4. From the data of
Fig. 5 it is easy to find that for soliton witq=(1,0) the
velocity s;=0.21, for soliton withq=(0,1) the velocitysy
=0.28, and whemg=(1,1) the velocitysy;=0.17.

Let us model numerically the interaction of soliton with
local defect of the homogeneo®sI chain. For the purpose,

whereaf, is the sequence of the base pairs along the chairlet us consider homogeneousT chain consisting ofN

The boundary conditionél7),(18) are the same as those in

=4000 bases with one ba&C in the middle of the chain in
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FIG. 10. The view of energetic relief for soliton in the inhomo-
geneous chain: in homogenead3 chain with oneGC base pair
(a); in homogeneou$ C chain with oneAT base pair(b); in the
chain the first part of which consists of onyT base pairs, and the

second consists of onlg C base pairgc); in the chain with random lit . | h g . fthe chai
sequence of base paifd). Dotted line shows the relief of the soli- soliton moving along a homogene region ot tne chain,

ton with topological chargg=(1,0), firm line shows the relief for can enter intoGC reg?on only if its I'<i.neti'c engrg)Ek(s) .
soliton with chargeg=(1,1). >AE. As seen from Fig. 5, this condition is satisfied only if

soliton velocitys>s,, where the threshold value of the ve-

the pointn=N/2. Suggest that at the initial time a topologi- locity is determined by the equatid(sy) = AE. For soliton
cal soliton is in the poinh=N/4 and consider its movement with q=(1,0) the velocitys,=0.48, forg=(0,1) s,=0.59,
through the chain inhomogeneity. The results of numericabnd forq=(1,1) the velocitys,=0.52.
modeling of the soliton dynamics show that, independently Let us numerically model the soliton moving from homo-
of the value of topological chargg, a soliton with velocity = geneousAT region of the chain to homogeneoG< region.
s=0.05 reflects from this point defect, but fe=0.5, moves The results of the modeling show that the soliton with veloc-
through the point defect with negligibly small energy loss. ity s=0.05<s, and with any topological charge reflects elas-

The point defect in the homogeneoG< chain leads to tically from the boundary between the regions. At a given
the formation of localized potential well with depth 150 kJ/ velocity the soliton kinetic energy is not large enough to
mol [see Fig. 1(b)]. Almost at all values of the velocity the overcome energetic barridiE,(s)<AE]. Soliton with s
soliton easily propagates along this chain without formation=0.5,q=(1,0) moves through the boundary between homo-
of a bound state. Thus we can conclude that soliton movingeneous regions and its motion is accompanied by emission
in the DNA chain with sufficiently large velocitys¢(>sy4) is  of phonons. Inside the region consisting ®C base pairs,
stable with respect to point defects. soliton continues to move, but with a smaller magnitude of

In the chain, one part of which consists of oy base the velocity (Fig. 11). For a given value ofj the threshold
pairs and the other of onl{zC base pairs, the energetic value of the velocitys,=0.48<0.5. So, the kinetic energy of
barrier takes the form of a smooth stéig. 10c)]. The soliton is large enough to overcome energetic barrier. Be-
height of the step is equal to the difference between the valeause the main part of the kinetic energy is spent to over-
ues of soliton energy in homogeneoG< and AT chains. come the barrier, the velocity of the soliton substantially de-
From data of Table IV it follows that the height of the step is creases after overcoming the barrier. Whes (0,1) the
equal to AE=1065 kJ/mol for soliton with topological threshold value of the velocitg,=0.59 and soliton reflects
chargeq=(1,0) and AE=844 kJ/mol for soliton withq ats=0.5 from the boundary of the homogeneous regions.
=(0,1), and whem=(1,1) the energ)AE=1894 kJ/mol. A  The reflection is accompanied by phonon emission. For soli-

FIG. 11. Movement of soliton witly=(1,0), s=0.5 through the
boundary between homogeneod$ and GC regions.
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ton with the chargey=(1,1) the velocitys=0.5<s,=0.52

is not enough to overcome energetic barrier. Collision of
soliton having topological chargéq=(1,1)] with the
boundary between the homogeneous regions leads to the dis g
integration of the soliton. It disintegrates into two one- \N‘
component solitons with the charges=(1,0) and g, o
=(0,1). The soliton with the chargg, continues to move

into GC region of the chain, and then soliton with the charge

g, reflects from the boundary.

Let us consider the propagation of soliton in the inhomo-
geneous chain with random sequence of bases. In this cas
random energetic relidf(n) is formed. The amplitude of the
relief for soliton withg=(1,0) reaches 1000 kJ/mol, and for
soliton with q=(1,1) it is 1500 kJ/mol[Fig. 10d)]. It is
obvious that uniform propagation of soliton in the chain of
that type is impossible, because soliton loses part of the en-
ergy for phonon emission when crossing each homogeneity.

