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Wave transport through thin slabs of random media with internal reflection:
Ballistic to diffusive transition
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The static and dynamic properties of wave transport through thin slabs of random media in the presence of
internal reflection are investigated by performing first-principles calculations. These results are compared with
results from time-independent and time-dependent diffusion equations, respectively, where the effects due to
internal reflection are incorporated into an average extrapolation length in the boundary conditions. For the
static properties, we find an abrupt transition from ballistic to diffusive behavior when sample thickness is
about three mean free paths, iles 31. The diffusion approximation is valid whdn>3l, independent of the
amount of internal reflection. For the dynamic properties, both the peak arrival time at short times and the
diffusion constant at long times of the transmitted pulse indicate that there is a region of anomalous diffusion
when 3<L<L.. The diffusion constant in this region increases with decredsirigalso increases with the
amount of internal reflection. The physical origin of the existence of such an anomalous region is the
resonance-induced wave focusing effect. Due to the presence of internal reflection, the wave energy tends to
concentrate in the forward direction at output boundary. It makes direction randomization difficult in the
scattered waves. A similar wave focusing effect has been found in resonant tunneling systems of electrons in
the presence of elastic scattering. The diffusion approximation is valid When. . The value ofL is about
ten times the average extrapolation length, Lex,10z,, wherez, is a fast increasing function of the amount
of internal reflection.
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[. INTRODUCTION ture, resulting in a simple correction to the diffusion approxi-
mation [10]. In another approach, the telegrapher equation
The study of wave propagation through random media hawith suitable boundary conditions has been employed to ac-
been an intensive field of research for many decgdg¢s count for the role of ballistic transport and scattering anisot-
Many aspects of the transport of waves in random mediaopy [11]. In a recent worK12], ultrasonic pulse transmis-
such as coherent backscattering, continuous-wave transmiglon experiments in strongly scattering media consisting of
sion, pulse propagation, and speckle correlations, are wefilass beads immersed in water have been carried out. At the
described by the diffusion approximatif2—5]. Despite the ~Same time, first-principles calculations of both the frequency

success and widespread use of this simple approximatioﬁo”elation function of the transmitted field and the time-
limitations do exist. One such limitation occurs in thin domain profile of the transmitted intensity have been per-

mples. where the number of fin mes in ﬁf-grmed by sol\{ing the ladder approximation of the Bethe—
samples, where the number of scatterings becomes insu éalpeter equation with the use of the bulk Green’s function.

cient to randomize the phases of the emerging waves and Fom the peak arrival time, both theory and experiments

crostsover to ballistic tLanf]port Z?USt uInr;ateI):w oceur. In re-, . e exhibited an abrupt crossover between ballistic and dif-
cent years, many works have discussed such crossover e “popo nC il

havior[6-14]. In experimental respects, many investigations A jhough the Bethe-Salpeter equation describes the trans-
have probe(_j such crossover behawc_)r with d|ﬁ§rent trans't'o'bort of waves in thin samples where the diffusion approxi-
lengths, which depend on the physical quantities measuredhation breaks down, the use of the bulk Green’s function
For example, diffusing wave spectroscofWS) experi-  pecomes inadequate when the system possesses large inter-
ments [6] and steady state photon transmission measureya| reflection at the sample boundaries. Internal reflection
ments[3] have indicated that the transport of photons is dif-have been shown, both experimentally and theoretically, to
fusive when sample thicknesskss as low as 3-5 transport be of considerable importance in the diffusive transport of
mean free paths. In contrast, pulsed optical transmission light through random medi@15-2@. In the presence of
measurement$7—-9] have reported systematic deviations |arge internal reflection, a Green’s function that includes the
from diffusion theory at much larger values bfl<8—10.  multiple reflections from the boundaries should be used.
Within the context of DWS, a solution of the transport equa-Such a study has been carried out on a semiinfinite sample
tion has been derived to account for the contributions of20]. However, a systematic first-principles study of wave
short scattering paths, which are increasingly ballistic in natransport through thin samples of random media in the pres-
ence of large internal reflection has not been conducted. For
thick samples, an improved diffusion approximation has
*Corresponding author. FAX: 852-2358-1652. Email addressbheen successfully used in interpreting experimental results
phzzhang@ust.hk [3,7]. In this improved diffusion approximation, the effects
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of internal reflection at the boundaries is incorporated into aquency correlation function of the field, probed at the back

