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Stable three-dimensional spinning optical solitons supported by competing quadratic
and cubic nonlinearities
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We show that the quadratic interaction of fundamental and second harmonics in a bulk dispersive medium,
combined with self-defocusing cubic nonlinearity, gives rise to completely localized spatiotemporal solitons
(vortex tor) with vorticity s=1. There is no threshold necessary for the existence of these solitons. They are
found to be stable if their energy exceeds a certain critical value, so that the stability domain occupies about
10% of the existence region of the solitons. On the contrary to spatial vortex solitons in the same model, the
spatiotemporal ones with= 2 are never stable. These results might open the way for experimental observation
of spinning three-dimensional solitons in optical media.
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[. INTRODUCTION reported the formation of pulses in quadratic media, which
overcome diffraction in one transverse spatial dimension and
Solitons, i.e., self-trapped light beams or pulses that ar&VD in the longitudinal direction. However, such experi-
supported by a balance between diffraction and/or dispersioments were performed by means of the tilted-pulse tech-
and nonlinearity, are prominent objects in nonlinear opticsnique, which employs highly elliptical beams; therefore, dif-
[1]. Optical spatiotemporal soliton$STS [2], alias super- fraction is negligible in the remaining transverse spatial
spikes[3] or light bullets[4], were predicted in many works dimension.
[2-16). They result from the simultaneous balance of dif- Optical vortex solitons constitute another class of self-
fraction and group-velocity dispersioGVD) by self-  supporting objects, that have attracted much attention be-
focusing. Although they cannot be stable in the uniform self-cause of possible applications to the all-optical processing of
focusing Kerr (®) medium[8], stability can be achieved in information, or to guiding and trapping of atoms. The con-
saturable[3,6,10, quadratically nonlineary®) [2,12-14,  cepts of a multidimensional optical soliton and of an optical
and graded-index Kerr medja5]. STS can also be found in vortex may be combined, giving rise &pinning (vortex)
the off-resonance two-level systemis7], in self-induced- solitons. Starting with the seminal work®1], both delocal-
transparency medifil8], as well as in engineered tandem ized (“dark” ) and localized“bright” ) optical vortices were
structures incorporating quadratically nonlinear slicEs). investigated in various 2D environmer2-25. In the 3D
While a fully localized “light bullet” in three dimensions case, the bright spinning solitons take the shape of a torus
(3D) has not yet been found in an experiment, 2D STS in &“doughnut”) [26,27.
bulk x* medium were observed in R4R0]. Those works For bright vortex solitons, stability is a major concern, as,
unlike their zero-spin counterparts, the spinning solitons are
apt to be destabilized by azimuthal perturbations. For 2D
*Also at Institute of Solid State Theory and Theoretical Optics,models withy(?) nonlinearities, an azimuthal instability was
Friedrich-Schiller UniversitaJena, Max-Wien-Platz 1, D-07743, discovered by simulation28] and observed experimentally
Jena, Germany; Department of Signal Theory and Communication§29]. As a result, a soliton with spin 1 splits into three or two
Universitat Politecnica de Catalunya, ES 08034 Barcelona, Spairfragments in the form of separating zero-spin solitons. Nu-
"Also at Institute of Solid State Theory and Theoretical Optics,merical simulations of the 3D spinning STS in thé®
Friedrich-Schiller UniversitaJena, Max-Wien-Platz 1, D-07743, model also demonstrate splitting into moving zero-spin soli-
Jena, Germany. tons[27].
*Also at Department of Signal Theory and Communications, Uni-  Nevertheless, thg(?) nonlinearity acting in combination
versitat Politecnica de Catalunya, ES 08034 Barcelona, Spain. with the selfdefocusingkerr [ x®), where we use the sub-
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script “minus” to stress the self-repulsidnonlinearity gives the existence of 3D spinning STS in it, with different values
rise to stable spinningring-shaped 2D solitons with spin  of the spin, are displayed. Fundamental results for the stabil-
s=1 and 2 [23]. Models of this type for spatial ity of the spinning solitons, based on eigenvalues found from
[(2+1)-dimensiond] solitons are well knowri30,31. The  equations linearized around the soliton solutions, are pre-
stability of the spinning solitons in thg®: y® model may  sented in Sec. Ill. Direct simulations of the soliton’s stability
be realized as a result of competition between the selfwithin the framework of the full nonlinear equations are dis-
focusing and self-defocusing nonlinearities. This understandPlayed in Sec. IV, and Sec. V concludes the work.

ing is further supported by the fact that stable spinning soli-

tons of the same type have also been found in another optical II. THE MODEL AND SPINNING SOLITONS
model displaying both focusing and defocusing nonlineari- ) o ) )
ties, viz., the one based on the cubic-qui@) nonlinear The scaled equations describing the reversible generation