Let us consider the movement of soliton through the in-
homogeneous region of the chain. For the purpose, let usg&
suggest that the second part of the chain is formed by a ‘:
random equal-possible sequence of base pairsTA,CG, S
GC. The results of numerical modeling of the soliton dy-
namics show that soliton with small value of the velocty
=0.05 and with any topological charge reflects from the
boundary of the inhomogeneous region. This points out, that
penetration of the soliton into the inhomogeneous region re-
quires the overcoming of some energy barrier. The soliton
with larger velocitys=0.5 and charge=(1,0) overcomes
this barrier, enters the disordered region of the chain and . .
stops there. The movement in the disordered region is atJP- FIG. 12. Entering two-component solitgchargeq=(1,1) , ve-

4000

4000

companied by intensive emission of phonons, which leads {1 $=0:5] the random inhomogeneous region of the chain, and
the stoppage of the soliton. The soliton wifk(0,1) cannot urther disintegration of the soliton.

overcome the barrier even at this value of the velocity. The n=12 N
soliton reflects from the boundary of the inhomogeneous re- Ul AN

gion. The reflection is .acconjpanied by emissioln of phononsynere the Hamiltonian of the systerhis given by Eq.(1),
A two component soliton witg=(1,1), enters inhomoge- ¢ . are random normally distributed forces describing the
neous region, and at the same time it disintegrates into Wehteraction of thenth base of theith chain (=1,2) with
one-component solitons with the charggs=(1,0) anddz  thermal bathI =14, is the coefficient of frictiont, being
=(0,1). The solitons move some time in the inhomogeneougye rejaxation time of the rotation velocity of one base. The

chain, then they stofFig. 19. The path of the solitons can anqom forces, ; have normal distribution and the correla-
reach several hundred base pairs. tion functions are

Analogous results have been obtained even in the case
when an inhomogeneous region was formed by the base <§n,i(tl)§m,j(t2)>:zrkBT‘Snm‘sij5(t1_t2)‘/|n,i|n,ja
pairs AT and TA. Thus, the sequence of nitrous bases of
DNA molecule should substantially influence the character- nm=12,...N, i,j=1,2,

istics of the motion of topological soliton. Note, that it has
been pointed out first in the woiflR5]. wherekg is Boltzmann’s constant ariflis the temperature of

thermal bath.
VIII. INTERACTION OF TOPOLOGICAL SOLITONS The system(19) was integrated numerically by the stan-
WITH THERMAL OSCILLATIONS OF THE CHAIN dard fourth-order Runge-Kutta method with constant step of
) ) ) o _ ] integrationAt. The § function was represented at) =0
Dynamics of a thermalized chain consistingMsites, i \hen |t|>At/2, and 8(t)=1/At when [t|<At/2, i.e., the

described by the system of the Langevin equations step of numerical integration corresponded to the correlation
JH time of the random force. In order to use the Langevin equa-
ln1@n1=— ——+ &= Tlh10n 1, tion, it was necessary to suggest tdi<t, . Therefore we
o Ien1 o choseAt=0.001 ps and the relaxation tinie=1 ps.
Let us check the stability of topological soliton with re-
2@ o= — ﬂ‘*‘fn »— T, 20002, (19 spect to tht_armal oscillations of the _cha_lin. For_this purpose,
o IPn2 ' o let us consider a homogeneous periodi&dl chain consist-
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FIG. 14. The braking of topological solitdchargeq=(1,1),,
initial velocity s=0.5] in the thermalized cyclic homogeneoAS
chain (T=300 K, K=0.234 N/m, and,=1000 ps).

FIG. 13. Stability of topological solitofig=(1,1),, s=0.5] in
the thermalized homogeneoAd chain (T=300 K, t,=1 ps). De-
pendence of the distribution of angular displacements, ¢, , and
energyE, along the chain on timeis shown K=0.234 N/m).