Single extrapolation Iengtl‘b in the mixed boundary condi- face of the Samp|e a=L. At any timet and positiorf), the

tion [15,16]. It has been shown that this improved diffusion field is specified by the time-dependent wave function, which
approximation becomes asymptotically exact in the limit ofcan be written as

the large index mismatch in a semifinite samf26]. How-

ever, the validity of the improved diffusion approximation in - 1 . -

thin samples has not been tested. Yit,r)=(2m) f dQ exp(—iQ)F(Q)da(r), (1)
In this work, we study wave transport through thin slabs

of random media by performing first-principles calcuationswhere f({)) describes the spectrum of frequencies con-

using the ladder approximation for the Bethe-Salpeter equaained in the pulse ang(r) is the spatial part of the wave
tion, in which a renormalized single-particle averagedfynction. In order to obtain useful physical information, we
Green's function that incorporates all internal reflectionshave to consider the ensemble-averaged quantities for the

from the boundaries will be used. ThUS, our calculations dGandom Systems_ The ensemb|e-averaged intensity corre-
beyond the limitations of the diffusion approximation and sponding to Eq(1) can be expressed as

allow us to include the coherent multiple reflections of waves

from two boundaries. Thus, our results are valid for thin N _2 U
samples with any amount of internal reflection. Our focus is ~ {[#(t.1)[%)=(2m) J dQ f dof(QH)f*(Q7)
on the crossover behavior in the ballistic-to-diffusive transi-
tion as a function of the index mismatch from both static and
dynamic points of view. For the static quantities, we study
the total transmitted intensity under a plane-wave incident.
For the dynamic quantities, we study the shape of timewhere() denotes configurational averaging, and the frequen-
resolved transmitted pulse under a pulsed plane-wave incFiesQ ™ =Q * (w/2) have been written in terms of the center
dent. For the static behavior, we find an abrupt transitiorfrequency() and the difference or modulation frequenoy
from ballistic to diffusive behavior wheh/I~3. The diffu-  the latter also being conjugate to the travel timérom Eq.
sion approximation is valid wheln/| >3, independent of the (2) it is clear that the ensemble-averaged intensity
amount of internal reflection. However, for the dynamic<|</;(t,F)|2) is given by the Fourier transform of the fre-

properties, from both the peak arrival time at short times angyuency correlation functionCq(w,r)={(dq+(r) ¢;_(F)>,
the diffusion constant at long times of the transmitted pulseyhich is the fundamental quantity to be determined.
we find a region of anomalous diffusion wheh3L<L_, in

which the diffusion constant increases with decreading o - - PR ) i
The physical origin of the existence of such an anomaloudon function Co(w,r.r")=(¢o+(r)¢,-(r')), which is
region is the resonance-induced wave focusing effect. Due ténown to satisfy the Bethe-Salpeter equation

the presence of internal reflection, the wave energy tends tg o R _

concentrate in the forward direction. This focusing effect Cao(@,r,r")=(@inc(r,Q")){@i(r",27))

makes the randomization of wave propagation direction

X(po+(Ndh-(MNex—iot)|, (2

CQ(w,F) can be obtained from the space-frequency correla-

more difficult. A similar wave focusing effect has been found + f drodrdradrGa+(r,ry))

in resonant tunneling systems of electrons in the presence of

elastic scattering21]. The diffusion approximation is valid x = = - = = = = - —
whenL>L.. The value ol is about ten times the averaged X(Go-(r',r2))U(ryrairary) Co(wira,ra),
extrapolation length, i.el.~10z,, wherez, is a fast in- (3)

creasing function of the amount of internal reflection. In Sec.
Il, we present the analytical formulas for both the Bethe-where(e;,.(r,Q2%)) is the configurationally averaged inci-
Salpeter equation and the improved diffusion theory. The redent wave function inside the sample and takes the following
sults of these calculations are presented in Sec. lll. Sectioforms for the case of a normally incident plane wave consid-
IV presents the discussion as well as the conclusions of thisred herd 20]:
work. , .
(@inc(z,Q))=¢€'P1?2+re P12 7z<Q,

Il THEORY (Ginc(z, ) =t,eP?+1,e7PZ  0<z<L, (4)