Schradinger equation. In addition to optics, the same equa®f the second harmoni¢SH) from a single fundamental-

tions have been investigated in the contexts of Bose-Einsteifiequency (FF) componentu, in the presence of the self-

condensate$BECS [32] and Langmuir waves in plasmas defocusing cu_blc no_nlmeanty, dispersion, and diffraction in

[33] (however, in the former case, the quintic nonlinearitythe  (3+1)-dimensional geometry, are well known

arises from three-body interactions, which also give rise td12,13,23,30,31t

losses by recombination of BEC constituents into different

species, thus making the quintic nonlinear coefficient a com- , du 1

plex one. )
In the first direct simulations of 2D solitons with spin 1 in

the CQ model, reported in the pioneer wdrg4], it was

U dPu dfu

- 4 _ 2 2\ —
aX2+aY2+aT2 +u*v—(Jul®+2Jv]?)u=0,

found that they are robust, provided that their energy is not ia_UJr l ﬁJr ‘92_U+U(92_U — Bu+u?

too small[34]. Later analysis, based on the computation of dZ 4\ gx2 Y2 JT?

linear-stability eigenvalues, demonstrated that some of the

spinning 2D solitons considered in REB4] are subject to a =2(2|ul*+ [v[*v=0. (1)

weak azimuthal instability. Nonetheless, in another part of

their existence region, where they have a very large energyiere,T, X, Y, andZ are the normalized reduced time, trans-
the solitons with spirs=1 ands=2 were confirmed to be Verse spatial coordinates, and propagation distanesdv
stable in the 2D CQ modédB5] (see also Refl36] for the  are envelopes of the FF and SH fields, gBds a phase
stability investigation of the solitons with spg¥1). Stable ~mismatch between the FF and SH waves. The variables used
2D vortex solitons in the CQ model can self-trap from in Egs.(1) are related to their counterpafts be denoted by
Gaussian inputs with an embedded vorti¢dy]. Notice that  tildes) in Ref. [23] as follows: u=2u, v=w, 2(X,y)

all the solitons withs=3 have been demonstrated to be un-=(x y).

stable in the CQ modgB5]. Equations(1) assume different GVD coefficients at the
A challenging issue is the search for physically relevantygo harmonics,o being their ratio[12], but neglect the
models in whichstable 3D Spinning solitons exist. In faCt, Poynting_vector walkoff between the harmonics’ and as-
the only previously known model that could support stablesymes that the temporal group-velocity mismatch between
3D vortex solitons was the Skyrme modsee review$38]).  them[14,41,43 has been compensated. On the other hand, in
Very recently, we have found stable 3D spinning STS in thghe caser=1 the model possesses an additional spatiotem-
CQ modgl, which could again bg construed as a result of thBoraI spherical symmetry12,13. Below, we will display
competition between self-focusing and self-defocu$B@.  resuits for the case=1, assuming that the group-velocity
Direct simulations of the 3D CQ mod40] demonstrated mismatch may be neglected in this case too.
that 3D spinning solitons with moderate energies were un- \we |ook for stationary solutions to Eqgl) in the
stable against azimuthal perturbations, while the ones witlgym u=U(r,T)exp(xZ+ish), v=V(r,T)exd2(i«xZ+is)],
very large energies, i.e., broad “doughnuts” with a small\yhere g is the polar angle in the plane,y), « is a wave
hole in the center, were robust under propagation. Howevep mber shift, and the integsris the above-mentioned spin.

a consistent stability analysis makes it necessary to computghe amplitudesU and V may be taken real, obeying the
eigenvalues of small perturbations. By calculating the instagqyations
bility growth rates, in Ref[39] it was rigorously shown that
sufficiently broad STS with spia=1 are stable, the stability 1{20 19U <2 72U
region occupying=20% of their existence region, while all _(
the STS withs=2 are unstable. 2

The aim of this paper is to show that the existence of
stable spinning 3D solitons is a more generic fact, which is
not limited to the CQ model considered in RE39]. To this
end, we will analyze the existence and stability of spinning 1
STS solitons in the 3D version of the above-mentioned 4
x@:x® model with the self-defocusing cubic term. In Sec.
II, the model is formulated, and general results concerning —2(2U%+V?)V=0. 2

—+ + —kU+
gre rar y? JT? WUV

—(U2+2v3u=0,
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mismatch pertain to the fundamental frequency and second-harmonic compo-