one base paifsoliton of that type is equivalent to the ground
state of the chain Here the stability is associated with ener-
getic factors. From Fig. 13 it is well seen that in the region of
localization of the soliton, the density of the energy is equal
ing of N=4000 base pairs at the temperatlire 300K. Let  to E,>kgT.
us integrate systenl3) with the initial condition corre- Soliton path length in the thermalized homogeneous chain
sponding to topological solitons&0.5) with center placed (T=300 K) depends on the value of relaxation titei.e.,
in the pointn=N/4. Numerical integration shows stability of on the viscosity of the surroundings of the molecule. At
solitons at all values of the charge and at both values of thetrong viscosityt, =1 ps soliton has time to pass only seven
transverse rigidityk =0.234 N/m andK=0.8714 N/m. The chain links till full stop. Then it remains immovable all the
viscosity of the environment leads to quick stoppage of thdgime (Fig. 13. When the viscosity is lowet, =10 ps, and
soliton, and after that all the time it remains immovable. Thethe soliton has time to pass 41 links, and whes 100 ps
soliton remains stable with respect to thermal oscillationghe soliton passes 480 links. The braking of soliton at low
during all the time of numerical integration=5x10° ps  viscosity ,=1000 ps) is shown in Fig. 14. Soliton passes
(Fig. 13. more than 3000 chain links, and then it begins to move as a
Let us note that in contrast to the models@®# and of massive Brownian particle.
sine-Gordon the stability of solitons in the DNA model is not ~ The braking of soliton in the homogeneous chain is con-
of topological nature. Solitons can be destroyed. To showditioned only by viscosity. When the viscosity is abseft (
this, it is enough to suggest that the soliton width is equal to=«) soliton is moving along thermalized chain with con-
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FIG. 16. Reflection of topological solitons with different
charges and polaritids); =(1,1), g,=(—1,1),, S=—5,=0.5 in
the thermalized T=300 K) cyclic homogeneou#&\T chain K
=0.234 N/m,t,=©).

ent charges and polarities in the thermalized cyalicchain
[a:=(1,1), g»=(—1,—1),, sy=—5,=0.5]. In the non-
thermalized chainT=0 K), the solitons attract one another,
and the collision leads to their recombination. In the thermal-
ized cyclic chain T=300 K), their collision always leads to
stant velocity(Fig. 15.Thetmal phonons by themselves do reerc_tion(Fig. 16. This behavior can be _explained by com-
pression of phonons gas between solitons when they are

not influence the soliton dynamics. drawing together. The compression leads to the repulsion of
Let us note that topological soliton can move along the g 109 ' P P

DNA chain in the presence of viscosity too. To organize thesolltons:, which increases as much as they are drawn together.

propagation it is necessary to select in a special way thJen the chain with free ends, the_compressmn_of the phonon
sequence of bases. If concentrationAdf base pairs mono- gas leads to Io_ng-range repulsion of the solitons from the
tonically increases, inclined potenti&l(n) is formed. The ends of the chaln. . .

energy overfall can reach 1116 kJ/molkat 0.234 N/m and Thus, topological solitons of the DNA chains are stable

" . . with respect to thermal oscillations. Interaction with thermal
1894 k.Jlm.Ol aK=0.8714 N/m. Sqllton W'l.l propagate glong phonons does not lead to destruction or to the braking of the
the relief inclination as a Brownian particle moving in the

viscous media under the action of an external constant forcesomon’ it leads only to changing the interaction between the
olitons. In the thermalized chain, long-range repulsion be-

_Thermal phonons substa_mtlally influence the interaction o ween solitons is observed.
solitons. In the work[42], it was shown that topological
solitons of the modekp-4, can interact with one another
through thermal phonons. This interaction comes to repul- IX. CONCLUSION
sion of the solitons. As a result, in the thermalized chain the
interaction of the solitons of different charges substantially The investigation carried out in this paper shows that
changes. At a long distance they will repulse. To model thighree types of topological solitons that imitate localized
phenomenon, let us consider collision of solitons with differ-states with open base pairs, can exist in the considered asym-

FIG. 15. Movement of topological solitofjchargeq=(1,1),,
initial velocity s=0.5] in the thermalized cyclic homogeneoAS
chain (T=300 K, K=0.234 N/m, and,=).
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metrical model of the DNA double chain. It was shown thatInteraction of the solitons with thermal phonons of the mac-

the solitons can move along the macromolecule with confomolecule does not lead to the destruction or to the braking
stant velocity that is smaller than the velocity of sound. Inof the solitons. And only the character of their interactions

the inhomogeneous chain, the character of the soliton moveshanges. The drawing of the solitons together leads to their
ment depends on the sequence of base pairs in the molecutepulsion, which is explained by the compression of phonon
In the chain with random inhomogeneous sequence, solitorgas between them.

can move at a distance no more than several hundreds of All these results point out the fact that topological solitons

base pairs. The results of numerical investigations show thaif this type can be used to explain the long-range effects in
the solitons are stable with respect to thermal oscillationsthe DNA macromolecule.

[1] H. Fritzsche, Comments Mol. Cell. Biophys, 325(1982. [21] V. Muto, P.S. Lomdahl, and P.L. Christiansen, Phys. Red2A
[2] J.W. Keepers and Th.L. James, J. Am. Chem. 360¢, 929 7452(1990.