We consider a pulsed plane wave that is normally incident _
on the front surfacez=0, of a slab-shaped sample contain- (@inc(2,Q))=te'P2?  z>0,
ing isotropic random scatterers. The thickness of the sample 5
is L. The optical index is assumed to take different values inwhere p;=Q/v,, p=Q/v+i/(2l), and p,=Q/v,. Here
three regions, namely); outside the scattering mediunza ( v;=c/n;, v=c/n, andv,=c/n, are the wave speeds in
<0), ninside the scattering medium €{&<L), andn, out-  three different regions. For convenience, we set the value of
side the scattering mediumz$L). To investigate wave c to unity. The coefficients, t;, t,, andt should be deter-
transport through this scattering medium, we are interested imined from the boundary conditions at the two surfaces. It is
modeling the temporal evolution of the intensity and the fre-easy to show that; andt, take the forms:

016612-2



WAVE TRANSPORT THROUGH THIN SLABS OF RANDOM . .. PHYSICAL REVIEW BE6, 016612 (2002

1

rir,—e 2P

_ 2p;(p+p2)
! (p+p1)(p+p2)—(P—p1)(p—py)e?Pt’

1
5 G(z,z';q)= 5=

t 2ip

. ><I:rle72idpeip(z+z’)_'_efzineiplzfz’\
2p1(p—po)e”Pt

th=—= = = = — (6) —ip|z—2'| —ip(z+2')
(p+p2)(P+Pp2)— (p—p1) (p—pa)e?Pt Traree tree 1 Q0

N , _ wherer ;= (p—po)/(p+po), r2=(P—Pg)/(P+p;) and pj
The coefficientsr andt will not be needed in our calcula- =k2—q?=0, p?=(k+i/21)?—q?, andp)?=k3—q?=0.
tions. _ _ _ Since, for our purpose, only the frequency correlation
The functionU in Eq. (3) stands for the summation of all function Cq(w F) is needed. we can solve the Bethe-
irreducible vertex functions. For isotropic scattering, the ' '

scattering mean free path is equal to the transport mean fr%alpgtet: equation for the simpler case whefe-r. Thus,
path and they are both denoted byThe lowest-order con- 9. (3) becomes
tribution to the vertex function becomga2 ~ - S

#22] CQ(wrz):<‘Pinc(raQJr)><(Pi*nc(r'Q )

R &, 2 -
U(rl,rs,rz,r4)=|—§(r1—r3)5(r1—r2)5(r3—r4). (7) ~I—|—J dzH(z,2;) XCq(w,2), (12

) . where
With this form for U, Eq. (3) generates a sum of ladder

diagrams, which represents the multiple scattering of waves %

without interference effects. The averaged single-particle H(Z,21)=JO 4Go+(2,21,9)Gg-(2,2,,9)dg. (12
Green’s function G (r,r’)) in Eq. (3) represents the coher-

ent wave transport inside the sample between two scatteEquation(11) takes the form of the Milne equation. It is a
ings. In the presence of internal reflection, the functionFredholm integral equation of the second kind with a singu-
(Gq(r,r7)) loses its translational invariance in taedirec-  lar kernel that can be solved numerically by using the stan-
tion and possesses the translational invariance only in théard method22,23. After the frequency correlation func-

transverse plane. It is more convenient to W(i%(?,ﬁ)) tion is obta_ingd, it is straigh'gforwz_ird to calculate the
as temporal variation of the transmitted intensity from Ef).
In our calculations, we focus on a particular center frequency
Q. Thus, the precise form of(Q)) is irrelevant. Since we
<GQ(F,r_7))=(27T)’1j (G(z,2;q))exdiq- (p—p’)]da, ignore all the interference effects in the Bethe-Salpeter equa-
tion, our results are valid whenQI>1. In this limit, our
®) results are insensitive to the value @f
For the static quantity, we calculate the diffusive part of
Where,; denotes the position afin the transverse pla_né_is the total transmitted intensity at the output surface, which
the transverse wave vector. In order to incorporate all thean be obtained from the quantityCqo(O.L,L)
multiple reflections between two surfaces, the function_ ., (" 0))(e* (L,Q)) in Eq. (2). In order to compare