. . . . nents of the soliton.
FIG. 1. Domains of the existence and stability of spinning STS

with spins=1. The upper continuous curve is the existence border, ) )
corresponding to infinitely broadn fact, dar solitons. Eqg. (3)], E=12000. We see that, with the increase of the

mismatchg, the energy of the FF component of the spinning
Dynamical equationgl) conserve the total energy soliton increases, similar to the case of nonspinning solitons
in pure x'? media[42,45-41.
E:f f f (Jul?+|v|2)dXdY dE=E,+E, , 3) _Be_low, we present systematic results which characterize
spinning STS in the case of the zero phase matchsg0.
In Fig. 3 we plot the curveg = x(E) andH=H(E) for both
nonspinning and spinning STS in this case. The full and
1 dashed lines in Fig. 3 correspond to stable and unstable
(lux]?+ [uy]?+ |u|?) + Z(|Ux|2+|l)y|2 branches according to results presented below. k@
solitons are stable according to the known Vakhitov-
Kolokolov criterion, which states that the fundamental (
+[Blol?— (u*2o+u?v*) +(|ul*+4|ul’lv]* =0y soliton branch undergoes a stability change at the point
dE/d«x=0 [48].

A feature shared by the nonspinning and spinning soli-
tons, as it is evident in Fig. 3, is the absence of any finite
threshold for their existence. This is a drastic difference from
momentum(equal to zero for the solutions considexeand  the recently studied STS in the CQ model, where well-
longitudinal component of the orbital angular momentum defined thresholds were found for zero and nonzero values of
[43]. The following relations betweeh, H, andE for a sta-  the spin[26,39.
tionary spinning STS follow from Eq$2): L=sE, and

Hamiltonian

=[]

+olvrl?)

+|v|4)]]dXdeT 4

1 1 1
H=—-kE+ = BE,— _f f J' (|ul*+4]ul?v|? 1. STABILITY EIGENVALUES OF THE SPINNING
3 3 3 SOLITONS
+|v|[*dXdYdT (5 Complete understanding of the stability of solitons is pro-

) - vided by direct simulations of the evolution equatidisee
~ We have numerically found one-parameter families of stapelow) together with the analysis of Eqd) linearized about
tionary 3D spinning solitons that have the shape of a doughthe stationary spinning-soliton solution. In this section, we

nut with a hole(supported by a phase dislocatioin the  focus on the latter approach, seeking for perturbation eigen-
center. To this end, we solved numerically the coupled sysmodes in a general form

tem of equation$2) using a standard band-matrix algorithm

[44] to deal with the corresponding two-point boundary-

value problem. We will display results far=1; however, 0.050
we have also found that the STS exist for @t 0, cf. Ref.
[13], where nonspinning STS were studied in detail éor
#1.

In Fig. 1 we summarize the output of extensive numerical 5
calculations aimed to detect the domains of existence anc
stability of spinning STS. The continuous lines border the
existence domain, and the dashed line constitutes a boundal g gq
between stable and unstable regions in the parameter plar
(B,k). The way the stability boundary has been found will
be explained in detail in the following sections. FIG. 3. The propagation constart(a) and HamiltonianH (b)

Shapes of three representative doughnut-fiteble STS  of the three-dimensional solitons, with different values of spin, vs
are plotted in Fig. 2 for a fixed value of the net enefgge their energyE, in the case of zero phase mismatgh 0.

umber

0.025p

Hamiltonian
R
54
[=]

5000 f0000 % 5000 10000

energy energy

016613-3



D. MIHALACHE et al.

u(Z,r,T,0)—U(r,T)exdi(sf+«Z)]
=f(r,T)expApZ+i[(s+n)O+«Z]}

+g*(r,T)expAr Z+i[(s—n)O+«Z]},  (6)
v(Z,r,T,0)=V(r,T)exg2i(sf+«Z)]
=p(r,T)exp A Z+i[(2s+n)0+2kZ]}
+q*(r,T)expA\rZ+i[(2s—n)0+2kZ]}, (7)

wheren>0 is an arbitrary integer azimuthal index of the
perturbation), is the(complex eigenvalue that needs to be
found, and function$, g andp, q obey equations

1

2

Pt 9%

iNf+ = | — 2+r*1——(s+n)2r*2f — kf
ar

ar

aT?
—2(U%+V?) f—(U?-V)g—(2UV—-U)p—2UVq

=0, tS)