(1982. [22] M. Peyrard and A.R. Bishop, Phys. Rev. L&2, 2755(1989.
[3] W.R. McClure, Annu. Rev. Biochenb4, 171 (1982. [23] S.N. Volkov, J. Theor. Biol143 485 (1990.

[4] J.A. McCommon and S.C. HarveRynamics of Proteins and  [24] G. Gaeta, Phys. Lett. A43 227 (1990).
Nucleic Acids(Cambridge University Press, Cambridge, En- [25] M. Salerno, Phys. Rev. A4, 5292 (1991).

gland, 1987. . [26] L.L. Van Zandt, Phys. Rev. 40, 6134(1989.
[5] L.V. Yakushevich, Q. Rev. Biophy26, 201 (1993. [27] M. Techera, L.L. Daemen, and E.W. Prohofsky, Phys. Rev. A
[6] L.V. Yakushevich and V.M. Komarov, Math., Comput., Educa- 41, 4543(1990.

tion (|n.Ru53|a|)|, 5, 310(1998. ~ [28] M. Barbi, S. Cocco, M. Peyrard, and S. Ruffo, J. Biol. Phys.
[7] S.M. Lindsay, J.W. Powell, E.W. Prohofsky, and K.V. Devi- 24, 97 (1999

Prasad, inStructure and Dynamics of Nucleic Acids, Proteins ' . '

and Membranesedited by E. Clementi, G. Corongiu, M. H. [29] zégB;rbl' S. Cocco, and M. Peyrard, Phys. Lett283 358

Sarma, and R.H. Sarm{&denine Press, New York, 1984p.
531-551.
[8] J.M. Eyster and W. Prohofsky, Biopolymet8, 2505(1974.
[9] W.N. Mei, M. Kohli, E.W. Prohofskii, and L.L. Van Zandt,

[30] A. Campa, Phys. Rev. B3, 021901(2001).
[31] P.L. Christiansen, A.V. Savin, and A.V. Zolotaryuk, J. Comput.
Phys.134, 108 (1997.

Biopolymers20, 833 (1981). [32] P.L. Christiansen, A.V. Zolotaryuk, and A.V. Savin, Phys. Rev.
[10] J.M. Eyster and W. Prohofsky, Biopolymets§, 965 (1977). E 56, 877(_1997)- _
[11] M. Levitt, Cold Spring Harb. Symp. Quant. Bio#7, 251  [33] L.I. Manevitch and A.V. Savin, Phys. Rev. 35, 4713(1997.

(1983. [34] AlV. Savin and L.I. Manevitch, Phys. Rev. B8, 11386
[12] B. Tidor, K.I. Irikura, B.R. Brooks, and M. Karplus, J. Biomol. (1998.

Struct. Dyn.1, 231(1983. [35] A.V. Savin and L.I. Manevitch, Phys. Rev.@®, 7065(2000.
[13] D. Flatters and R. Lavery, Biophys. 75, 372(1998. [36] A.V. Savin and L.l. Manevitch, Phys. Rev. B3, 224303

[14] S.W. Englander, N.R. Kallenbach, A.J. Heeger, and J.A. Krum- (2002).
hansl, A. Litwin, Proc. Natl. Acad. Sci. U.S.A77, 7222  [37] M.V. Volkenstein,Biophysics(AIP, New York, 1975.
(1980. [38] M.B. Hakim, S.M. Lindsay, and J. Powell, Biopolyme28,
[15] S. Yomosa, Phys. Rev. 27, 2120(1983. 1185(1984.
[16] S. Takeno, and S. Homma, Prog. Theor. P5.308 (1983. [39] S.M. Lindsay and J. Powel(Ref.[17]), pp. 241-259.
[17] J.A. Krumhansl and D.M. Alexander, Btructure and Dynam-  [40] T. Weidlich, S.M. Lindsay, S.A. Lee, N.-J. Tao, G.D. Lewen,

ics: Nucleic Acids and Proteinsdited by E. Clementi and W.L. Peticolas, G.A. Thomas, and A. Rupprecht, J. Phys.
R.H. Sarma/Adenine Press, New York, 1983p. 61-80. Chem.92, 3315(1988.
[18] V.K. Fedyanin, I. Gochev, and V. Lisy, Stud. Biophyld.6 59 [41] J.W. Powell, G.S. Edwards, L. Genzel, F. Kremer, A. Wittlin,
(1986. W. Kubasek, and W. Peticolas, Phys. Rev3A 3929(1987).
[19] L.V. Yakushevich, Phys. Lett. A36, 413(1989. [42] O.P. Kolbysheva and A.F. Sagdg&ov. Phys. JETR0O, 1262
[20] Ch.-T. Zhang, Phys. Rev. 85, 886 (1987. (199D)].

016614-14