(G(z.z;q)) must satisfy the following one-dimensional the results obtained from the above first-principles calcula-
wave equation20]: tions with those of the diffusion approximation, we summa-
rize below some known analytical results for the diffusion

d2 approximation. The time-dependent diffusion equation for
E_q2+ k?](G(z,z';q))=0, z<O0, the intensity in a slab of thicknesgstakes the form:
al(r,t) , - . .
42 P2 P =D VaI(r,t)+1(r,t)=Q(r,t), (13
[——q2+ k+ E) (G(z,2';9))=0, 0<z, z'<L,
dz? whereD,=1/3n is the bulk diffusion constant of the scatter-

©) ing medium. Q(F,t) denotes the source function. For a
2 pulsed plane-wave incident, we can wri@ as 6(z—z,)
— —q°+k5|(G(z,2';0))=0, z>0. 5(t). Herez, represents the coherent penetration depth of the
dz source. For a plane-wave incident, the intensity becomes a
function of z andt. As for the boundary conditions, it has
From the above equations, the Green’s functions correspondbeen shown that the effects of internal reflection can be ac-
ing to the three regions can be obtained easily. In our calcueounted for by incorporating an extrapolation lengthinto
lations, we need only the Green’s function inside the slalthe boundary conditions of the diffusion equation, which is
region (0<z<L), which takes the form: related to the internal reflection through
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z=al(1+R)/(1-R), (14 through 1(L)=Cq(0.L,L) — (@ine(L, Q) ) 0% (L,0)). We
] ] ] plot the inverse of (L) as a function oL/l in Figs. {a—9
wherea=2/3 andR represents the ratio of the incoming flux i ircles forn=1. 1.3. and 1.6 respectively. The case of

to the outgoing flux and can be obtained from the angle'n=1 represents no internal reflection. It is interesting to see

;elveraged r;a;le(f:tion cloefffi%ezt, i‘.R’:.<R(6.’)>_Ps|]' Ilzorstcaf- that all these three cases show similar crossover behavior.
ar waves, the formula fofR(6)) is given in Table | of Ref. For L/1>3, the data points follow three straight lines, indi-

20]. In the absence of internal reflection, the transport__,. e . .
Ehe]ory gives the Miline result af=0.71[24]. If both bound—p cating diffusive behavior according to Hd.6). The extrapo-

aries have the same index mismatch, the solution of Eg). I:;]ltlon Il_ength zehcan rleadily be of.btailn Ed by extrap((j)lating
takes the forn{15]: these lines to the real axes. We find/1~0.7, 1.7, and 3.2

for n=1, 1.3, and 1.6, respectively. These numbers agree

©

2 mar mar excellently with the prediction of Eq14) whena=0.71 is
I(z,t)= g2 sin T(Ze+ zZ,) sir{T(ZwL Z.) used. If we use the calculated values of the angle-averaged
m=1 reflection coefficienR=0.43 and 0.65 fon=1.3 and 1.6,
mar) 2 respectively, according to E¢14), we find z./1~1.78 and
XeXF{—Dot(T } (15  3.35. The values of,/I obtained here will be used in the

dynamic calculations below. Figure 1 clearly shows an
whered=L+2z,. In the static limit of a continuous plane- abrupt crossover from ballistic to diffusive behavior at a

wave incident, the source function becon@s 5(Z_Zp)- transition thickness df /1~ 3, independent of the index mis-
The static solution of Eq(13) gives the following intensity ~match. Thus, for the static behavior, the improved diffusion

atz=L: approximation of Eq(16) is valid as long as./| >3, which
is insensitive to the amount of internal reflection at the
324(2et+ 2) sample boundaries. This conclusion is consistent with the
I(L)= To(2z+L) (16) experimental data given in R€f3].

For the dynamical behavior, the time-resolved transmitted

Equation (16) shows that the inverse dfL) is a straight intensitiesl(L,t), calculated from Eqs2) and(3) for a slab
line. The zero of (L) ! is twice the extrapolation leng, . of L/I=8 withn=1, 1.3, and 1.6 are shown as dotted curves
In fact, from the solutions of the Bethe-Salpeter equation ath Figs. a—0, respectively. Here, for convenience, we have
large sample thicknesses, one can also obtain numerically titormalized the intensity so that its peak value is unity. The
value ofz, from Eq. (16) by extrapolating (L) to negative three insets show the semilog plots of the same quantities. A
L. This result should be compared with the prediction of Eq.straight line at the long intervals is expected from the diffu-
(14) used in the diffusion approximation. sion approximation. Its slope gives the decay time, which in