_ 1|59 &g ,d9 A

—|7\ng+§ — ﬁ r a—r—(s—n) r “g|—«g
—2(U%+V?)g—(U%2-V)f—(2UuV-U)q
—2UVp=0, 9

1| *p &%p ap
; s er o or 1% 2, -2
|)\np+4 GaTz o2 o (2s+n)“r~“p

—(2k+ B)p—4(U%2+V?)p—2V2q—2(2UV—U)f

—4UVg=0, (10
. 1| g g dq -
_|7\nq+Z U'F-Fp r E—(Zs—n) r =q

—(2k+ B)q—4(U?+V?)q—2V?p—2(2UV—U)g
—4UVf=0. (12)
Physical solutions must decay exponentiallyrato. At r

—0, fandg must vanish as/**", whereap andq vanish as
r\ZSrn\_
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FIG. 4. The growth rate of perturbations, Reorresponding to
different values of the azimuthal index(indicated by labels near
the curvegvs the soliton’s wave numbey: (a) s=1; (b) s=2. The
imaginary part of the stability eigenvalue, imcorresponding to
different values of the azimuthal index(indicated by labels near
the curvey vs the soliton's wave numbet: (c) s=1; (d) s=2.
Here and in the following plots3=0. We stress that, in the case
s=1, the instability growth rate vanishes at the paint x4, see
the text, while in the case=2 the growth rate corresponding to
n=2 remains positive up to the border of the existence region of
the solitons. This border is marked in all the panels by vertical
arrows.

tons withs=2, as well as in the 3D model of the CQ type,
and in contrast to the 2D vortex solitons in both §#&): y®)
model with the competing quadratic and cubic nonlinearities
(the same as considered hef23], and 2D CQ mode€[35].

In the case when the spinning solitons are unstable, their
instability is oscillatory, the corresponding frequency, Am
[see Figs. 4(c) and 4d)] is found to be, generally, on the
same order of magnitude as Rat the maximum-instability
point. In the stable regions= kg, all the eigenvalues are
purely imaginary. Oscillatory instabilities of solitons, charac-
terized by complex eigenvalues of the corresponding non-

To solve the above equations and find the eigenvalues, weelf-adjoint linear operator, are typical to other conservative

used a known numerical procedyi8,49, which produces

models of nonlinear opticb0-57.

results presented in Fig. 4. The most persistent unstable

eigenmode is found for value of the azimuthal index 2,
for boths=1 ands=2. As is seen in Fig. 4, the instability of
the soliton withs=1, accounted for by Re,, disappears
with the increase ofx at a stability-change pointxg;
~0.04572, and the stability region extends upkts o),

IV. DIRECT SIMULATIONS

The above results were checked against direct simulations
of Egs. (1), carried out by means of the Crank-Nicholson
scheme. The corresponding system of nonlinear partial dif-

~0.051, corresponding to the upper continuous line in Figferential equations was solved by means of the Picard itera-

1, i.e., infinitely broad solitonévhich implies that the vortex
of the dark-soliton typd21], that may be regarded as an
infinitely broad spinning soliton, is stable tod'he relative
width of the stability region is 452 — ke)/k320~0.1.
However,no stability region has been found for the 3D soli-

tion method [53], and the resulting linear system was
handled by means of the Gauss-Seidel iterative scheme. For
good convergence we needed, typically, five Picard iterations
and fifteen Gauss-Seidel iterations. We employed a trans-
verse grid having 122 121X 91 points, and a typical longi-
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FIG. 7. Isosurface plots illustrating the fragmentation of ¢he
FIG. 5. Evolution of the energy componerig andE, of the =1 soliton with k=0.01 into zero-spin ones as a result of the
soliton with s=1, as generated by an input configuration in the azimuthal instabilitya) Z=0; (b) Z=1000.
form of a Gaussian with a nested vortex. Here, the input total en-
ergy isE=5986. that was presented in Fig. 5. No further essential evolution of
the soliton was observed in this caseZat 100.
tudinal step size waaZ=0.1. To avoid distortion of the Typical instabilities of the spinning STS with the sgn
instability development under the action of the periodicity =1 (in the case when it is unstablands=2 are illustrated
imposed by the Cartesian computational mesh, we added inby Figs. 7—10. The azimuthal instability breaks the unstable
tial perturbations that were mimicking random fluctuations inspinning solitons into zero-spin ones, which fly out tangen-
a real systentcf. Ref.[10]). tially relative to the circular crest of the original soliton
To illustrate the evolution of a stable 3D “bullet” gener- [similar to what is known about the instability-induced
ated by an input in the form of a completely localized Gaussbreakup of the (2 1)D spatial vortex soliton§28]]. Thus,
ian pulse with the energlf,=5986[see Eq(3)], into which  the initial internal angular momentun(spin) of the
a vortex withs=1 was embedded, in Fig. 5 we show the doughnut-shaped spinning soliton is converted into the or-
energies of its two components ¥sRobustness of the spin- bital momentum of the emerging nonspinning fragments.
ning STS is attested to by the fact that it can be generated Analyzing a large body of numerical results, we have con-
from a Gaussian with a nested vortex, whose shape is fafluded that the number of the emerging fragments is roughly
from the soliton’s exact form. We see from Fig. 5 that thereequal to twice the original spis. The dependence of the
is a strong reshaping of the input Gaussian, which leads to aumber of the fragments on the other parameters is fairly
redistribution of the energy between the two componentsyeak.
some energy loss occurs, caused by emission of radiation in It is noteworthy that, in all the cases displayed in Figs.
the course of the formation of the stable STS. Figure 6 show3—10(and in many more cases not shown hgtiee number
gray-scale contour plots of the intensity and phase distribuef the instability-generated fragments is exactly equal to the
tion in the FF component, in both the input Gaussian with aazimuthal index of the perturbation mode having the largest
nested vortex, and in the emerging spinning STS with theyrowth rate. Thus, the full nonlinear evolution of the un-
vorticity s=1 at Z=100, corresponding to the same casestable spinning solitons is in perfect agreement with the sta-
bility analysis based on the linearized equations, which was