Finally, we determine the penetration demfy used in turn determines the diffusion constant through7pl/
the diffusion approximation in the following way. We first =7°D(L)/(L+2z)? [7]. In Fig. 2, we also plot the results
assume a distribution of, weighted by an exponential at- of Eq. (15) as solid lines in each case for comparison. For the
tenuation of the coherent intensitgs]. Sincel (L) is linear ~ case ofn=1, the excellent agreement between the results of
in va the average intensity,l (L)>Zp takes the form of Eq Eqs(Z), (3), and(16) n F|g Z(a) indicates that the behavior

; : of the pulse propagation through a slab of thickneds=8
g?'[ggﬁpet replacing, by an average penetration depth, can be well described by the diffusion approximation. How-
b , e,

ever, this is not true for the cases w&1.3 andn=1.6. A
U discernible deviation appears wher1.3. This derivation
f 2, Md(z, /1) becomes more distinct as the valuendk increased. In par-
0 (17) ticular, we notice that the slopes of the dotted lines in the
L/ (—2.11) ' insets of Figs. th) and 4c) are different from those of the
f e *d(zp/1) solid lines. This indicates diffusive behavior but with a dif-
fusion constant different from that of the bulk system, i.e.,
It is easy to see that wher>1, (z,)~I. D(L)# D,=1/3n. This anomalous transport behavior in thin
samples has been reported in various experiméhi,21.
Thus, for the dynamic behavior, unlike in the static case,
there exists an anomalous diffusive region between the bal-
For simplicity, we first consider the case of a slab of scatdistic transport and the diffusive transport of a bulk system in
tering medium with an optical inder, embedded in a ho- which a scale-dependent diffusion constant appears. To un-
mogeneous background with optical index unity. Thus, botrderstand better the transport behavior in this anomalous re-
surfaces of the slab have the same index mismatch. Thgion, we study systematically both the peak arrival tipat
cases in which two boundaries have different mismatcheshort times and the diffusion constab{L) at long times.
will be considered later. We numerically solve E¢B. and  The log-log plot oft, as a function oL/l atn=1, 1.3, and
(3) at different values ofi andL/Il. For the static case, the 1.6 are shown as open circles in Fig$a-30, respectively.
diffusive part of the transmitted intensity at the output sur-The solid lines are the results obtained from Etp). The
face is obtained from the numerical solution of E@) result of Fig. 3a) for the case oh=1 recovers the previous

<Zp>=

III. NUMERICAL RESULTS
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FIG. 1. The inverse of intensity(L) ~?, as a function of the slab 0 100 20 30 400
thickness fom=1 (a), n=1.3 (b), andn=1.6 (c). The solid lines t(l/c)
are the calculated results and the dotted lines are the fitted results.

FIG. 2. The time profile of the transmitted intensity for the

result of Ref[12], where a bulk Green’s function was used SamPle thickness./I=8 with different index mismatchesa) n
n Eq. ) T to-segment befavior shown n Figas 10112 0 1L, e el s e e e o
clearly indicates a rather abrupt crossover from ballistic tOThe dot-dashed line ?ﬁarks the ballistic segment :
diffusive behavior at./I =3, below which the slope is 1 and '
above which it changes to 2 suddenly. Such an abrupt tran-
sition was first reported in Refl12]. However, if we look values ofny, n, andn, are, respectively, 1, 1.34, and 1.46. In
more carefully, there exists a slight difference between thehis case, the angle-averaged reflection coefficientsRare
solid line and circlegmarked by the dotted linen the re- =0.47 andR,=0.02 for the left and right boundaries, re-
gion of 3=L/I=5. This difference, as well as the region it spectively. The corresponding extrapolation lengths arel 1.97
spans, increases with the amount of internal reflection as cagnd 0.74, yielding an average value af=1.36. The result
be seen from Figs.(B) and 3c). For the cases af=1.3and  of D(L)/D, is plotted as triangles in Fig. 4. Again, deviation
1.6, the circles overlap with the solid lines whe~15 and  from the diffusion approximation appears whén=10,
30, respectively. These values are about ten times the exvhich is about z,—8z,.
trapolation length in each case. The existence of this anoma-
lous region becomes more obvious in Fig. 4, where the nor-
malized diffusion constard(L)/D,, is plotted as a function IV. DISCUSSION AND CONCLUSIONS
of L/l for n=1 (diamond$, n=1.3 (squares andn=1.6 ] o
(circles. The deviations from unity represent the anomalous [N order to understand the physical origin of the
diffusion. It first appears whem/I~8, 15, and 32 fom  @nomalous diffusion in thin samples, we plot in
=1,1.3, and 1.6, respectively. These results are consistefig. 5@ the scattered static intensity(z)=Cq(0,Z,2)
with the analyses df, shown in Fig. 3. From Fig. 4, we also  —(inc(Z,2)){¢i.(Z,2)) as a function ot for the case of
find thatD(L) increases witm, but decreases with. The L/I=2 andn=1.6 at{)=16 (solid curve and{)=8 (dotted
physical reason for such a behavior will be discussed belowcurve). The existence of large spatial oscillationsl {{z) in-
Thus, for the dynamic behavior, we can separate the waveicates that the scattered waves possess a significant portion
transport into three different region@) ballistic, (ii) anoma-  of the coherent property. It is also seen that the oscillations
lous diffusive, andii) bulk diffusive. The crossover thick- become more significant near the sample boundaries due to
ness is very sensitive to the amount of internal reflection. the presence of internal reflection. The number of oscilla-

Finally, we consider the case in which two surfaces havdions inside the sample is roughly equalric.Q)/ 7, which
different index mismatches. For convenience, we considehas the value 8.1416.3 when () =8(16). For the sake of
the experimental systems given in RET], in which the  comparison, in Fig. &), we also plot the coherent part of the
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(b)

FIG. 3. The peak positions in
the time profile of the transmitted
intensity plotted as a function of
the sample thicknesd,/I. (& n
=1, (b) n=1.3, and(c) n=1.6.
The solid lines are the results from
the diffusion theoryEq.(15)] and
the dotted lines are from E@2).

100

10

100
I

wave, i_e.,<(pmc(2,Q)><(pi*nc(2,Q)>_A|th0ugh the number of been observed for electrons in resonant tunneling systems
oscillations between the coherent and scattered parts are théll- The presence of elastic scattering tends to focus the
same, there is a major difference between the two. The cdunneling electrons into a resonant state. Thus, the multiple
herent intensity has an exponential decay, whereas the scaeflection of the waves between two boundaries tends to lock
tered intensity decays linearly. A linear decay is the characthe wave scattering into the forward direction and make the
teristics of diffusive transport. Thus, the scattered waveglirection randomization difficult. Due to this wave focusing
show both ballistic and diffusive behavior. This is not sur-€effect, the incident angles of the scattered waves at the
prising for such a thin sample, i.&.{l =2. When the sample sample boundaries are not evenly distributed. Thus, the
thickness is increased, it is expected that such oscillationgngle-averaged reflection coefficient calculated according to
will die off and a full diffusive behavior will be reached. In an even distribution of incident angles actually overestimates
Fig. 6, we plot the similar curves for the caseldf=4. Itis  the value ofR [16]. This, in turn, overestimates the extrapo-
indeed found that overall oscillations have reduced signifilation length I, and therefore, gives a larger value of
cantly. However, large oscillations still persist near samplé?(L)/D,. The spatial oscillations of(z) die off whenL
boundaries where the period approximately equals/o().

The presence of such enhanced oscillations is entirely due t¢ ¢ 8

""""" LI B L R
internal reflection and has significant effects on the dynami-
cal transport. Since the period of these oscillations is close to I |
that of the coherent wave, it suggests that the wave energy 0.6 dotted line: Q=8 4
tends to concentrate in a resonant state that has small trans, \ solid line: Q=16 ]
verse wave vector. A similar wave focusing phenomenon has a_ I
=04
L T T T N T 9% r
145 | & ny=n,=n=1 1 ~ [
O n,=n,=1,n=1.3 0.2
O n,=n,=1,n=1.6 I
13 ¢ A n=1,n,=1.46,n=1.34 1 ! | | |
D° xn,=n2=n=1 4:03E%{":lHHH,lHHHI!,}HHHH,HI}H!H
= (bulk Green’s function) O
5 115 - B A
o 38 N
1 -oosd H_-_E_\..\_.%:eﬁ._e = TN
=33 N
085 Lot e - dotted line: =8
0 5 10 15 20 25 30 35 28 [ solidline: Q=16
w :