(a) 56 (b) _ presented in the preceeding section.

80

@ V. CONCLUSION

=5 In this paper, we have shown that stable bright spatiotem-

poral spinning solitongvortex tor), which were recently
found in the cubic-quintic model of a dispersive optical me-
dium with competing self-focusing and defocusing nonlin-
earities[39], are also possible in a model based on the com-
petition between the quadratic and self-defocusing cubic
nonlinearities. The solitons are stable, provided that they are
40 .- broad enougliso that the soliton’s energy exceeds a certain

-40

-80,
-80

80

> 0

-40

-80.
-80

FIG. 6. The formation of the soliton with sps= 1 in the same
case as in Fig. 5, shown in terms of the cross section of the fields at
T=0: (a) the intensity distribution in the initial Gaussian with a
nested vortex(b) its phase field(c) the intensity distribution of the FIG. 8. The same as in Fig. 7 in the case 0.032:(a) Z=0; (b)
spinning soliton aZ=100; (d) the phase field aZ=100. Z=1140.
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FIG. 9. The same as in Figs. 7 and 8 in the case ofsth@ FIG. 10. The same as in Fig. 9 in the case0.04:(a) Z=0; (b)
initial soliton with k=0.015:(a) Z=0; (b) Z=900. Z=2100.

critical value, or, in other words, the size of the internal holeelements and the soliton’s energy is large enough; in all the
is essentia“y smaller than the overall size of the SO)i.ton known models |acking the nonlinear Competition, br|ght VOr-
In fact, the model with they®:x® (quadratic-cubit  tex solitons are subject to a strong azimuthal instability.
nonlinearity may be realized easier in real optical media than Note added in proofOne may assume that, very broadly
the X(f) x® (self-focusing-cubic—self-defocusing-quintic speaking, spinning solitons are not absolutely stable objects,
one. Possibilities for the experimental implementation of thebut rather metastable ones. Indeed, the energy of the spin-
former model(chiefly, based on the quasi-phase-matchingning soliton is larger than that of its zero-spin counterpart,
technique were discussed in Refi23,54,53. Note that such  hence it is possible to imagine that a very strong initial per-
optical media may be used equally well for the experimentaturbation would provoke its rearrangement into a zero-spin
generation of both the spatial ¢21)-dimensional solitons soliton, the angular momentum being carried away with
(vortex cylinder$ considered in Ref[23] and the 3D spa- emitted radiation. In terms of this consideration, it turns out
tiotemporal spinning solitongvortex tor) found in the that thes=1 ands=0 solitons are separated by extremely
present work. high potential barriers, which makes the assumed process
It is relevant to stress that the amplitude of a beam thapractically impossible. Indeed, additional numerical simula-
can give rise to a stable spinning soliton should not be spetions show that solitons with spg= 1, perturbed at input by
cifically large: as it is evident from Fig. 2, the necessarya very strong random noisghe amplitude of the perturba-
power is essentially the same as that which is necessary faion is up to 30% of the soliton’s amplitugleesist this dam-
the existence of a nonspinning soliton. The difference fromage and, eventually, completely retrieve the unperturbed
the latter case is that the beam generating a stable spinnirghape (figures illustrating results of these simulations are
soliton must be broadts cross section and temporal width available at http://lanl.arXiv.org/ps/nlin/0206007
should be largg i.e., its peculiarity is not a large power but
rather large total energy. _ ACKNOWLEDGMENTS
Similar to the cubic-quintic model, only spatiotemporal
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