FIG. 4. The calculated diffusion constants as a function of 23 o L L L ]
sample thicknesk. The bulk diffusion constant is characterized by o 05 1 15 )
the diffusion constanb,. The plotted data are scaled with, (dot- Z/
dashed ling The diamonds are fon=1, the squares fon=1.3,
the circles forn=1.6, and triangles for experimental resul@. FIG. 5. (a) The scattered intensity(z) as a function ofz/l for
Crosses represent the results calculated using the bulk Green'’s funic/l =2 slab. The dotted line is fofl=8 and the solid line foK)
tion. =16. Figure %b) represents the coherent wave intensity.
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FIG. 6. Same as Fig.(8) exceptL/|=4.
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Ln(I(L.1)

t(units of L/c)

FIG. 7. The time-resolved transmitted intenslty[ I (L,z)], as
a function oft (in units of L/c) for L/I=2 slab. The open circles
represenf) =8 and the filled squares are fo¥=16.

consider only the weak scattering regime, what@l>1,

and no interference effects have been included in our calcu-
lations. However, the experimental observations of anoma-
lous transport in strongly scattering media always show a
reduction ofD(L) in thin sampleq7,12,25. The reduction
may be due to wave interference effects. In thin samples, the
intensity at long times come from waves that have long

becomes large or when index mismatch becomes small. Thé{,avel paths in the transverse plane. A reduced dimensionality

disappear entirely when sample thickness is abomt .10his
explains whyD(L)/D, shown in Fig. 4 increases with in-
creasingn and with decreasing.

It is also interesting to notice in Fig(& that the scattered
intensitiesl (z), atz=0 andz=L are independent df). In
fact, this is also true whea # 0. In other words, the function
Colw,L,L) = {oine(L, Q)N (L,Q27)) is insensitive to
the value of() when nQl>1. Thus, our previous results
shown in Figs. 1-4 are independent of the valu€ofised
as long as() lies in the weak scattering regime, i.@fl

in thin samples likely makes interference important. How to
incorporate the effects due to interference into the diffusion
constant in thin samples with internal reflection remains an
interesting and challenging task for future study.

In conclusion, the static and dynamic features of wave
transport through a slab of strong scattering medium in the
presence of internal reflection is investigated by performing
first-principle calculations. Our calculations, based on the
ladder approximation of the Bethe-Salpeter equation with the
use of a renormalized Green’s function, are valid in the weak
scattering regime for any amount of internal reflection. They

>1. To show this, we plot in Fig. 7, the time-resolved trans-.5, pe applied to any waves satisfying the classical wave

mitted intensityl(L,t), calculated from both2=8 (open
circles and )= 16 (filled squares for the case ofL/I=2.
The two curves completely overlap each other.

For the case oh=1, our Egs.(2) and(3) underestimate
the diffusion constant in thin samples, i.B(L)/D,<1. The
reason is as follows. Even when=1, a small amount of

equation. The effects of internal reflection on the transition
from ballistic to diffusive behavior are analyzed in detail. An
abrupt crossover from ballistic to diffusive transition has
been found wheh. ~3I. However, from the analyses of the
dynamic properties, we find a region of anomalous diffusion
when 3<L<L., in which the diffusion constant increases

internal reflection still exists at the boundaries due to thgytp decreasing.. The existence of such an anomalous dif-
presence of disorder inside the sample, as can be seen fragsjve region is due to the resonance-induced wave focusing

the termi/2l in Eq. (9). This small amount of internal reflec-
tion has been included in E¢) through the use of i)
and G in Egs. (4) and (9), respectively. However, it is not
included in the calculation af, in Eq. (14). Thus, such an
underestimation ofz, produces a smalleD(L). In fact,
when we use the bulk Green’s function and the functign
used in Ref.[12], the results ofD(L)/D, are shown as

crosses in Fig. 4. In this case, the Bethe-Salpeter equation

effect that makes the directional randomization difficult dur-
ing the scattering process. The diffusion approximation is
valid whenL>L.. The value ofL. is about ten times the
average extrapolation length, i.e510z., wherez, is a fast
increasing function of the amount of internal reflection.
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